
Minimum Area Retiming with Equivalent Initial States 1

Naresh Maheshwari Sachin S. Sapatnekar
Department of Electrical & Computer Engineering Department of Electrical & Computer Engineering

Iowa State University, Ames IA 50011, USA University of Minnesota, Minneapolis, MN 55455, USA
naresh@iastate.edu sachin@ece.umn.edu

Abstract

Traditional minimum area retiming algorithms attempt to achieve
their prescribed objective with no regard to maintaining the initial
state of the system. This issue is important for circuits such as con-
trollers, and our work addresses this problem. The procedure de-
scribed generates bounds on the retiming variables that guarantee
an equivalent initial state after retiming. A number of possible sets
of bounds can be derived, and each set is used to solve a minimum
area retiming problem that is set up as a 0/1 mixed integer linear
program, using a new technique that models the maximal sharing of
flip-flops at latch outputs. The best solution is found through enu-
meration of these sets, terminated on achievement of a calculated
lower bound. Experimental results show that after a small number
of enumerations, optimal or near-optimal results are achievable.

1 Introduction

Retiming [1] is a technique for optimizing sequential circuits by re-
locating memory elements. Two common variations of this prob-
lem are: minperiod retiming in which the clock period is minimized
without regard to the number of flip-flops (FF’s) in the final circuit,
and (constrained) minarea retiming in which the number of FF’s is
minimized subject to a target clock period. Retiming has also been
applied to level-clocked circuits e.g. in [2, 3].

One problem associated with the application of retiming is pre-
serving the initial state of the circuit, which is determined by the
initial values of the registers in the circuits. Whenever the initial
state of the circuit is an integral part of its behavior (for example,
in controllers), it is necessary to find an equivalent initial state for
the retimed circuit. An initial state in the retimed circuit is equiv-
alent to the initial state in the original circuit if for any input se-
quence applied to both the circuits (original circuit started in the ini-
tial state and the retimed circuit started in the equivalent initial state)
the same sequence of outputs is produced [4].

G1

0

1

?

(A) (B)

0

1

G2

G3

A

B

C

D

G1

G2

G3

E

Figure 1: (A) Original circuit. (B) Retimed circuit

It is not always possible to find an equivalent initial state for the
retimed circuit. For example in Figure 1(a), if the initial value of
FF’s fA,B,C,Dg are f0,0,1,1g respectively, then the retimed circuit
in Figure 1(b) cannot be initialized to have the same behavior as
the original circuit. This is because an equivalent initial value of
FF E in the retimed circuit cannot be found. On the other hand, an

1This work was supported in part by the National Science Foundation under award
MIP-9502556 and a Lucent Technologies DAC Graduate Scholarship.

equivalent initial state can always be found for forward motion of
FF’s (i.e., in the direction of signal flow). This concept was used
in [5] to compute initial states of retimed circuits by using only for-
ward moves. FF’s could be removed from all primary outputs and
inserted at all primary inputs, and the problem was reduced to de-
termining the initial values for the inserted FF’s; their values could
be obtained from the state machine description of the circuit. How-
ever, this approach may require modifications in the combinational
logic which may increase the clock period.

Since a retiming for a given clock period is not unique, another
possible retiming may exist, for which an equivalent initial state can
be found without any circuit modifications. Reverse retiming [4]
finds this retiming by disallowing FF moves across the primary out-
puts and by minimizing backward (against the signal flow) motion.

For digital circuit design, the useful objective function is that of
constrained minimum area retiming. However, none of the above
methods considers the area penalty during retiming since they per-
form minperiod retiming rather than minarea retiming. In this work
we solve the problem of minarea retiming with equivalent initial
states and call it minarea initial state retiming. We use bounds on
the retiming variables to allow backward motion of FF’s only if an
equivalent initial value exits. Therefore any retiming thus obtained
is guaranteed to have an equivalent initial state. Retiming across the
host vertex is not allowed since it may require modifications to the
original circuit. We also provide a new formulation that takes into
account the initial value of the FF’s while modeling the maximal
sharing of FF’s at the outputs of multiple fanout gates.

2 Background

As in [1] a sequential circuit can be represented by a directed graph
G(V;E), where each vertex v corresponds to a gate, and a directed
edge euv represents a connection from the output of gate u to the
input of gate v, through zero or more FF’s. Each edge has a weight
w(euv), which is the number of FF’s between the output of gate u
and the input of gate v. Each vertex has a constant delay d(v). A
special vertex, the host vertex, is introduced in the graph, with edges
from to all primary inputs of the circuit, and edges from all primary
outputs. A retiming is a labeling of the vertices r : V ! Z, where
Z is the set of integers. The retiming label r(v) for a vertex v rep-
resents the number of FF’s moved from its output to its inputs.

The minarea retiming problem (without regard to initial states)
was formulated as a linear program (LP) in [1]. LetFI(v) [FO(v)]
be the fanin [fanout] sets of gate v respectively. The objective func-
tion in the LP represents the number of FF’s added by retiming, and
the constraints ensure a valid retimed circuit that satisfies the target
clock period. This LP is a dual of a network mincost flow problem
and hence can be solved efficiently. Minaret [6] reduces the size of
this LP by adding lower and upper bounds on the variables; the de-
tails are omitted here. The reduced LP has the form:

minimize
P

v2V
[(jFI(v)j � jFO(v)j) � r(v)] (1)

subject to r(u)� r(v) � cuv 8 constraints 2 C

Lu � r(u) � Uu 8u 2 V

where C is the reduced constraint set [6].

3 Ensuring Equivalent Initial States

The requirement of initial state equivalence imposes restrictions in
addition to those in traditional minarea retiming. Thus the number
of FF’s obtained in minarea retiming is, by definition, a lower bound
on the number of FF’s obtainable by a minarea equivalent state re-
timing. We call this lower bound �.

However it is not always possible to achieve this lower bound.
As an example, consider the circuit with unit delay gates shown in
Figure 1. The minarea retiming for a clock period of 2 units, and
without regard to initial state requires only 1 FF. However, if the
initial values of FF’s fA,B,C,Dg are f0,0,1,1g, any minarea initial
state retiming will require 2 FF’s. Furthermore, the optimal num-
ber of FF’s depends on the initial state of the original circuit. If the
initial values for FF’s fA,B,C,Dg are f0,1,1,1g, then any minarea
initial state retiming will have 3 FF’s.

Even in cases where the lower bound� is achievable with equiv-
alent initial states, there would, in general, be multiple retimings
with optimal number of FF’s. Some of these retimings may not have
equivalent initial states, and hence we must restrict our solution space
to exclude such solutions. One way to do this is to disallow back-
ward motion of FF’s across a gate if the FF’s at its output do not
have compatible values. The presence of FF’s with incompatible
logic values at the output of a gate is called a conflict. A conflict
at the output of a gate prevents it from being retimed in the back-
ward direction. Therefore to ensure that any retiming obtained has
an equivalent initial state we update the upper bound Uv on gate v
in the LP of Equation (1), so that no backward retiming is allowed
across a gate with a conflict at its outputs. This new upper bound
Jv � Uv ensures a valid equivalent state. Notice that we do not
update the lower bounds since the forward motion of FF’s always
results in an equivalent initial state.

In the remainder of this section, we will describe techniques to
obtain these new upper bounds. Minaret [6] obtains the upper bounds
by moving FF’s backwards until they are about to violate a period
constraint; the number of the FF’s moved across any gate gives its
upper bound. Unlike Minaret which does not associate any logic
values with the FF’s, we associate a three valued (1,0,X) logic value
with every FF, where X is a don’t care which can be assigned to ei-
ther 0 or 1. A logic value of 0 [1] is compatible with both 0 and X [1
and X], but logic values 0 and 1 are not compatible with each other.

A gate can only be retimed backwards if it has FF’s at all of its
fanouts and all of these FF’s have compatible logic values. The pro-
cedure maintains a list of gates that can be retimed. In each step,
a gate is plucked from the list and retimed, and the list is updated.
Whenever FF’s are moved from the outputs of a gate to its inputs, we
must assign logic values to the new FF’s added at the inputs. These
logic values must be equivalent to the original value at the gate out-
put in order to maintain state equivalence. This assignment may be
unique or non-unique and is similar to justification in ATPG [7].

Unique justification at a gate occurs if the gate has a single in-
put, or the logic value at the output is X (all inputs are assigned to
logic X). A logic value of 1 at the output of AND/NOR gates or logic
0 at the output of OR/NAND gates also results in unique justifica-
tions. If there are multiple possible mappings for the logic value at
the output to the logic values at the inputs, then we have to make
a choice (or decision) and we have non-unique justification at the
gate. A logic value of 1 at the output of an OR (NAND) gate is an
example of non-unique justification and we can assign any input to
logic value 1(0) and the rest to X.

Let us define a justification set as a backward propagation of
logic values until the primary inputs, or until a conflict is reached.
Note that non-unique justifications at gates permit a number of such
justification sets; we denote one such possible justification set as
�i. Then each such �i will give us �i, a set (one for each gate)
of justification upper bounds. For each �i we solve the minarea
LP with the upper bounds �i. If the number of FF’s so obtained is

not equal to the minarea lower bound �, we backtrack and obtain
another justification set �j to give us a different �j . This process
can be repeated until the minarea lower bound� is achieved or until
all justification sets have been enumerated.

B

G1

G2

a

b

0

0
A

Figure 2: An example of pruning technique

The number of justification sets to be explored is exponential in
the worst case; however, this number can be pruned by removing
suboptimal �i’s from consideration. As an example, consider the
circuit in Figure 2 with the logic values of FF A and FF B equal to
0. Since the output of the AND gate G1 is at logic 0, there are two
possible mappings for the equivalent values at a and b. However
the choice of setting input a to X and input b to 0 is better than the
choice of a = 0 and b = X, since the presence of FF B with logic 0
will force the X on line b to 0. Thus we make the choice of a = 0
and b = 0, which is suboptimal to the choice of a = X and b = 0,
since X on input a could potentially move further in the backward
direction than a 0. For another pruning strategy, consider two sets of
justification upper bounds �i and �j . If we have J iv � Jjv 8 v 2
V , then the feasible region of �j includes the feasible region of �i,
and hence there is no need to solve the LP corresponding to �i.

4 FF Sharing

The LP in Equation (1) assumes that the FF’s at the fanouts of a
gate are not shared amongst the different fanouts. However, to accu-
rately model the minimum number of FF’s in a circuit, we must take
maximal FF sharing into account. In [1] a mirror vertex is added
for every gate with more than one fanout to model this maximal
sharing. This model preserves the LP’s duality to a mincost flow
problem, and can be solved efficiently. Unfortunately, this model
assumes that an FF can be combined with any other FF, and hence
is not applicable to minarea initial state retiming where FF’s have
logic values associated with them, and an FF with logic 1 can not
be shared with one with logic value 0. The situation is complicated
by the fact that two FF’s can be shared only if the FF’s at their fanins
(if any) are also shared. We present a new 0/1-MILP formulation to
model the sharing when FF’s have logic values 1 or 0. This mod-
eling is used for all gates with a conflict at their output. For all other
gates the simpler model of [1] is used. We will first present the model
and then illustrate it through an example.

a

b

d

c

101

11

01

e

1 0 1

1 1

10

c

d

b

1 2 3

α α

α

α

α

1 2 3

4

5 α6

Figure 3: An example for FF sharing

The justification process of Section 3 determines the logic val-
ues of all FF’s that can possibly arrive at a gate’s fanouts. Notice
that there is a sequence of these “possible” FF’s at every output of
every gate, and the final retiming may contain only a prefix of this
sequence. The logic values of these possible FF’s at the fanouts of
a gate u are represented by a table Tu with jFO(u)j rows as shown

in Figure 3, where FO(u) is the fanout set of gate u. Each row,
v 2 FO(u) has Jv + w(euv) entries, each of which is either a 0
or a 1. Since a maximum of Jv FF’s can be moved across gate v to
its input, and w(euv) FF’s already exist between gate u and gate v,
the maximum number of FF’s between gate u and gate v that may
require conditional sharing is Jv + w(euv). FF’s moved forward
across gate u to its output can be shared unconditionally and will be
handled later. The value in the vth row and kth column of the ta-
ble is denoted by Tu(v; k). We define a sharing class Si to contain
a set of values that can be shared, and represent the set of sharing
classes for the fanouts of gate u byNu. Two values (p; q) and (r; s)
in Tu can be shared (i.e., belong to the same sharing class) only if
q = s and Tu(p; i) = Tu(r; i) for i = 0; � � � ; s � 1. A function
class(Tu(v; k)) gives the index of the sharing class for entry (v; k)
in table Tu, e.g., Sclass(Tu(v;k)) is the sharing class containing the
kth FF between gate u and its fanout v (counting from u). All the
FF’s in a sharing class can be shared with each other, and hence re-
quire only one physical FF. Each sharing class Si is represented in
the MILP by a variable �i 2 f0; 1g. If �i = 1 in the optimal solu-
tion of the MILP, then the FF’s of sharing class Si share a physical
FF and the sharing class Si is said to be active.

The minarea LP in Equation (1) is modified to model the condi-
tional sharing represented by the sharing classes. For every gate u
with a conflict at its outputs, the corresponding objective function
term is given by Equation (2); for all other gates it is as in [1].

(jFI 0(u)j � 1) � r(u)� �u +
P

8 i2Nu

�i (2)

Here FI 0(u) is the set of fanins that have only a single output, i.e.,
FI 0(u) = fvjv 2 FI(u) AND jFO(v)j = 1g. The first term
(jFI 0(u)j�1)�r(u) in Equation (2) models the increase in the num-
ber of FF’s when gate u is retimed by one unit, and is similar to the
model in [1]. It assumes a shared cost of one at the fanouts of gate u
for any set of FF’s retimed across gate u, in either direction. Since
a gate can be retimed backwards only if all FF’s at its output have
same logic values, the shared cost at the outputs before retiming is
indeed one, as modeled by this term. Notice that since r(u) � Ju,
no set of FF’s with shared cost greater than one, can ever be retimed
backwards across gate u. In forward retiming, all FF’s inserted at
the outputs of a gate have the same logic values, and so the shared
cost at fanouts of gate u in forward retiming is also one. The second
term �u � 0 is a correction factor applied to correctly model the sit-
uation in which a set of FF’s moves forward across gate u and all its
fanouts. It is active only during forward retiming steps, and models
the number of FF’s removed from the fanout junction of gate u by
forward retiming. �u � 0 ensures that unconditionally shared FF’s
are not added to the fanouts of gate u by backward retiming, since
conditional sharing under backward retiming is to be modeled by
the �i’s.

As mentioned earlier �i = 1 implies that the sharing class Si is
active, therefore

P
8 i2Nu

�i denotes the number of active sharing
classes at the fanouts of gate u. Since each active sharing class re-
quires one FF, the number of active sharing classes is also the num-
ber of physical FF’s required at the fanouts of gate u. The minimiza-
tion of the objective function will force the maximal sharing at the
outputs of gate u.

In order to correctly model the cost, all the FF’s at the fanout of a
gate u must have their costs accounted for in the objective function.
To achieve this we add the following constraint for 8 v 2 FO(u).

w(euv) + r(v) � ��u +

Jv+w(euv)X

k=1

�class(Tu(v;k)) (3)

The left hand side of Equation (3), minus r(u), is the number of FF’s
between gate u and v after retiming.

PJv+w(euv)

k=1
�class(Tu(v;k))

represents the total number of active sharing classes between gate u

and v, �u is the number of FF’s removed from the fanout of gate u
by forward retiming (0 in case of backward retiming), while r(u) is
the number of FF’s removed from the fanout of gate u. Hence the
right hand side of Equation (3), minus r(u), represents the number
of available shared FF’s between gate u and v. Thus Equation (3)
ensures that the number of FF’s between any two gates is less than
or equal to the number of shared FF’s between them. Notice that the
number of shared FF’s is the number of available FF’s , all of which
do not have to be utilized by a particular fanout.

To ensure that the kth FF retimed across gate v activates its own
sharing class variable �class(Tu(v;k)), we ensure that 8v 2 FO(u)

�
�class(Tu(v;k)) � �class(Tu(v;k+1))

	
k = 1 : : : Jv+w(euv)�1

By requiring that the variable �class(Tu(v;k)) be active before the
variable �class(Tu(v;k+1)), this constraint ensures that the kth FF
retimed across gate v does not activate �class(Tu(v;k+1)). The kth

FF retimed across gate v can not activate �class(Tu(v;k�1)), since
before the kth FF can be retimed across gate v, the k�1th FF must
have already been retimed and its class variable �class(Tu(v;k�1))
would already be active. The constraint in Equation (3) will ensure
that the number of active sharing classes on a fanout is greater or
equal to the number of FF’s on that fanout. Thus the kth FF re-
timed across gate v will activate its own sharing class. The first FF
in a sharing class Si that arrives at the fanout junction activates the
sharing class variable �i, incurring a cost of one in the objective
function. The remaining FF’s in that sharing class can then arrive
without incurring any extra cost in the objective function.

Example: Consider the circuit in Figure 3 shown with the sharing
classes in its table of logic values. The LP for this circuit is

Minimize : �r(b)�r(c)�r(d)+�1+�2+�3+�4+�5+�6��a

subject to r(b) + �a � �1 + �2 + �3

r(c) + �a � �1 + �4

r(d) + �a � �5 + �6

�1 � �2 � �3

�1 � �4 ; �5 � �6

�u � 0 ; �i 2 f0; 1g 8i

Positive Retiming: Suppose we want to model the sharing for r(a) =
0, r(b) = 3, r(c) = 1 and r(d) = 2. Then the optimal objec-
tive function value of the above LP is -1, which gives the correct in-
crease in the number of FF’s from the original circuit in Figure 4(a)
to the retimed circuit in Figure 4(b).

r(d) = 2

1 0 1

1 1

0 1

a

b

d

c

(a)

1

0 1

1

0 1

a

b

c

d

(b)

r(a) = 0

r(b) = 3

r(c) = 1

Figure 4: Example of positive retiming

Negative retiming: Now suppose we want to model the sharing for
r(a) = �2, r(b) = �2, r(c) = �1 and r(d) = �1. Then the op-
timal objective function value is 3, which is the increase in the num-
ber of FF’s from the original circuit in Figure 5(a) to the retimed cir-
cuit in Figure 5(b). As can be seen one FF is shared for the edges eac
and ead even though they where not in the same sharing class. This
is possible because the FF’s moved forward to the outputs of gate a
hence they all have same logic value without regard to the sharing

r(b) = -2

a

(a) (b)

a

b

d

c1 1

b

c

d

1

1 1

1

1

r(a) = -2

r(d) = -1

r(c) = -1

Figure 5: Example of negative retiming
class which are defined for backward movements. Thus these FF’s
can be shared and our formulation correctly models the cost.

The actual problem of FF sharing is to find the optimal sharing
between logic values 0, 1 and X. Logic X can be shared with either
0 or 1 but not both, and is hard to model. To avoid this problem we
have converted all X’s to either 0 or 1 before formulating the MILP.

5 Experimental Results

We have implemented an initial state minarea retiming based on the
presentation in this work. Our justification algorithm makes ran-
dom choices in case of a non-unique justification and generates an
LP for each of the �i’s. If the lower bound � is not achieved, then
we perform a justification based on another random decision. This
is continued until the lower bound is reached or a user specified num-
ber of iterations have been completed, and the best solution is re-
ported. Although it may seem arbitrary to use random decisions,
our experimental results show that the algorithm gives us good engi-
neering solutions that are close to the (possibly unachievable) lower
bound. As in [4] we assume the initial state of all FF’s to be zero.

Table 1: Minarea Initial State Retiming
Circuit jGj P � # FF’s Texec

s27 11 6.0 3 3 0.01s
s208.1 105 10.0 8 8 0.02s
s298 120 6.0 22 22 0.40s
s382 159 7.0 23 23 2.59s
s386 169 11.0 6 6 0.04s
s344 161 14.0 19 19 1.77s
s349 162 14.0 19 19 1.62s
s526n 195 6.0 30 30 0.95s
s510 212 11.0 7 7 0.12s
s420.1 219 12.0 17 17 0.07s
s641 380 74.0 19 19 0.11s
s713 394 74 19 19 0.18s
s967 395 12.0 35 35 28.52s
s938 447 16.0 33 33 1.45s
s1196 530 24.0 18 18 0.08s
s1238 5.09 22.0 18 18 0.08s
s1269 570 19.0 84 84 0.26s
s1423 658 53.0 76 76 8.77s
s1488 654 16.0 7 7 0.11s
s1494 648 16.0 7 7 0.13s
s3330 1790 14.0 110 110 0.58s
s5378 2780 21.0 173 173 3m 18s
s9234.1 3271 38.0 134 134 21m 18s

s635 287 66.0 35 42 22.6s
s953 396 13.0 27 32 32m 02s
s1512 781 23.0 70 71 1h 51m 19s
s3271 1573 15.0 168 169 16m 46s
prolog 1602 13.0 122 124 16m 40s
s3384 1686 27.0 167 168 55m 42s
s15850.1 9618 63.0 525 544 3h 9m 56s

If for a given justification set �i there are no gates with con-
flicts, the mincost flow problem is solved using a network simplex
algorithm; else we use lp solve [9] to solve the MILP.

Table 1 shows the number of gates jGj, the target clock period
P , and the lower bound on the number of FF’s � for ISCAS89 cir-

cuits. We also show the minimum number of FF’s obtained with
equivalent initial state retiming and the execution time Texec on a
HP 9000/777 C110 workstation with 128 megabytes of RAM. No-
tice that the run times here can be much higher then those in [6] since
here we may solve multiple MILP’s, rather than a single mincost
flow problem. As can be seen from the results, for many circuits the
lower bound is achieved very fast; in almost all of these cases, the
lower bound � is achieved in the first iteration. For some circuits,
the lower bound was not reached, and in this case we report the best
solution obtained in 50 iterations (5 iterations for s15850.1)2 . In
these circuits, the solution reported by our algorithm is very close
to � and corresponds to a good engineering solution. We found that
the percentage of gates with conflicts is very small (< 1% for most
circuits), and this enables the MILP to be solved in reasonable time.

6 Conclusion

We have presented a method for obtaining minarea retiming subject
to maintaining a given clock period and an equivalent initial state.
A new scheme based on justification is used to derive bounds on the
retiming variables. A new model for maximal FF sharing has been
presented as the idea of mirror vertices used by Leiserson and Saxe
in [1] cannot be applied to the initial state retiming problem.

We are currently working on modeling the FF sharing for all
logic values including X’s and on techniques to prune the number of
justification sets required to get the optimal solution. In [10] a tech-
nique is presented which allows backward retiming of gates with
conflicts by adding extra logic to the circuit. We are investigating
means to incorporate this approach in our model. This will enable
us to retime gates with conflicts at their outputs, potentially achiev-
ing better area optimization.

REFERENCES

[1] C. E. Leiserson and J. B. Saxe, “Retiming synchronous cir-
cuitry,” Algorithmica, vol. 6, pp. 5–35, 1991.

[2] M. C. Papaefthymiou and K. H. Randall, “TIM: A timing
package for two-phase, level-clocked circuitry,” Proc. DAC ,
pp. 497–502, 1993.

[3] N. Maheshwari and S. S. Sapatnekar, “A practical algorithm for
retiming level-clocked circuits,” in Proc. ICCD, pp. 440–445,
1996.

[4] G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited
and reversed,” IEEE Transactions on Computer-Aided Design,
vol. 15, pp. 348–357, Mar. 1996.

[5] H. J. Touati and R. K. Brayton, “Computing the initial states of
retimed circuits,” IEEE Transactions on Computer-Aided De-
sign, vol. 12, pp. 157–162, Jan. 1993.

[6] N. Maheshwari and S. S. Sapatnekar, “An improved algorithm
for minimum-area retiming,” in Proc. DAC, pp. 2–7, 1997.

[7] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Sys-
tems Testing and Testable Design. New York, NY: W. H. Free-
man and Company, 1990.

[8] S. Kundu et al., “A small test generator for large designs,” in
Proc. ITC, pp. 30–40, 1992.

[9] M. Berkelaar, LP SOLVE USER’S MANUAL, 1992.

[10] V. Singhal, S. Malik, and R. K. Brayton, “The case for retim-
ing with explicit reset circuitry,” in Proc. ICCAD, pp. 618–625,
1996.

2The reader is reminded from our previous discussion that the lower bound is not
guaranteed to be achievable.

