
A general model for performance
optimization of sequential systems

Dmitry Bufistov
Univ. Politècnica de Catalunya

Barcelona, Spain

Jordi Cortadella
Univ. Politècnica de Catalunya

Barcelona, Spain

Mike Kishinevsky
Strategic CAD Lab, Intel Corp.

Hillsboro, OR, USA

Sachin Sapatnekar
University of Minnesota
Minneapolis, MN 55455

Abstract— Retiming, c-slow retiming and recycling are different trans-
formations for the performance optimization of sequential circuits.
For retiming and c-slow retiming, different models that provide exact
solutions have already been proposed. An exact model for recycling was
yet unknown. This paper presents a general formulation that covers
the combination of the three schemes for performance optimization. It
provides an exact model based on integer linear programming that resorts
to the structural theory of marked graphs. A set of experiments has been
designed to show the benefits in performance obtained by combining
retiming and recycling. The results also show the applicability of the
method in large circuits.

I. INTRODUCTION

A. Retiming

Retiming [1] has been the traditional technique for sequential opti-
mization. Retiming can explore different configurations of sequential
circuits by moving flip-flops across combinational logic without
changing their functionality. In this way, solutions trading-off area,
delay and power can be explored using this flexibility. Different
approaches have been used to efficiently solve retiming [2]. The
analogy between the skew optimization and the retiming problems
has also been exploited to propose efficient algorithms for large
circuits [3].

As interconnect delays become more dominant, some global wires
may have long delays that degrade the overall system performance.
Under these conditions, retiming can be combined with wire pipelin-
ing [4]. However, since the number of flip-flops between inputs and
outputs must remain unchanged, retiming is not always capable of
meeting the intended clock period.

B. C-slow retiming

C-slow retiming [1] was proposed as a technique to accommodate
the frequency of a circuit to its environment at the expense of reduc-
ing the input issue rate, i.e., number of cycles between consecutive
input data. By c-slowing a circuit, the throughput (number of input
data processed per cycle) is reduced to 1/c. The main advantage of
c-slow retiming is the low control overhead associated to the enabling
of the flip-flops. However, extra registers must be inserted to equalize
the input rate of all the cycles in the circuit. This often results in a
tangible area overhead. A method to find the optimal value for c and
minimize the extra flip-flops added to the circuit was presented in [5].

C. Recycling

Latency insensitivity (LI) [6] was proposed as a paradigm to design
systems that are tolerant to the variability of communication and
computation delays. A common strategy to design LI systems is to
include a wrapper around each component that encapsulates its func-
tionality. The wrapper contains buffers that synchronize the inputs
and propagate the outputs in such a way that the functionality of the
system is preserved regardless the computation and communication
delays of its components.

LI design enables the automatic insertion of empty buffers to im-
prove the performance of the system. The transformation for inserting
empty buffers (also known as relay stations in LI terminology) is
called recycling [7]. Intuitively, in LI systems every data item has
an associated valid bit. When the valid bit associated to a register
is not asserted, the data stored in the register is assumed to be non-
informative.

LI design can be viewed as a discretized asynchronous design. The
concept of inserting empty buffers for optimizing system performance
were long known in the asynchronous design under different names
of bubble insertion and slack matching [8], [9]. In [10], [11], exact
algorithms for slack matching on choice-free asynchronous systems
were presented. This problem is similar to solving the recycling
problem in isolation. These papers however did not deal with the
combined retiming and recycling problem.

Recycling requires more complex control but provides an addi-
tional degree of flexibility for adapting clock period and throughput
to the requirements of the environment. Unlike c-slow, recycling
does not require all cycles to be equalized to the same input rate.
However, the control must explicitly take care of the back-pressure
when not all inputs are available at one of the computational blocks
of the circuit. For this reason, a FIFO-based communication using a
handshake protocol is required to handle this flexibility.

However, some recent techniques for LI design have been able to
propose schemes that require very low extra overhead. In particular,
by using a static scheduling, the logic for the handshake protocol
and the area occupied by the sequential elements can be drastically
reduced [12]. The scheme presented in [13] also proposed a latch-
based implementation for the storage elements that make the data-
path overhead negligible with regard to a conventional implementa-
tion with flip-flops.

D. Retiming and recycling

Retiming and recycling (R&R) can join their efforts to find
configurations with better performance that the ones that would be
obtained by using only each one of them individually [14].

Figure 1 shows an example on how retiming and recycling can
collaborate. The nodes (circles) of the figure are labeled with their
delays. The boxes (holding a dot) represent the registers. Figure 1(a)
depicts an optimal retiming of the circuit, with a cycle time of 16
time units.

Figure 1(b) shows a configuration obtained by 2-slowing the cir-
cuit. The empty boxes represent registers with non-informative data.
Henceforth, we will distinguish between dots and bubbles to denote
registers with informative and non-informative data, respectively.

The 2-slow solution can achieve a cycle of 10 time units. However,
the throughput is degraded to 1/2, i.e., one data item is processed
every two cycles. This gives an effective cycle time of 20. It means
that a dot is processed every 20 time units, compared to the 16 time

10 9 8 6

439

4 4

10 9 8 6

439

4 4

(b) (c)

10 9 8 6

439

4 4

(a)

Fig. 1. (a) Retiming, (b) 2-slow retiming, (c) recycling and retiming.

units of the original design. In this case, the 2-slow solution can
increase the frequency of the circuit at the expense of reducing the
overall performance of the system. Note that every cycle in the circuit
has doubled the number of registers in the original circuit.

Figure 1(c) shows an optimal configuration after combining re-
timing and recycling with a cycle time of 12 units. In this case,
the throughput is determined by the bottom cycle in which a bubble
has been inserted (4 dots in 5 registers). We can also say that the
processing rate, i.e., the average number of cycles to process a
dot, is now 5/4. This gives an effective cycle time of 15 time units
(15 = 12 · 5/4). It means that a dot is processed every 15 time units
on average, compared to the 16 time units of the original design.

This examples illustrates the extra flexibility provided by R&R
with regard to other performance optimization techniques.

E. Contributions

This paper presents an exact formulation of the R&R problem that
can be specified with mixed ILP models. Even having a worst-case
exponential complexity, the model can be practically solved for large
systems.

The presented formulation can be seen as a general model for
a variety of problems. Retiming is the particular case in which
no bubbles are created. Recycling (without retiming) is reduced to
finding a solution in which the original registers of the circuit are
not moved, i.e., only bubbles are inserted to break long combinational
cycles. Finally, the model also accepts an interpretation for the c-slow
retiming problem.

The model presented in the paper resorts to the structural theory
of marked graphs, which provides the support of linear algebraic
techniques for the analysis of these systems. The analogy of the
retiming problem with the reachability problem in marked graphs also
brings a new result in the area, that is explained in the interpretation
of theorem 2.2.

As expected, the combined formulation of the R&R problem
provides a new space of solutions that cannot be explored when
solving each of the above problems individually.

This paper is not dealing with the calculation of the initial state of
the circuit. Techniques similar to those used for retiming [15] should
be studied and adapted for this new type of problems.

II. MARKED GRAPHS AND RETIMING

Retiming has a strong analogy with the reachability problem
in marked graphs (MG). In this section we will reformulate the
retiming and R&R problems as reachability problems in MGs. This
reformulation is not capricious. Some of the results in the theory of
MGs can be reused in our context, thus providing an essential support
to make new contributions in this area.

n
1

n
2

n
3

n
4

n1 n2 n3 n4

e12 :
e13 :
e23 :
e24 :
e34 :
e41 :

2666664
0
1
2
1
0
0

3777775 =

2666664
1
0
0
0
1
0

3777775+

2666664
1 −1 0 0
1 0 −1 0
0 1 −1 0
0 1 0 −1
0 0 1 −1

−1 0 0 1

3777775
2641

2
0
1

375
M = M0 + A σ

Fig. 2. Marked graph and its corresponding marking equation.

A. Marked graphs

Marked graphs are a special class of Petri nets [16] in which places
have exactly one input and one output transition. The notation used
in this paper is next presented.

Definition 2.1 (Marked graph (MG)): A marked graph is a triple
(N, E, M0), where N is a set of nodes, E is a set of edges and
M0 : E → N is a marking that assigns an initial number of tokens
to each arc. Given a node n, the notation •n and n• is used to denote
the set of incoming and outgoing edges of n, respectively. Given a
subset φ ⊆ E, the total number of tokens of the edges in φ at a
given marking M is denoted by M(φ). A node n is enabled at a
marking M if M(e) > 0 for every e ∈ •n. An enabled node n can
fire producing a new marking M ′ such that

M ′(e) =

8><>:
M(e)− 1 if e ∈ •n \ n•

M(e) + 1 if e ∈ n• \ •n

M(e) otherwise

(1)

�
An example of MG is depicted in Fig. 2.

Retiming interpretation. The retiming graph of a circuit is isomor-
phic to a marked graph. Each combinational block corresponds to a
node. Each connection corresponds to an edge. The registers in the
retiming graph are represented by tokens in the MG. The firing rules
of a MG coincide with the backward retiming rules: each time a node
is retimed, registers are removed from the input edges and added to
the output edges. �

Without loss of generality, we will focus on strongly connected
marked graphs (SCMG). In terms of retiming, a circuit can always be
converted into strongly connected by adding a node X that represents
the environment, and edges X → i and o → X for all inputs i and
outputs o, respectively.

Definition 2.2 (Reachability and liveness): A marking M is called
reachable if there is a firing sequence of transitions that leads from
the initial marking M0 to M . An MG is said to be live if every node
can eventually fire from any reachable marking. �

We next review two important properties of MGs and give their
interpretation for the retiming problem.

Theorem 2.1 (Liveness [17]): An MG is live if every cycle φ is
marked positively at M0, i.e., M(φ) > 0.
Retiming interpretation. Every cycle should have at least one
register to avoid combinational cycles in the circuit netlist. �

Next, a crucial result from MG theory that will be the basis of the
ILP models presented in this paper.

Theorem 2.2 (Reachability [18]): A live marking M of an
SCMG is reachable iff M(φ) = M0(φ) for every cycle φ.
Retiming interpretation. This property has two directions. The
⇒ direction corresponds to a well-known result in retiming: a
valid retiming preserves the number of registers at each cycle.
The important direction is ⇐ that provides a new result for the
theory of retiming:

if an assignment of registers has the same number of
registers at each cycle as the initial circuit, then the
assignment is a valid retiming.

This result will be the basis of the ILP models proposed to solve the
R&R problem. Implicitly, this duality also supports the fact that any
solution obtained by retiming can also be obtained by a sequence of
backward retiming steps. Thus, we can reduce the retiming problem
to a reachability problem in MGs.

B. The marking equation

The incidence matrix A of an MG is an |E|×|N | matrix defined as
follows. For every edge e = (ni, nj): A[e, ni] = 1, A[e, nj] = −1
and A[e, nk] = 0 for k 6= i and k 6= j. A marking M is a |E|-vector
that represents the number of tokens at every edge. A firing vector
σ is an |N |-vector that represents the number of times each node is
fired in a firing sequence. Another important theorem follows.

Theorem 2.3 ([18]): A nonnegative marking M is reachable iff
the following marking equation holds:

M = M0 + Aσ (2)
Retiming interpretation. M0 is the initial assignment of registers
to edges, M is the assignment after retiming, A is the retiming
matrix and σ is the retiming vector.

An example on how to solve the marking equation is shown
in Fig. 2. The marking equation is the basis for the well-known
LP formulation of the retiming problem. The fact that A is totally
unimodular guarantees a polynomial-time complexity even under the
constraint that M must be integer.

C. Retiming and Recycling Graph

We now present the graph representation of an LI circuit.
Definition 2.3 (Retiming and Recycling Graph): A Retiming and

Recycling Graph (RRG) is a four-tuple (N, E, R0, δ), where
(N, E, R0) represents the underlying MG of the circuit and δ : N →
R+ is a function that assigns a positive real number (delay) to every
node. �
R0 represents an initial assignment of registers with informative
data (dots) to the edges of the graph. Throughout the paper and
without loss of generality, we will implicitly assume that all RRGs
are strongly connected.

An important question is: what is a valid R&R configuration of
a circuit? The answer is easy: let us take any valid retiming of the
circuit and let us add any arbitrary number of registers (bubbles) to
every edge. The new circuit is a valid R&R configuration. Therefore,

any integer solution for R and bR that fulfils the following
expression:

R ≥ bR = R0 + Aσ ≥ 0 (3)

is a valid R&R solution. bR represents the retiming subset of the
solution (the registers containing only dots; see theorem 2.3). R
represents the R&R configuration (registers containing dots and
bubbles). The difference between both vectors, R− bR, represents
the vector of registers containing the bubbles introduced by
recycling.

III. TIMING AND PERFORMANCE

We now define some concepts related to timing and performance
in RRGs.

Definition 3.1 (Combinational paths and cycle time): Given a
register vector R of an RRG, a combinational path P is a sequence
of edges n0

e1−→ n1
e1−→ · · · ek−→ nk such that R(ei) = 0 for all

edges in the path. The delay of the combinational path is

δ(P) =
X

ni∈P

δ(ni).

The cycle time associated to R, τ(R), is the maximum delay of all
combinational paths. �

Definition 3.2 (Cycle ratio and throughput): Given an RRG, a
cycle C and a register vector R, its cycle ratio ΘC(R) is defined as

ΘC(R) =

X
e∈C

R0(e)X
e∈C

R(e)

The throughput Θ(R) achieved by a register assignment R is the
minimum cycle ratio over all cycles in the RRG [19], i.e.,

Θ(R) = min
∀C

ΘC(R),

�
The throughput is the number of dots that can be processed by

a node at each cycle. If a register assignment has no bubbles, then
Θ(R) = 1, as in Fig. 1(a). In Fig. 1(c) we have τ = 12. The
cycle ratios for the top and bottom cycles are 1 and 4/5, respectively.
Therefore Θ(R) = 4/5.

In general, retiming always produces solutions with Θ(R) = 1,
whereas recycling produces solutions with Θ(R) < 1. In case of
c-slow retiming, the solutions have Θ(R) = 1/c. We now relate
throughput and cycle time.

Definition 3.3 (Effective cycle time): Given a register assignment
R, the effective cycle time is defined as

C(R) = τ(R)/Θ(R).

The effective cycle time would be the cycle time of a conventional
circuit that could process data at the same rate as the LI circuit. In
the example of Fig. 1(c), C = 12 · 5/4 = 15. The inverse of C is
what is known as processing rate. The main goal of this paper is to
propose methods that minimize C, i.e., maximize the processing rate.

Lemma 3.1 (Effective cycle time lower bound): Given an RRG
and a register assignment R, then

C(R) ≥ max
c∈C

P
v∈c

δ(v)P
e∈c

R0(e)
, (4)

where C is the set of all cycles of the RRG.

Proof: A known result from [20] indicates that for any cycle c

τ(R) ≥

P
v∈c

δ(v)P
e∈c

R(e)

We also know that

Θ(R) ≤ Θc(R) =

P
e∈c

R0(e)P
e∈c

R(e)

By using the previous inequalities,

C(R) =
τ(R)

Θ(R)
≥

P
v∈c

δ(v)P
e∈c

R0(e)

Therefore, inequality (4) holds.
The lower bound for the effective cycle time coincides with the
lower bound for min-delay retiming [20]. However, R&R offers more
opportunities than retiming to approach this bound. For example, the
lower bound on C in Fig. 1(a) is 12.25 time units. With min-period
retiming, a cycle time of 16 can be achieved, while R&R can find a
configuration with C = 15. The impact of this bound on the potential
benefits of R&R will be discussed in Section V-A.

A. Combinational path constraints

In order for an LI circuit to meet a cycle time τ , all combinational
paths must be shorter than τ . In the retiming problem, these con-
straints are formulated by using the matrices W (minimum latency)
and D (maximum delay) [1]. Unfortunately, this formulation is not
valid for the R&R problem, since the number of registers between
any pair of nodes can be changed by inserting any arbitrary number
of bubbles. We next propose a different set of linear inequalities to
formulate the combinational path constraints.

For every edge e = (u, v) of the RRG, we define two variables,
tin(e) and tout(e). The variable tin(e) represents the longest delay
from any register to the entry of edge e, including the delay of the
source node u. The variable tout(e) represents the longest delay from
any register to the exit of edge e. If e has no registers, then tout(e) =
tin(e), otherwise tout(e) = 0, since the exit of edge e represents
the beginning of a combinational path. This definition of tin and
tout, for every edge e = (u, v), can be represented by the following
constraints:

tin(e) ≥ tout(e′) + δ(u) ∀e′ = (w, u) (5)

tout(e) ≥ tin(e)− τ∗R(e) (6)

tout(e) ≥ 0, tin(e) ≤ τ (7)

The constraint (5) indicates that the length of the path arriving at
edge e is longer than the path exiting from a predecessor edge (e′)
plus the delay of the source node of e. The constraint (6) transfers
the length of the path to the exit of the edge. In case the edge has
some register (R(e) > 0), a new combinational path starts at edge
e and tout(e) = 0. τ∗ is a constant large enough to guarantee its
value to be larger than any possible value of τ . It is sufficient for
τ∗ to take the value of the cycle time in the original circuit. With
τ∗ being constant, all the inequalities are linear.

Being strict, only the tin variables are essential for the system of
constraints. The tout variables can be eliminated by substitution.

Register delays. The previous constraints can be modified to account
for the register delays in the combinational paths. If we call dR the
delay of a register, we can add dR to the delay of each combinational
path by assigning this delay to the beginning of the path. This is

achieved by simply adding the constraint tout(e) ≥ dR, for all edges
of the graph.

Henceforth, the constraints (5-7) for a given register assign-
ment R and cycle time τ will be represented by the predicate
Path Constraints(R, τ).

Lemma 3.2: Given an RRG with a register assignment R, τ(R) ≤
τ iff Path Constraints(R, τ) is feasible.

Proof: ⇒ Assume that τ(R) = τ . For each edge
e = (u, v) ∈ E, we define tin(e) and tout(e) as follows:

tin(e) = δ(u) + delay of the longest combinational path

arriving at u

tout(e) =

(
tin if R(e) = 0

0 otherwise.

It is easy to check that the inequalities in (5-7) hold.
⇐ Assume that the set of constraints (5-7) has a fea-

sible solution (tin
1 , . . . , tin

m , tout
1 , . . . , tout

m) for some τ . Let
P = v1, v2, . . . , vk−1, vk be a combinational path with delay δ(P).
Then the following chain of inequalities holds:

tin
(v1,v2) ≥ δ(v1) (constraint (5))

tout
(v1,v2) ≥ tin

(v1,v2) ≥ δ(v1) (constraint (6))
tin
(v2,v3) ≥ tout

(v1,v2) + δ(v2) ≥ δ(v1) + δ(v2) (constraint (5))
. . .

tin
(vk−1,vk) ≥

k−1P
i=1

δ(vi)

tin
(vk,vj) ≥

kP
i=1

δ(vi) = δ(P) for any vj successor of vk

Since tin(e) ≤ τ , for any e, we can conclude that δ(P) ≤ τ for any
path P .

B. Throughput constraints

We next present a constraint guaranteeing that a specific R&R
configuration has at least throughput Θ.

The throughput constraint is as follows:

R ≤ (R0 + Aσ)/Θ (8)

Lemma 3.3: Let R be a valid R&R register assignment. There is
a nonnegative real vector σ that fulfils inequality (8) iff Θ(R) ≥ Θ.

Proof: Let us call R′ = Aσ and R′(e) the component of R′

associated to edge e. Therefore, the constraint (8) can be rewritten
as ΘR ≤ R0 + R′.
(⇒) We will prove that every cycle C has a cycle ratio ΘC(R) ≥ Θ.
Thus, using inequality (8) in the denominator:

ΘC(R) =

X
e∈C

R0(e)X
e∈C

R(e)
≥

Θ ·
X
e∈C

R0(e)X
e∈C

(R0(e) + R′(e))

Since C is a cycle, the number of tokens in C remains invariant after
any firing sequence (see theorem 2.2). Therefore,X

e∈C

R′(e) = 0

and consequently ΘC(R) ≥ Θ.
(⇐) This part of the proof is easy but tedious. We give a sketch
based on the results of previous authors. First of all, for results about
throughput (dots per cycle), delays must be interpreted as unit delays
coming from the registers (combinational logic has zero delay).

For a timed marked graph (N, E, M0, δ) with incidence matrix B
and throughput Θ, in which each node n has a delay δ(n), there exist

an average marking (nonnegative real) and real vector σ′, such that
M = M0+Bσ′ and the following property holds for any n ∈ N [21]:

δ(n) ·Θ ≤ M(e) ∀e ∈ •n. (9)

In our case, the delays are associated to the registers on the edges
(each register has unit delay). The previous result can be extended to
marked graphs with delays on the edges1. From the average marking
M it is easy to construct a nonnegative real marking bR such that
R ·Θ ≤ bR = R0 + Aσ, thus completing the proof.

IV. ILP MODELS FOR RETIMING AND RECYCLING

This section presents ILP models for different variations of the
R&R problem.

The main result that can be derived from the previous sections is
the following:

Theorem 4.1: Given a cycle time τ and a throughput Θ, R is
a valid R&R register assignment of an RRG (N, E, R0, δ) with
τ(R) ≤ τ and Θ(R) ≥ Θ iff there exists a feasible solution of
the ILP

RR(τ, Θ) ≡

8>>><>>>:
R ≥ R0 + Aσ1 ≥ 0

R ≤ (R0 + Aσ2)/Θ

Path Constraints(R, τ)

R and σ1 are integer vectors.

(10)

Proof: It immediately follows from expression (3) and lemmas 3.2
and 3.3.

Note that the model does not include the vector bR from expres-
sion (3). To guarantee that bR is integer, the constraint of σ1 being
integer is included. After that, the value of bR is irrelevant to obtain
a solution for R.

Henceforth, we will use RR(τ, Θ) to denote the ILP model (10).
This notation will also be used to denote a function that returns a
register assignment, e.g., R := RR(τ, Θ).

A. Min-period R&R

The min-period R&R problem can be formulated as follows:
Given an RRG and a throughput Θ > 0, find a regis-
ter assignment R that minimizes the cycle time and has
throughput Θ(R) ≥ Θ.

From theorem 4.1, it immediately follows that R is the optimal
solution of the following ILP, where Θ is a constant:

MIN PER(Θ) ≡

(
min τ

subject to RR(τ, Θ).
(11)

Similarly as before, MIN PER(Θ) will also denote a function that
returns the register assignment R with minimum period.

B. Max-throughput R&R

The formulation of the problem is as follows:
Given an RRG and a cycle period τ , find a register as-
signment R with τ(R) ≤ τ that maximizes the throughput
Θ(R).

The problem can also be solved by using a model derived from
theorem 4.1, in which τ is a constant:

MAX THR NL(τ) ≡

(
max Θ

subject to RR(τ, Θ).
(12)

1It is easy to see that each edge u→ v can be transformed into two edges
u→ w → v. In this way, the delay of the edge can be associated to the node
w, thus having a marked graph with delays on the transitions only.

However, there model MAX THR NL(τ) is not linear. The reason
for that is that Θ is now a variable of the model and the second
constraint of RR(τ, Θ) is not linear. Unfortunately, the model is not
convex either, thus discarding the possibility of using a solver for
convex problems.

1) Binary search for max-throughput: An option to solve the
previous problem is to perform a search on the possible values of Θ.
With this approach, the model becomes linear when Θ is a constant
value. In this paper we propose to perform a binary search for Θ
over the interval (0, 1].

A binary search always explores values of Θ in an interval
[ΘL, ΘU] where a feasible solution exists for ΘL but not for ΘU .
An important question to answer is the following: what is the size
of the interval that guarantees ΘL to be the optimal solution?

Theorem 4.2: Let ΘL = nL/mL and ΘU = nU/mU be two
possible values of the throughput for an RRG such that ΘL 6= ΘU .
Then,

|ΘL −ΘU | ≥
1

(|R0|+ |E|)2

where |R0| represents the number of initial registers and |E| is the
number of edges in the graph.

Proof: Let n1
m1

and n2
m2

be two different rational numbers with
denominators not larger than m. Then˛̨̨̨

n1

m1
− n2

m2

˛̨̨̨
=

˛̨̨̨
n1m2 − n2m1

m1m2

˛̨̨̨
≥ 1

m2
.

We also know that the maximum number of registers we can have in a
cycle for a configuration with maximum throughput is not larger than
the number of initial registers plus the number of edges (bubbles than
can be inserted in the graph)2. The proof of the theorem immediately
follows from this observation.

The previous bound could be even narrower if we could calculate
the longest simple cycle in the graph. However, this problem is NP-
complete [22].

2) Min-area max-throughput R&R: Since the binary search for Θ
converts the model (12) into a linear form, the cost function can be
customized to minimize area (number of registers) in the following
way:

MAX THR(τ) ≡

8>><>>:
min

P
e∈E

R(e)

subject to RR(τ, Θ)

Binary search on Θ.

(13)

C. Minimum effective cycle time

The formulation of the problem is the following:
Given an RRG, find a register assignment Rmin such that
the effective cycle time C(Rmin) is minimized.

We will show how the ILP models MIN PER and MAX THR can be
combined to find Rmin. We first start by a preliminary result required
to make the search efficient.

Theorem 4.3: Θ(Rmin) ≥ dmax
τrt

, where dmax is the maximum
delay of a node and τrt is the cycle period obtained by min-delay
retiming.

Proof: Every retiming configuration is also a valid R&R
assignment. Therefore C(Rmin) ≤ τrt. By the definition of C (see
Def. 3.3), and using the fact that τ(Rmin) ≥ dmax,

Θ(Rmin) =
τ(Rmin)

C(Rmin)
≥ dmax

τrt

2Putting more than one bubble in an edge degrades the throughput without
improving the cycle period. For this reason, only configurations with at most
one bubble per edge must be considered.

τ=τrt

dmax / rt

retiming
solution

Θ=0 Θ=1

τ=0

+ε

+ε

+ε

+ε

MP

MP

MP

MP

MP

MT

MT
MT

MT

MT

τ

MP = MIN_PER

MT = MAX_THR

Fig. 3. Search for minimum effective cycle time.

Then search for the optimal C can be performed by interleaving
MIN PER and MAX THR.
MIN EFF CYC STEP(Θ):

R1 := MIN PER(Θ);
R2 := MAX THR(τ(R1));
return R2;

The intuition behind this strategy is the following. Given a target
Θ, a register assignment R1 with minimum period is obtained
by MIN PER(Θ). R1 has a throughput not smaller than Θ. After
that, another register assignment R2 maximizing the throughput is
obtained by MAX THR(τ(R1)). R2 is guaranteed to have a clock
period not larger than τ(R1).

This process can be iteratively executed until the retiming solution
is found (Θ = 1, τ = τrt). For every explored solution R, the
effective cycle time C(R) can be calculated. At the end of the process,
the solution with minimum C is returned.

Formally, the procedure to find C(Rmin) is described by the
following algorithm:
MIN EFF CYC(RRG):

C := τrt; {τ from min-period retiming}
Θ := dmax

τrt
; {from theorem 4.3}

ε := 1
(|R0|+|E|)2 ; {from theorem 4.2}

while (Θ < 1)
R := MIN EFF CYC STEP(Θ);
if (C(R) < C) then C := C(R);
Θ := Θ(R) + ε;

return C;

Experimental results show that this search never makes more then
10 iterations for graphs with up to 1000 edges.

Figure 3 illustrates the search for the optimum C through a diagram
that represents Θ in the x-axis and τ in the y-axis. The MP and MT
labels indicate the progress performed by MIN PER and MAX THR,
respectively. The search teminates when the retiming solution is
found. In some cases, MAX THR does not make any progress (e.g.,
see the loop with label MT in the diagram). In those cases, the ε
increase guarantees the termination. The next theorem guarantees
that the search does not miss any solution that could provide a better
effective cycle time.

Theorem 4.4: Let R1 be a solution of MIN PER(Θ) and R2 the
register assignment obtained by MAX THR(τ(R1)). Let R′ be any
other arbitrary register assignment such that Θ ≤ Θ(R′) ≤ Θ(R2).
Then, C(R′) ≥ C(R2).

Proof: By contradiction. Let us assume that R′ satisfies the
conditions of the theorem and C(R′) < C(R2), or equivalently
τ(R′)
Θ(R′) < τ(R2)

Θ(R2)
.

Since Θ(R′) < Θ(R2) it follows that τ(R′) < τ(R2). But R2

is the solution of the MAX THR(τ(R1)) and hence τ(R2) ≤ τ(R1).
Therefore, τ(R′) < τ(R1), but this contradicts the fact that
MIN PER(Θ) produces R1, which has the minimum cycle time from
all the assignments with throughput at least Θ.

Therefore, only the register assignments produced after MAX THR
are the only ones that must be considered during the search. They
correspond to the black circles in Fig. 3.

D. C-slow retiming

For completeness, a mode for c-slow retiming is presented.

C SLOW(τ) ≡

8>>>><>>>>:
min αc +

P
e∈E

R(e)

R = cR0 + Aσ ≥ 0

Path Constraints(R, τ)

σ and c are integer

(14)

The kew constraint is R = cR0 +Aσ, which substitutes the initial
register assignment R0 by cR0, indicating that each register in the
original circuit is substituted by c registers (one dot and c−1 bubbles).

The cost function minimizes c assuming that α is a large constant.
After that, the register count is minimized.

V. EXPERIMENTAL RESULTS

The first consideration for R&R is that it will mostly be applied
to coarse levels of granularity, e.g., at the level of 16-, 32- or 64-
bit registers in medium and large systems having few dozens or
hundreds of computational blocks. Unfortunately, there is no set of
benchmarks usable by academia that keep hierarchical information
and can be effectively used for realistic experiments. For this reason,
we designed synthetic experiments based on the underlying graphs
of the sequential ISCAS circuits.

For every circuit, the following transformations were performed:
• The original latches were removed, and every gate was consid-

ered to be a large combinational block. Edges were considered
to be n-bit channels. Each combinational block was assigned
a delay generated randomly from a uniform distribution in the
interval (0, 20].

• The largest strongly connected component of the graph was kept
in the graph. The rest of nodes and edges were removed3.

• Each channel was assigned an n-bit register with a certain
probability. The probability was chosen to be 0.5. Thus, about
half of the channels were assigned a register, whereas the other
half were just wires.

For each example, several solutions were obtained using the
optimization techniques presented in the paper. After satisfying the
performance constraints of the model, all solutions were optimized
for minimum register count.

Table I reports the experimental results. The “Initial” columns
report the parameters of the example. The column C∗ shows the
lower bound on the effective cycle time (see lemma 3.1). The results
obtained by min-period retiming are reported in the next two columns.

The configurations for “Recycling” and “Retiming and recycling”
were obtained by imposing the constraint τ ≤ 0.75τrt, i.e., the target

3An alternative way to ensure strongly connectedness would have been to
connect the inputs and the outputs with a fake node. However, we found
this approach unrealistic due to the fact that an artificially congested node
appeared for each example.

TABLE I
EXPERIMENTAL RESULTS.

Initial Retiming Recycling (τ ≤ 0.75τrt) Retiming+Recycling (τ ≤ 0.75τrt)
|V | |E| R0 τ C∗ R τrt R τ Θ C R τ Θ C CPU

s27 14 24 14 58.20 58.20 5 58.20 12 30.32 0.50 60.64 12 30.32 0.50 60.64 00:00:01
s208 8 9 2 87.58 87.58 2 87.58 3 51.00 0.50 102.00 3 49.86 0.50 99.72 00:00:01
s344 135 176 76 72.52 39.75 72 41.53 106 26.15 0.50 52.30 101 23.90 0.50 47.80 00:00:16
s349 135 176 76 134.70 46.25 78 48.64 114 27.46 0.50 54.92 95 27.46 0.50 54.92 00:12:00
s382 42 60 23 66.00 38.14 29 41.32 41 24.39 0.50 48.78 34 24.39 0.50 48.78 00:00:02
s386 48 131 64 49.30 43.75 40 46.02 84 25.12 0.50 50.24 76 25.12 0.50 50.24 00:00:04
s400 46 66 29 66.24 50.42 34 52.43 42 33.24 0.50 66.48 39 24.88 0.43 58.05 00:21:26
s420 8 9 2 76.70 76.70 2 76.70 3 40.59 0.50 81.18 3 40.59 0.50 81.18 00:00:01
s444 58 82 41 80.47 52.69 35 55.02 44 31.37 0.50 62.74 38 39.73 0.67 59.60 00:00:09
s510 103 407 197 69.72 64.48 36 64.48 145 34.65 0.50 69.30 132 34.65 0.50 69.30 00:26:27
s526 50 71 31 80.66 80.66 23 80.66 29 45.38 0.50 90.76 30 41.44 0.50 82.88 00:00:01
s641 221 270 133 123.09 40.85 117 43.97 178 25.83 0.50 51.66 137 30.90 0.67 46.35 00:05:19
s713 256 341 158 171.65 40.21 143 49.93 252 23.57 0.42 56.57 240 36.72 0.75 48.96 00:18:25
s820 110 424 205 53.61 53.23 283 53.46 288 31.04 0.50 62.08 122 31.04 0.50 62.08 00:10:09
s832 117 462 226 61.84 49.04 329 50.39 354 30.45 0.50 60.90 231 27.40 0.50 54.80 00:21:42
s838 8 9 2 68.40 68.40 2 68.40 4 38.33 0.50 76.66 3 35.03 0.50 70.06 00:00:01
s953 268 371 172 90.93 50.69 131 57.47 234 25.99 0.40 64.98 158 35.88 0.67 53.82 01:29:40
s1488 133 572 284 72.52 58.05 123 63.39 194 37.05 0.50 74.10 196 36.01 0.50 72.02 00:03:58
s1494 136 572 275 71.10 58.22 306 60.29 393 33.13 0.50 66.26 231 33.13 0.50 66.26 01:48:08

cycle period was required to be smaller than 3/4 of the one obtained
by retiming. As an example, the target cycle period for s27 was
defined to be τ ≤ 0.75 · 58.20 = 43.65. The obtained results had
the optimum effective cycle time (C) satisfying the cycle period
constraint.

The “Recycling” solution was obtained by only inserting bubbles
in the circuit and not touching the registers defined by the min-period
retiming4. You can observe that the period is often smaller than the
target period 0.75τrt. The increase in number of registers is strictly
associated to the bubbles inserted by recycling.

The R&R solutions (“Retiming+recycling”) were obtained by
MIN EFF CYC, as explained in Section IV-C. The results show the
benefits in performance and area (register count) when combining
retiming and recycling in the same model. In some cases, the
reduction of effective cycle time is significant e.g., s526, s641
and s953. On other cases, the performance improvement is not
so relevant but the reduction in register count is important, e.g.,
s820, s832 and s1494. An interesting case is s400, in which
the throughput of the R&R solution (0.43) is smaller than the one of
the recycling solution (0.50). However, the reduction in cycle time
(from 33.24 to 24.88) results in a superior performance. This is a
clear example of the diversity of solutions that can be explored by
R&R.

The CPU time (hh:mm:ss) is only reported for the R&R solu-
tions, which corresponds to the most complex optimization model.
CPLEX [23] was used as ILP solver. To make the computations
affordable, a timeout of 600 seconds was defined for each ILP
model. It is important to recall that MIN EFF CYC generates several
ILP models for each search, coming from the while loop of the
algorithm and the binary search performed by MAX THR. Even
with this limitation of CPU time, the results show that significant
improvements in performance can still be obtained, even without
guaranteeing optimality.

Results from 2-slow retiming were also obtained, for completeness.
All of them were worse than the R&R configurations. Given their
irrelevance for the main conclusions of the paper, they are not shown
in the table.

4This was achieved by adding constraints that fix the location of dots in
ILP RR(τ, Θ).

A. Minimum effective cycle time

The same experiments were run without imposing the constraint
τ ≤ 0.75τrt on the cycle period, thus obtaining the optimum effective
cycle time. As it was expected, the optimum effective cycle time was
achieved by min-period retiming (C = τrt) in almost all cases. Only
in two cases, s713 and s953, the insertion of bubbles contributed
to slightly improve the performance. In these two cases, the solutions
coincided with the ones obtained with the τ ≤ 0.75τrt constraint,
and reported in Table I.

The reason for these results is easy to explain. The only potential
margin for improvement is the difference τrt − C∗ (see Table I),
which is usually small. Even with the existence of the margin, the
degradation in throughput produced by the insertion of bubbles re-
duces the chances for improvement significantly. The two successful
cases are the ones in which the difference τrt − C∗ is larger.

The potential performance improvements of R&R requires a more
profound study in the future. A simple study for rings was presented
in [14]. However, it is difficult to extend those conclusions for more
complex circuits. A preliminary intuition indicates that only graphs
with long cycles and unbalanced delays can increase the chances for
optimization.

VI. CONCLUSIONS

A general ILP model for retiming and recycling has been presented.
It covers previous models for sequential logic synthesis and allows
to combine them in a collaborative way to explore a new space of
solutions.

This approach opens the door to new optimization engines target-
ting at delay, throughput or area. The recent approaches for latency-
insensitive design that reduce data and control overhead may provide
efficient implementations of sequential circuits that can contribute to
improve the performance of nanoelectronic systems.

Acknowledgements. This research has bee funded by a grant from
Intel Corp., CICYT TIN 2004-07925, the FPU grant AP2005-4866,
a Distinction for the Promotion of Research by the Generalitat de
Catalunya and a grant from AGAUR (2005PIV1-59).

REFERENCES

[1] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1, pp. 5–35, 1991.

[2] N. V. Shenoy, “Retiming: Theory and practice.” Integration, the VLSI
Journal, vol. 22, no. 1, pp. 1–21, 1997.

[3] S. S. Sapatnekar and R. B. Deokar, “Utilizing the timing skew equiva-
lence in a practical algorithm for retiming large circuits,” IEEE Transac-
tions on Computer-Aided Design, vol. 15, no. 10, pp. 1237–1248, Oct.
1996.

[4] C. Lin and H. Zhou, “Retiming for wire pipelining in systems-on-chip,”
in Proc. International Conf. Computer-Aided Design (ICCAD), Nov.
2003, pp. 215–220.

[5] V. Nookala and S. S. Sapatnekar, “A method for correcting the function-
ality of a wire-pipelined circuit,” in Proc. ACM/IEEE Design Automation
Conference, June 2004, pp. 570–575.

[6] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sagiovanni-
Vincentelli, “A methodology for correct-by-construction latency insen-
sitive design,” in Proc. International Conf. Computer-Aided Design
(ICCAD), Nov. 1999, pp. 309–315.

[7] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis
and optimization of latency insensitive systems,” in Proc. ACM/IEEE
Design Automation Conference, June 2000, pp. 361–367.

[8] T. E. Williams, “Performance of iterative computation in self-timed
rings,” Journal of VLSI Signal Processing, vol. 7, no. 1/2, pp. 17–31,
Feb. 1994.

[9] R. Manohar and A. J. Martin, “Slack elasticity in concurrent computing,”
in Proc. 4th International Conference on the Mathematics of Program
Construction, ser. Lecture Notes in Computer Science, J. Jeuring, Ed.,
vol. 1422, 1998, pp. 272–285.

[10] P. A. Beerel, N.-H. Kim, A. Lines, and M. Davies, “Slack matching
asynchronous designs,” in Proc. of the 12th Int. Symp. on Asynchronous
Circuits and Systems, 2006.

[11] P. Prakash and A. J. Martin, “Slack matching quasi delay-insensitive
circuits,” in Proc. of the 12th Int. Symp. on Asynchronous Circuits and
Systems, 2006.

[12] M. R. Casu and L. Macchiarulo, “A new approach to latency insensitive
design,” in Proc. Digital Automation Conference (DAC), June 2004, pp.
576–581.

[13] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of syn-
chronous elastic architectures,” in Proc. ACM/IEEE Design Automation
Conference, July 2006, pp. 657–662.

[14] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Combining retiming
and recycling to optimize the performance of synchronous circuits,” in
16th Symp. on Integrated Circuits and System Design (SBCCI), Sept.
2003, pp. 47–52.

[15] H. J. Touati and R. K. Brayton, “Computing the initial states of retimed
circuits.” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 12, no. 1, pp. 157–162, 1993.

[16] T. Murata, “Petri Nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, pp. 541–580, Apr. 1989.

[17] F. Commoner, A. W. Holt, S. Even, and A. Pnueli, “Marked directed
graphs,” Journal of Computer and System Sciences, vol. 5, pp. 511–523,
1971.

[18] T. Murata, “Circuit theoretic analysis and synthesis of marked graphs,”
IEEE Trans. Circuits and Systems, vol. CAS-24, no. 7, pp. 400–405,
July 1977.

[19] C. Ramchandani, “Analysis of asynchronous concurrent systems by Petri
nets,” Project MAC, TR-120, M.I.T., Cambridge, MA, 1974.

[20] M. C. Papaefthymiou, “Understanding retiming through maximum
average-delay cycles,” Mathematical Systems Theory, vol. 27, no. 1, pp.
65–84, 1994.

[21] J. Campos, G. Chiola, and M. Silva, “Ergodicity and throughput bounds
for petri nets with unique consistent firing count vector,” IEEE Trans-
actions on Software Engineering, vol. 17, no. 2, pp. 117–125, 1991.

[22] C. Papadimitriou, Computational Complexity. Addison-Wesley, 1995.
[23] “CPLEX,” Available from http://www.ilog.com.

