Technology Mapping for Domino Logic *

Min Zhao

Sachin S. Sapatnekar

Department of Electrical and Computer Engineering
University of Minnesota, 200 Union Street SE, Minneapolis MN 55455, USA.
{zhaomin,sachin} @ece.umn.edu

Abstract

Domino logic is a popular configuration for imple-
menting high-speed circuits. An algorithm for domino
logic mapping, under a parameterized library style, is
presented here. Practical design methods, such as the
use of multioutput domino and wide domino gates,
are incorporated within the technology mapping frame-
work. The technique can handle large circuits with
small computational overheads, and shows improve-
ments of up to about 37% over existing methods.

1 Introduction

The domino technology mapping problem is defined
as: Given an optimized Boolean network and con-
straints on the width (maximum number of parallel
chains) and height (maximum number of series transis-
tors) of the domino gates, the nodes in the network are
to be implemented with domino logic gates such that a
cost objective is minimized. We examine this problem
and explore an efficient parameterized library-based
domino logic technology mapping method.

A parameterized library is defined as a collection
of gates that satisfy the constraints on the width and
height of the pull-down or pull-up implementations of
a gate. For domino gates, since the number of possible
cells in such a library is extremely large, the layout of
the cells are produced by on-the-fly cell generation,
instead of using a fixed cell library.

Technology mapping based on static standard li-
brary is a well established problem addressed in [1-3].
The cell-generator based mapping technique was orig-
inally proposed for static complex gate mapping in [4]
and modified for domino logic in [5]. We use a dynamic
programming approach to find the optimal solution.

Traditional technology mapping methods, originat-
ing with [1], have decomposed the directed acyclic
graph (DAG) representing a circuit into a forest of
trees of single-fanout nodes; each tree is then mapped

*This work was supported in part by the National Science
Foundation under contracts MIP-9502556 and MIP-9796305
and a gift from Intel Corporation.

to an available cell. However, this tree-by-tree map-
ping procedure may generate small trees, but domino
gates can provide smaller area and delay only through
forming larger complex gates. Therefore, multiout-
put domino gates and wide domino gate configurations
are used in our approach. Instead of using only mul-
tifanout nodes or only primary output nodes as the
roots of trees as in [1], we use both primary output
nodes and reconvergent nodes. Depending on the cost
tradeoff, the multifanout node inside the tree is either
mapped with a multioutput gate, or is duplicated, or
is mapped as a root of the domino gate tree.

2 Parameterized library mapping

Given an arbitrarily optimized network, it is first
unated [6] and mapped into a two input AND-OR
DAG network; this is then decomposed into two-input
AND-OR trees. This is the starting point of our pa-
rameterized library mapping algorithm, which is based
on dynamic programming [7].

2.1 Node structures and functions

Assume that the maximum constraint on the width
and height of the domino gate are, respectively, W
and H. At each node, we store the optimal subsolu-
tions index for all possible [height,width] configuration
from [1,1] to [H,W], and each such subsolution is re-
ferred to as a configuration. Therefore, there is a max-
imum of H x W optimal solutions that can be possibly
stored for every node. Each optimal solution can be
represented as {S,P,C,{S;, P}, {Sy, P}}. Here, S,
(1 < S < H), is the height constraint of the current
node, P, (1 < P < H), is the width constraint of the
current node and C' is the area cost, measured in terms
of the number of transistors; the objective in this pa-
per is to minimize C. Different combinations of the
child node configurations can lead to the same parent
node configuration. We denote {S;, P}, {S;,P-} as
the combination that provides the minimal cost for a
configuration {S, P}.

Physically, {S, P} represents a segment of a domino
NMOS net, whose maximum pull-down width is P and



whose maximum pull-down height is S. The area cost
is the accumulated area of its child transition cones,
including the domino gate input cost and the number
of transistors in the current domino circuit segment.

Due to the series-parallel structure of the domino
pulldown, only two types of nodes in the pulldown
structure need to be considered: AND nodes and OR
nodes. An AND node corresponds to a series con-
nection, while an OR node corresponds to a parallel
connection in the series-parallel subgraph. The formu-
las for updating the value of S and P while combining
two child configurations are similar to [4]:

1. OR node: S =max(S;,S;), P=F + P,

2. AND node: S =S5, + S, P = max(P, P,)

3. LEAF node or GATEFORM node: S=1,P =1
A leaf node corresponds to a primary input, and a
gate formation node, GATEFORM, corresponds to a
situation where the partial solution so far (during the
dynamic programming procedure) is condensed into a
domino gate with an output at that node, and a new
domino structure is started from that point on.

The area cost function, C, is measured as the num-
ber of transistors for a configuration. For each of the
above possibilities, as a function of the costs C; and
C,, respectively, of the left and right child subtrees, is
as shown below.

1. OR or AND node: The number of transistors is
found by simply summing up the number in the sub-
trees, i.e., C = C; + C,.

2. LEAF node: At a leaf node, C = 1.

3. GATEFORM node: C = Cpinimal + 5-

The first two cases correspond to the partial pulldown
structure (not counting the transistors connected to
the clock) constructed so far for the current configu-
ration. The last case corresponds to the addition of
two transistors connected to the clock nodes and two
transistors in the output node, besides the transistor
in the newly created gate that is connected to the out-
put of this newly-created gate.

2.2 Node mapping algorithm

for each valid [H,W] of the left child {

for each valid [H,W] of the right child {
{S,P} = COMBINE({S;, P.},{S:,P-}) ;

if {S, P} satisfies the comstraints (H,W) {

C = COST FUNCTION(C),C,)

if (C< C[S, P]minimal) C[S, P]minimal =C.

if (C< Cminimal) Cminimal =C.
}
}
C[1,1] = GATEFORM(Chinimat)

Here, C is the left child’s optimal solution under
the constraint {S;, P;} while C, is the right child’s

optimal solution under the constraint {S,, P,}. The
solution CT1,1] of the root of the decomposed tree is
the optimal solution of the subject AND-OR tree.

({ {4,318{2,2} {2,3}}
L +
! E
{ {4,2.23}
{4,3,18}
* e

N6

{3323
{2118}
{1,118}

{2,2,3}
{2,1,8}
~1,18}

e
/ \ {1,1,10}

(122 {111}

{117}

/i

; ' (1,1,1} @ {111

Figure 1: Parameterized library mapping.

This procedure is illustrated in Figure 1. In this
example, three-tuples are used to represent configura-
tions {S, P,C}. All primary inputs is initialized with
tuple {1,1,1}. The tree is traversed from the leaf
node upwards, and all solutions are enumerated us-
ing dynamic programming, eliminating any solutions
that are suboptimal. From the dynamic programming
viewpoint, the optimal solution under the constraint
{S, P} is an optimal substructure. The nonsubopti-
mal solutions at a node are listed and the problem
is solved by recursively enumerating these for higher
level nodes of the tree. For example, the operation of
COST FUNCTION on both ({2,2,3},{2,3,15}) and
on ({2,1,8},{2,3,15}) produces a {4,3,C} configu-
ration. Only the 3-tuple of this type with minimal
cost, {4, 3,18}, and its corresponding child tuples are
stored at node N6 as a partial solution that may be
used in future. For the configuration of S = P = 1,
we choose the minimum cost solution at that node
and construct a gate corresponding to that solution.
At node N6, the minimal cost obtained from all combi-
nations of its children is 13, and the solution {1, 1,18}
is obtained using the formula C' = Ciinimar + 5.

From the above procedure, we can see that the
space complexity of the algorithm is O(WHN) and
the time complexity is O(W2H?2N), where N is num-
ber of nodes. At each node, the AND-OR cost func-
tion will be executed at most W2 H? /2 times, but gen-



erally the number of executions is much lower than this
value. From the statistics of 16 ISCAS85 benchmarks,
the average cost addition operation at every node is
approximately 4 for the tree-by-tree method.

3 Multioutput gate mapping

One of the domino gate configurations used by our
mapper is the wide dynamic AND gate [8], which can
implement a stack of six serial NMOS transistors with
two stacks of three serial transistors. A second design
style is the multioutput domino gate, an example of
which is shown in Figure 2; these are commonly used
in high speed adder design [9,10]. In our mapper, we
use separate pull-up transistors for each multioutput
branch, as shown in Figure 2, to prevent problems
with sneak paths.

(b)

Figure 2: Implementation of a multioutput gate.

Traditionally, tree decomposition is carried out by
decomposing trees by introducing breaks at multi-
fanout points. However, this can create very small
trees. This is an especial liability for domino gates
since they have the overhead of the clock transis-
tors and the output inverter and are more effective
on larger subcircuits. Fortunately, the domino logic
style can support multioutput gates and can there-
fore naturally handle multifanout points in the DAG.
Therefore, in our mapper, we decompose the DAG into
trees whose roots are primary outputs and reconver-
gent nodes.

In domino logic, the duplication cost of a single in-
put is one NMOS transistor. In addition, multioutput

logic can be implemented with a single multioutput
domino gate by sharing common substructures. The
additional cost associated with this kind of gate is a
pull up transistor and the transistors in the output in-
verting logic. Each such possibility is a potential map-
ping scheme for the multifanout node during postorder
mapping. Hence, a multifanout node will possibly be
duplicated, or mapped as a multioutput gate, or be
mapped as a simple domino gate at the node, depend-
ing on the cost tradeoff. The use of duplication and
of multioutput domino also has the advantage that
there are fewer gate levels than would be obtained by
forming a gate at each multifanout gate.

4 TImplementation and results

The parameterized library mapping algorithm has
been implemented in C++. The input circuits for
the technology mapping are unate equivalents of the
benchmark circuits that were obtained by first opti-
mizing with SIS, then pushing the inverters as close
to the inputs as possible, and finally duplicating the
fanin cones of the inverters.

Table 1: Comparison with the results of [5].

Circuits | Our approach | Approach of [5] | Reduction
area/level area/level %

) 265/4 328/7 238 %
count 283/6 348/16 23 %
i6 830/2 890/3 7.2 %
C880 1096/10 1499/7 36.8 %
C499 1752/8 184612 5.4 %
dalu 2031/12 2142/15 5.5 %

The results, compared with paper [5], are shown in
Table 1. Both techniques use W=6, H=4 (W=H=4 for
dalu) as the constraints of the parameterized library.
In our work, we have not explicitly tried to minimize
the replicated logic while pushing the inverters back
during unate optimization. We expect that we will
have further reductions in the transistor count if we
implement such an optimization, e.g. [5, 6].

Table 2 serves several objectives and shows the
comparisons of our work with several other possible
approaches that aim at area minimization. We use W
= H =4 as the width and height constraints. The re-
sults are presented and compared in terms of both area,
and delay, where the delay is estimated by a coarse
measure that counts the number of gate levels.

Columns 2 and 3 contains the CPU time and re-
sults obtained from the tree-by-tree mapping approach
combined with the node mapping method of section 2.
Column 4 shows the results obtained from the map-
ping algorithm of section 3 combined with the node
mapping method. The results in column 4 are com-



pared with those obtained from SIS, using a script file
similar to script.domino [5] to optimize the bench-
mark circuits applying the library 44-3.genlib. The
CPU times are not shown, but are all under 7 sec-
onds. A comparison with the results of static map-
ping with SIS is shown in columns 6 and 7, showing
that depending on the circuit, either static mapping
or domino mapping may provide a smaller area, but
domino logic always has an advantage in terms of the
number of levels. The area disadvantage, when it is
present, arises primarily because of the area overhead
required to move the inverters back towards the pri-
mary inputs, which may necessitate logic replication.

This motivated us to study the efficiency of our
domino technology mapping method, neglecting the
efficiency of unating. As an experiment, we fed the
unate input circuit used for the domino technology
mapping to the SIS static mapping, by using map -m
0. The SIS mapping results are shown in columns 8-10
and it is seen that our method presents a considerable
advantage.

5 Conclusion

In this paper, we have explored the new mapping
technique for domino logic, including optimal parame-
terized library mapping and multifanout domino gates
mapping. The area minimization mapping can be ex-
tended to minimize delay and power, as well as cost
minimization mapping under timing constraints.

References

[1] K. Keutzer, “DAGON: technology mapping and local
optimization,” in Proc. ACM/IEEE Design Automa-
tion Conf., pp. 341-347, 1987.

Table 2: Comparison of simple mapping, multioutput
mapping and SIS results

[2] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-
Vincentelli, and A. Wang, “Technology mapping in
MIS,” in Proc. IEEE/ACM Int. Conf. Computer-
Aided Design, pp. 116-119, 1987.

[3] K. Chaudhary and M. Pedram, “Computing the area
versus delay trade-off curves in technology mapping,”
IEEE Transactions on Comput.-Aided Design, vol. 14,
pp. 1480-1489, Dec. 1995.

[4] M. R. C. M. Berkelaar and J. A. G. Jess, “Tech-
nology mapping for standard-cell generators,” in
Proc. IEEE/ACM Int. Conf. Computer-Aided Design,
pp. 470-473, 1988.

[6] M. R. Prasad, D. Kirkpatrick, and R. K. Brayton,
“Domino logic synthesis and technology mapping,” in
Int. Workshop on Logic Synthesis, 1997.

[6] R. Puri, A. Bjorksten, and T. E. Rosser, “Logic op-
timization by output phase assignment in dynamic
logic synthesis,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, pp. 2-8, 1996.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms. New York, New York:
McGraw-Hill, 1990.

[8] T. Williams, “Dynamic Logic: Clocked and Asyn-
chronous,” Tutorial notes at the Int. Solid State Cir-
cuits Conf., 1996.

[9] J. Wang, Z. D. Wang, G. A. Jullien, and W. C. Miller,
“Area-time analysis of carry lookahead adders us-
ing enhanced multiple output domino logic,” in Proc.
IEEE Int. Symp. Circuits Syst., pp. 59-62, 1994.

[10] Z. Wang, G. A. Jullien, W. C. Miller, J. Wang, and
S. S. Bizzan, “Fast adders using enhanced multiple-
output domino logic,” IEEE J. Solid-State Circuits,
vol. 32, pp. 206-213, Feb. 1997.

Column 1 Column 2 | Column 3 Column 4 | Column 5 Column 6 | Column 7 Column 8 | Column 9 | Column 10
Circuits CPU simple || multi-output | reduction SIS | reduction SIS | reduction SIS time

time(s) mapping mapping % || orig input % unate input % (s)
C1355 0.6 2575/9 1776/8 45 % 1418/19 -20.2 % 2264/16 27.5 % 71
dalu 0.7 2045/11 2031/12 0.7 % 2602/26 28.1 % 2836/16 39.6 % 118
C830 0.3 1198/13 1136/12 5.5 % 1038/19 -8.6 % 1486 /22 30.1 % 57
i6 0.3 830/2 830/2 0% 1370/3 65 % 1378/4 66.0 % 53
count 0.1 353/16 317/12 11.4 % 354/18 11.7 % 454/30 43.2 % 14
c8 0.1 270/4 268/4 0.8 % 338/8 26.1 % 392/6 46.3 % 16
C1908 0.5 2148/15 1923/12 11.7 % 1390/25 277 % 2354 /22 22.4 % 78
C2670 0.7 1926/9 1859/10 3.6 % 1908/18 2.6% 2680/14 44.2 % 108
C3540 1.4 4583/18 4378/17 4.7 % 3056/30 -30.2 % 5826/30 33.1 % 251
C6288 4.0 12313/70 12277/58 0.3 % 7532/120 -38.7% 15986/100 30.2 % 577
b9 0.1 229/4 207/3 10.6 % 318/7 | 53.6 % 332/6 60.4 % 14
k2 1.7 5989/11 4859/8 23.3 % 4462/12 -8.17 % 5988/14 23.2 % 288
des 3.6 | 10005/11 9885/11 12 % || 11194/18 | 13.2 % 14306/18 14.7 % 639
C7552 2.6 8153/ 16 7221/15 129 % 5932/29 -17.8 % 9030/28 25.1 % 302
481 1.4 3758/11 3636/10 3.4 % 4004/15 10.1 % 4096/16 12.7 % 351
rot 0.6 1706/10 1686/9 1.2 % 1734/21 2.9% 2384/16 41.4 % 97




