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Abstract

With the reducing distances between wires in deep sub-
micron technologies, coupling capacitances are becoming
significant as their magnitude becomes comparable to the
area capacitance and fringing capacitance of a wire. This
causes an increasing susceptibility to failure due to inad-
vertent noise, and leads to a requirement for accurate noise
estimation. An incorrect estimation of the noise could lead
either to circuit malfunction in case of under-estimation, or
to wasted design resources due to overestimation. This pa-
per presents a new time-efficient method for the precise es-
timation of crosstalk noise. While existing fast noise estima-
tion metrics may overestimate the coupling noise by several
orders of magnitude, the proposed metric computes the cou-
pling noise with a good accuracy as compared to SPICE.

1 Introduction

In the past, timing and power analysis have been the crit-
ical criteria to be optimized in the design process. With
the use of deep sub-micron technologies, shrinking geome-
tries have led to a reduction the self-capacitance of wires
while increasing coupling capacitances as wires are brought
closer together. In conjunction with increases in operating
frequencies, noise analysis and avoidance is becoming as
critical a factor in circuit design as timing or power. For
present day processes, the coupling capacitance can be as
high as the sum of the area capacitance and the fringing
capacitance of a wire, and trends indicate that the role cou-
pling capacitances will be even more dominant in the future
as feature sizes shrink [1, 2].

One of the important effects of coupling capacitances is
that they may induce unwanted voltage spikes in neighbor-
ing nets. A net on which a switching event occurs is termed
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anaggressorand the net on which it produces a noise spike
is referred to as avictim. Typically, an aggressor net is phys-
ically adjacent to a victim net and they may be modeled
as being connected by a distributed coupling capacitance.
Hence, a switching event in the aggressor net while the vic-
tim net is silent can result in the injection of aC dv

dt cur-
rent into the victim net, causing an electrical spike. In time,
as the aggressor net completes its transition, this electrical
spike dies down to zero. However, a large coupling capaci-
tance relative to the self-capacitance of the wire can cause a
large inadvertent spike on the victim that may cause a spu-
rious switching event, potentially leading to an unintended
state being latched and thereby changing the functionality
of the circuit.

Various transient analysis techniques can be used to es-
timate noise. Circuit or timing simulation techniques, such
as SPICE [3], may be used, but these are computationally
expensive and are not conducive to use on large systems,
particularly when fast noise evaluations for noise optimiza-
tion purposes are required. When the system is modeled
as a linear circuit, linear model order reductions such as
[4, 5, 6] may be used, and these have been incorporated in a
noise evaluation system [7, 8]. These model order reduction
techniques help in reducing the computational cost, but in
several cases, the cost is still unacceptably high for an opti-
mization system that would use a noise metric to select the
circuit parameters for noise-free behavior. Using modern
moment matching methods, it may still require more than a
day to compute the noise in a modern microprocessor [9].
An example of such a situation is in designing a physical
design system where optimizations such as buffer insertion
[10], spacing [11] or routing criteria are to be introduced
[12, 13, 14]; such systems must, of necessity, use much sim-
pler noise metrics. Most existing physical design systems
for noise optimization use extremely simple noise models
such as one where the noise is computed as being propor-
tional to the overlap between wires [12, 13, 14]. While this
is not an unreasonable first-order model, it fails to capture
deeper intricacies such as the effects of the slope of the ag-
gressor transient waveform, the effects of the ratio of the



self-capacitance to the coupling capacitance, etc. As these
simple formulae do not have a concrete electrical and circuit
theoretic formulation, they are liable to be inaccurate.

A fast metric for coupled noise estimation based on
model-order reduction techniques was recently presented
in [9]. We will describe this metric in detail in Section 3,
and it forms the foundation for this work. However, while
it is an excellent first effort, its limitations lie in the fact
that it computes only an upper bound on the circuit noise,
a value that is overly pessimistic. While we will explicitly
list and quantify its other weaknesses later in this paper, it
suffices to observe here that its accuracy is limited to short
wires and relatively slow slew rates of more than 100ps. In
the near future, when clock frequencies of 1-2 GHz will be
common, much faster slew rates are expected and due to re-
sistive shielding slew rates of 20ps to 100ps can obtained at
the driver output. Hence, the upper bound is too pessimistic
and is liable to predict noise spikes that exceed the supply
voltage, which is impossible in a pure RC circuit. This mo-
tivates the need for a more accurate metric for noise analysis
to address these problems.

This paper presents an improved metric for a more pre-
cise estimation of crosstalk noise. Its computational com-
plexity is comparable to the Devgan metric and its deriva-
tion is, indeed, inspired by the techniques used in that met-
ric. Our experimental results show the improved accuracy
of the method.

The paper is organized as follows. Section 2 presents the
basics of crosstalk estimation, followed by a brief presenta-
tion of Devgan’s metric in Section 3. Our new noise estima-
tion method is described in Section 4 presents the new effi-
cient noise estimation method, with procedures for efficient
computation and an analysis of the computational complex-
ity being provided in Section 5. Experimental results are
listed and Section 6 and a set of concluding remarks round
up the paper in Section 7.

2 Basics of crosstalk estimation

The work in [9] introduced a method for computing an
estimate of the coupling noise between wires using the final
value theorem [15]. The method was elegant in its simplic-
ity in that it permitted the noise estimate to be calculated
in a similar manner to the Elmore delay [16]. This led to
its adoption for use in physical design in [10, 11], using
an extension of Elmore delay optimization methods for this
purpose.

The method proposed in this work begins with the same
equations as [9], but performs a different analysis for noise
estimation. While Devgan’s metric is guaranteed to be an
upper bound on the noise, we will show that it may be too
pessimistic, and that it may be wiser not to employ the final
value theorem to develop a metric based on this approach

for systems with fast switching transitions at gate outputs.
To illustrate this, we show the difference between the two
methods in Figure 1. In [9], the aggressor net is assumed to
be excited by a forcing function that is similar to a step func-
tion, but with a nonzero transition time and a finite slope.
This slope leads to a noise spike in the victim net of the
type shown by graph 2 in the figure. However, to ease the
computation, it was assumed in [9] that the increasing ramp
is infinite, leading to the response shown by graph 1 in the
figure. This is easily proven to be an upper bound on the
noise shown in graph 2.
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Figure 1. Different model for analyzing the
noise. 1 shows final value theorem method,
2 shows real noise signal used for the pro-
posed method

However, this upper bound is not necessarily tight, and
we will show instances in our experimental results where
the bound leads to meaningless results since the obtained
value is larger thanVdd. As shown in Figure 2, the noise
reaches its maximum value at some time after the aggressor
net switches, after which it again decreases towards zero.
Nevertheless, it is certainly true that in order to approximate
the noise, the slew rate of the aggressor plays an important
role since it influences theC dv

dt current injected into the vic-
tim through the coupling capacitance. This current causes
the voltage to drop along the wire resistance of the victim
net. Assuming the victim net to be at zero potential initially,
the voltage at a node on the victim net first increases due to
this injection. As the transient on the aggressor net settles,
the magnitude of the injected current reduces, and the noise
on the victim net dies down to zero.

We will now soon reproduce the essentials of Devgan’s
approach to formulating the problem, and we will utilize the
same basic notation to express our solution to the problem.
The basic set of equations for a circuit of the type shown
in Figure 2, with net 1 being the aggressor and net 2 being
the victim net, initially at ground potential, can be written
as follows:�
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Figure 2. Circuit schematic with aggressor
and victim net for coupled noise

wherev1 is a vector of node voltages in the aggressor net,
v2 is a vector of node voltages in the victim net, andvs
is the input to the aggressor net. In (1), the zeros in the
conductance matrix indicate the fact that there is no resistive
path between net 1 and net 2. The zero on the right hand
side is due to the fact that the excitation is applied only to
net 1 and net 2 is connected to ground. This matrix system
can be rewritten in the Laplace domain as

sC1V1 + sCT
c V2 = A11V1 +B1Vs;

sCcV1 + sC2V2 = A22V2 (2)

3 Description of Devgan’s Metric

Using Equation (2), Devgan computes the transfer func-
tion

H(s) =
V2(s)

Vs(s)

=�
h
(sC2 �A22) + sCc (sC1 �A11)

�1
sCT

c

i�1
�

sCc (sC1 �A11)
�1

B1 (3)

Applying an input voltage,Vs, to the aggressor net in the
form of a finite ramp leads to a solution to the circuit. How-
ever, since this could lead to a messy solution procedure,
Devgan applies an input of the formk=s2. This corresponds
to an infinite ramp of slopek, the response to which, as ob-
served earlier, is a monotone increasing waveform on the
victim whose final value provides an upper bound on the
noise. Applying the final value theorem leads to the result

V2;max = �A�122 CcA
�1
11 B1k (4)

To simplify the process of calculating this, a circuit inter-
pretation was provided. Equation (4) can be rewritten as

V2;max = �A�122 Cc
_V1;ss; (5)

where
_V1;ss = �A�111 B1k: (6)

The circuit interpretation of this implies that (6) may be
solved by applying an excitation ofB1k to the aggressor
net 1 while open-circuiting all capacitances connected to it.
This implies that for an RC aggressor line with no path to
ground, the value of_V1;ss = k at all nodes. Considering
the circuit interpretation ofCc

_V1;ss in Equation (5), each
coupling capacitance can be replaced by a current source
of valuek times the coupling capacitance at the node; any
capacitances to ground are removed. Let us represent this
vector of current sources beIc. Then solving (5) amounts
to solving

V2;max = �A�122 Ic: (7)

Thus, the value ofV2;max can be obtained by solving net
2 with the above transformation on all capacitances. This
may be carried out by means of a tree traversal.

3.1 Limitations of this Metric

The metric described above has several limitations:

� The noise voltage in the victim net is proportional to
the slope of the transient of the input voltage ramp.
In case of fast slew rates, the noise of the victim in-
creases in an unbounded manner. In the extreme situa-
tion where the input is a step function, the noise in the
victim net goes to1. This is clearly impossible since
the supply voltage limits the maximum noise that can
be induced.

� The magnitude of the induced noise has no dependence
whatsoever on the capacitances to ground of either the
aggressor or the victim. This is clearly incorrect, since
a coupling capacitance that is negligible in comparison
with the capacitance to ground would lead to a negligi-
ble crosstalk value. Moreover, there is no dependence
on the resistances in the aggressor net, implying that
the length of the aggressor net is irrelevant to the value
of the noise spike.

In Tables 1 and 2, we support the two arguments above
by explicit verification. The results in the two tables show
the noise spike in Volts using parameters for a 0.25�m tech-
nology and for a 0.18�m technology, respectively. For the
length of the victim net, four different lengths, varying from
0.5mm to 5mm, have been assumed. Additionally, four dif-
ferent slew rates have been used. The “x” in the Tables 1
and 2 represents the independence of the noise to the length
of the aggressor net. It is seen from the tables that the pre-
dicted noise spike greatly exceeds theVdd value. According
to our HSPICE simulations (listed in Section 6), the magni-
tude of the crosstalk spike on a victim net of constant length
can vary by as much as 64 % with variations in the length
of the aggressor.



Table 1. Noise simulation results in Volt of De-
vgan’s metric using a 0.25 �m CMOS technol-
ogy and V dd=2.15V

wires 20ps 50ps 100ps 250ps
x-5mm 55.82V 22.17V 16.75V 6.66V

x-2.5mm 14.23V 5.65V 4.27V 1.7V
x-1mm 2.408V 0.956V 0.723V 0.287V

x-0.5mm 0.657V 0.261V 0.197V 0.078V

Table 2. Noise simulation results in V of De-
vgan’s metric using a 0.18 �m CMOS technol-
ogy, V dd=1.65V

wires 20ps 50ps 100ps 250ps
x-5mm 45.25V 17.97V 13.58V 5.4V

x-2.5mm 11.54V 4.58V 3.462V 1.38V
x-1mm 1.95V 0.775V 0.586V 0.233V

x-0.5mm 0.532V 0.211V 0.160V 0.064V

4 A new metric for precise crosstalk estima-
tion

We will persist with the notation introduced above, as far
as possible, and model the response of the input voltage to
a ramp. The motivation for studying the response to a ramp
is that eventually, we will express a step-like transient with
a linear rise transient and a slope ofk as a summation of
three ramps.

For a ramp input, we may expandV1(s) using the series:

V1(s) = v10s
�2 + v11s

�1 + v12 + v13s
1 + :::: (8)

Similarly, the voltageV2(s) can be represented as

V2(s) = v20s
�1 + v21 + v22s

1 + v23s
2 + :::: (9)

These specific forms for the series have been chosen to be
consistent with the final value theorem. If an infinite ramp
is applied to the aggressor, the responsev1(t) on the ag-
gressor net will go towards infinity ast ! 1. This is cap-
tured by ensuring a nonzero value forv10. Similarly, for the
latter equation,v2(t) approachesv20 as its final value, con-
sistent with the observation that the response on the victim
net saturates to a constant on the application of an infinite
ramp. The motivation for capturing the response to the infi-
nite ramp will become apparent later, but a synopsis of the
explanation is that the input waveform to the aggressor is
represented by a sum of ramps.

Using the series expansions for the voltagesV1 andV2
and substituting them in Equation (3) leads to:

(sC1 �A11)(v10s
�2 + v11s

�1 + v12 + v13s
1 + :::)+

sCT
c (v20s

�1 + v21 + v22s
1 + v23s

2 + :::) = B1ks
�2; (10)

(sC2 �A22)(v20s
�1 + v21 + v22s

1 + v23s
2 + :::)+

sCc(v10s
�2 + v11s

�1 + v12 + v13s
1 + :::) = 0: (11)

As in AWE [4], we may conclude that these equations are
satisfied if the coefficients of allsi on the left hand side are
the same as those on the right hand side. Hence, we obtain
from (10):

s�2 : A11v10 = �B1k;

s�1 : A11v11 � C1v10 = 0;

s0 : A11v12 � C1v11 = CT
c v20;

si�1 : A11v1i � C1v1(i�1) = CT
c v2(i�2): (12)

Solving this forv1i leads to

s�2 : v10 = �A�111 B1k;

s�1 : v11 = A�111 C1v10;

s0 : v12 = A�111 (C1v11 + CT
c v20);

si�1 : v1i = A�111 (C1v1(i�1) + CT
c v2(i�2)): (13)

Similarly, from (11), the following results can be obtained
for v2i:

s�1 : v20 = A�122 Ccv10;

s0 : v21 = A�122 (Ccv11 + C2v20);

si�1 : v2i = A�122 (Ccv1i + C2v2(i�1)): (14)

In order to obtain a closed form for the voltagev2(t), let us
consider its response to an infinite rising ramp (see Figure 1,
graph 1). Fort ! 1, v2(t) approaches a constant value
c 6= 0. For t ! 0, v2(t) is 0. Using the initial and final
value theorems, the following form of transfer function is
appropriate:

V2(s) =
1

s
�

a0 + a1s+ :::+ an�1s
n�1

1 + b1s+ :::+ bn�1sn�1 + bnsn
: (15)

The initial value theorem results inv2(0) = 0, and the final
value theorem results inv2(t!1) = a0.

The order of approximation depends on the degree of the
denominator polynomial. For computational efficiency, we
will focus on the approximation of the following form:

V2(s) =
1

s

a0
1 + b1s

(16)

which has the inverse Laplace transform

v2(t) = a0 � (1� e�
t
b1 ): (17)



Performing moment matching for the expressions forV2(s)
in the equations (11) and (16) leads to:

a0j = v20j (18)

b1j = �
v21j
v20j

= �
v21j
a0j

; (19)

wherej is the node number where the noise is computed.

5 Efficient Computation Techniques

5.1 Circuit Interpretation and Computa-
tion

The equations for the maximum voltage and the time
constant obtained in Section 2 can be physically explained.
Recalling that

a0j = v20j = �
�
A�122 CcA

�1
11 B1k

�
j

(20)

b1j = �
v21j
v20j

(21)

= �

�
A�122 (Ccv11 + C2v20)

�
j

a0j
; (22)

wherej represents thejth node in the design, andv1 and
v2 are given by Equations (13) and (14), respectively. As in
Devgan’s work, we may ascribe a physical meaning to these
equations. We first point out thata0 is identical to the noise
value calculated by Devgan and can be calculated similarly.
This is consistent with the fact thata0 represents the final
value of the response waveform in the reduced order model
in Equation (16). Similar principles may also be used to
determineb1 efficiently. The procedure may be summarized
as follows:

� The first step involves the calculation ofv20 at every
node in the victim net. Note that this has fortuitously
already been carried out in the process of computing
a0.

� Next, it is necessary to calculatev11 by solving

v11 = A�111 C1v10 (23)

The quantityv10 has already been seen to be a value
of k at each node. Therefore findingv11 involves the
solution of the aggressor net with all coupling capac-
itances removed, and all self-capacitances to ground,
C1i, replaced by a current source of value�C1ik. The
solution to the resulting circuit yields the vectorv11.

� Having computedv11 andv20, the next step is to solve
the equation

vtemp = A�122 (Ccv11 + C2v20) (24)

This physically corresponds to solving the victim net,
modified so that each coupling capacitance,Cci, is re-
placed by a current source of value�Ccj(v11)j , and
each self-capacitance to ground,C2j is replaced by a
current source�C2jv20; the solution to the resulting
circuit yields the vectorvtemp.

� Finally, b1j is calculated by dividing thejth element
of vtemp by thejth element ofa0.

5.2 Input Modeling

The input signal, which is the output of the gate driving
the wire, is similar to an exponential waveform. It is quite
difficult to simulate such an input. Hence, a piece-wise lin-
ear interpolation is done (see Fig. 3 (a)). The correspond-
ing model for the simulations is shown in Fig. 3 (b). For
the sake of simplicity, three liness1; s2 ands3 with slope
m1;m2 andm3 have been chosen, respectively, where the
slopes can be obtained by examining the piece-wise linear
model from Fig. 3 (a).

(a)

(b)

s

s

s

1

2

3

Figure 3. (a) The input of the aggressor net
and (b) the model for the simulations

5.3 Computational Complexity

The computational complexity of the proposed metric
can be obtained by examining the equations (20) to (24).
The computation ofa0 does not differ from the computation
in [9]. Hence, four tree traversals and one multiplication
of a diagonal matrix vector by a vector are required. The
tree traversal and the multiplication are of the orderO(n),
wheren is the number of segment points (see section 6).
In order to obtainv11, four tree traversals and a diagonal



Table 3. Noise simulation results in mV of HSPICE and of the proposed metric, using a 0.25 �m CMOS
technology and V dd=2.15V

HSPICE proposed metric Devgan’s metric
wires 20ps 50ps 100ps 250ps20ps 50ps 100ps 250ps 20ps 50ps 100ps 250ps

5-5mm 390 340 300 237 590 567 463 447 55820 22170 16750 6660
5-2.5mm 229 187 154 103 251 206 167 144 14230 5650 4270 1700
5-1mm 130 91 67 38 129 104 79 68 2408 956 723 287

5-0.5mm 25 16 9 5 38 23 13 7 657 261 197 78
2.5-2.5mm 308 248 210 187 540 417 295 216 14230 5650 427 1700
2.5-1mm 130 84 53 27 189 116 69 33 2408 956 723 287

2.5-0.5mm 46 27 23 11 86 44 27 16 657 261 197 78
1-1mm 120 90 55 30 179 103 66 29 2408 956 723 287

1-0.5mm 47 27 14 7 68 34 17 7 657 261 197 78

matrix-vector multiplication are required. For the computa-
tion of the entire numerator an additional diagonal matrix-
vector multiplication and two tree traversals are necessary.
Finally, a division of orderO(n) has to be used to obtain the
values ofb1 at every point along the victim net. Hence, ten
tree traversals, four diagonal matrix-vector multiplications
and one division is required to compute the noise along the
victim net. Compared with the metric of Devgan, this cor-
responds to an increase in the number of tree traversals and
multiplication/division by 2.5x and 4x, respectively. How-
ever, by realizing that Devgan’s scheme required less than
half a second to compute the noise in a circuit with 500,000
elements, this increase in complexity is tolerable.

6 Results and Comparison

In accordance with [2], SPICE-files have been obtained
for four different wire lengths, varying from 5mm to 1mm
for the aggressor net and from 5mm to 0.5mm for the vic-
tim net, respectively. The wire resistances and capacitances
have been distributed every 100�m. Hence, the number of
segment points is equal to the length of the victim net di-
vided by 100�m. Victim nets of longer length than the ag-
gressor net have not been considered due to the fact that
these cases can be modeled by wires of equal length. The
driver of the aggressor net is simulated as a voltage source
with output slopek = Vdd=T and a driver resistanceRd.
The input modelling at the driver output was described in
section 5.2.

The results of the HSPICE simulations are presented in
the Tables 3 and 4 for a 250nm and a 180nm CMOS tech-
nologies. Aggressors and victims of various length are cho-
sen. The entry 2.5mm-1mm implies an aggressor net of
length 2.5mm and a victim net that is 1mm long. The noise
is always measured at the end of the victim net. The slew
rates of 20ns, 50ns, 100ns and 250ns represent the voltage
rise and fall time at the input.

By examining Tables 3 and 4, it can be seen that the re-
sults of the new metric have a good accuracy compared to
SPICE. The noise estimation is slightly over-estimated for
victim nets with equal length to the aggressor net. The error
in the noise prediction is caused by the first order model.
However, using higher order models does not lead to bet-
ter approximations because we found that the poles of the
transfer function in (15) become complex. By comparing
the results of the new metric with the results of Devgan
(these results are repeated from Section 3.1), the improve-
ment in noise estimation is obvious. While the noise is over-
estimated by up to two orders of magnitude using Devgan’s
metric, the proposed metric provides results that are close
to the actual SPICE simulations.

7 Conclusion

This paper presented a new method for the coupled noise
estimation. The proposed metric computes the noise ac-
cording to the sink capacitances and conductances of the
aggressor net and the victim net, respectively, the coupling
capacitance between those two nets and the rise time of the
aggressor signal. The noise waveform is computed using a
closed form leading to a short computation time. While pre-
viously the coupling noise was over-estimated by up to two
orders of magnitude, assuming slew rates of less than 100ps
and long or medium length wires, the coupling noise can
be computed within a good accuracy compared to SPICE.
This results have been obtained by comparing the proposed
metric results with SPICE simulation results.
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