
1

Abstract
Closed formed expressions for buffered interconnect delay
approximation have been around for some time. However,
previous approaches assume that buffers are free to be
placed anywhere. In practice, designs frequently have large
blocks that make the ideal buffer insertion solution unrealiz-
able. The theory of [12] is extended to show how one can
model the blocks into a simple delay estimation technique
that applies both to two-pin and to multi-pin nets. Even
though the formula uses one buffer type, it shows remarkable
accuracy in predicting delay when compared to an optimal
realizable buffer insertion solution. Potential applications
include wire planning, timing analysis during floorplanning
or global routing. Our experiments show that our approach
accurately predicts delay when compared to constructing an
realizable buffer insertion with multiple buffer types.

1. Introduction
Buffer insertion is becoming an ever critical component of
physical synthesis for timing closure and design planning
(see Cong et al. [4] for a survey). Saxena et al. [13] estimate
that the distance between buffers continues to shrink rapidly.
One must be able to efficiently and accurately assess the
impact of buffer insertion on a design, whether in terms of
floorplanning, resource allocation, timing estimation or
within an actual buffer insertion heuristic.
To this end, several works (e.g., [1][3][6][8][12]). None of
these works model blockages in the layout. Given the advent
of SoC chip design and the trends towards large memory
arrays, IP cores, and hierarchical design, an ever increasing
percentage of the layout is covered by blocks in which
buffers cannot be inserted (though routes may cross over). A
large blockage can cripple a route’s ability to meet timing
since delay is quadratic in length when no buffers are
inserted, but linear in length for optimal buffer insertion.
Blockages are now a first order delay effect and must be
taken into account for any buffer estimation technique to be
sufficiently accurate. Several works, e.g., [7][10][11][14],
have explored the problem of buffer insertion when there are
constraints on the buffer positions, but none of them address
the problem of delay estimation.
Our work begins from Otten’s theoretical result [12] that in
an optimal buffering, delay is linear in terms of length. With
large blockages and multi-fanout nets, a linear delay solution
is not necessarily realizable. It is not at all immediately
obvious how to overcome these limitations, and whether
such an extension (even if it were possible) would even be
valid in a real design methodology. The primary contribution
of this work is to extend Otten’s theory to predict
interconnect delays for multi-fanout nets in the presence of
blockages, and to validate it on real industrial test-cases.
The end result of this work is a fast and simple formula that
is proven on real design scenarios, and can be of practical
use in early design planning.

The following key assumptions actually impose little error
when compared to an actual buffer insertion solution:
1. Smaller blocks ignored: let be the spacing

between consecutive buffers that obtains optimal signal
propagation speed. Blocks with width less than can
safely be ignored. While this may cause buffers to be
inserted at distance less than the optimal spacing, having
multiple buffers in the library allows the optimal linear
delay to still be achievable. An example is shown in Fig-
ure 1. As long as the blocks are smaller than , the
optimal realizable buffering in (b) will have delay very
close to the ideal buffering of (a). Hence we can assume
the delay model of (a) to approximate (b).

2. Single buffer type: a single buffer type that yields the
fastest point to point delay is sufficient for modeling. It
turns out that the more buffer types that are actually in
the library, the better the single buffer type approxima-
tion. As shown in Figure 1(b) different size buffers may
be required to buffer distances that are less than .
Having additional buffers in the library allows the situa-
tion in (b) better recover from its perturbation from the
ideal buffering in (a).

3. Block locations ignored: whether blocks are closer to
the source or sink has little effect on the actual buffered
delay, so we ignore this effect.

4. Infinitesimal decoupling buffers: buffers for decou-
pling capacitance off the critical path can be modeled as a
buffer with zero input capacitance. This may lead to
slight underestimation of delay, but the effect is almost
negligible.

5. Larger block front-to-back buffering: a block with
width larger than will cause a linear delay model to
break down. To optimize the delay across such a block,
and optimal buffering will almost assuredly place a
buffer right before and right after the block. Hence the
delay across the large block can be modeled separately
from the rest of the Steiner route.

Despite the inaccuracy it would seem these assumptions
impose, our simple linear time estimation technique shows
very high accuracy when compared to realizing a buffer
insertion solution with van Ginneken’s algorithm [15].

Figure 1 Example of (a) an optimally buffered line with equal
spaced buffers and (b) an optimal realizable buffering when
blockages are present. Note that unequal buffer sizes may be

used here.
This approach has several potential applications. For
example, it can assess the timing cost of different block
configurations during floorplanning or assess different

*This work is partially supported by the SRC under contract
 2003-1124.

Lopt

Lopt

Lopt

Lopt

Lopt

L
(a)

(b)

Accurate Estimation of Global Buffer Delay within a Floorplan
Charles J. Alpert1, Jiang Hu2, Sachin S. Sapatnekar3, and C. N. Sze2

1IBM Corp., 11501 Burnet Road, Austin, TX 78758, alpert@us.ibm.com
2Texas A&M University, EE Department, College Station, TX 77843, {jianghu, cnsze}@ee.tamu.edu

3University of Minnesota, ECE Department, 200 Union St., SE Minneapolis, MN 55455, sachin@ece.umn.edu

2

Steiner routes during wire planning. A global router can use
this to decide which of several possible Steiner tree
constructions is likely to yield the best timing result. One
may want to do timing analysis of a floorplan and/or
placement without having to actually perform the buffer
insertion for a net. One could embed the formula into a
placement algorithm. Finally, the recent work of applies this
approach in a Steiner tree construction that navigates the
environment as a precursor to buffer insertion.

2. Closed Form Formula for Two-Pin Nets
Consider buffering a line of length . Assume a given
“ideal” buffer [12] (or inverter) that is optimal for signal
propagation speed on a wire. Let the intrinsic resistance and
input capacitance of be given by and ,
respectively. Assume the intrinsic buffer delay is zero since
this is a first order approximation. One could also add an
intrinsic resistance term and derive alternative formulae.
The unit wire resistance and capacitance are given by and

, respectively. We make the following assumptions:
• The driver of the net has the same driver resistance as .

If this assumption is incorrect, that may indicate a design
flaw. Too large a resistance means the driver should
probably be powered up until the resistance is close to

. Even if the gate cannot be properly sized, it will
likely need a few buffers (in which the last buffer is of
size) as close as possible to the driver to power up the
signal in order to drive the line. Similarly, if the resis-
tance is much lower than , this indicates that the gate is
likely overpowered and can be powered down.

• The sink of the net has input capacitance . A different
value should not significantly change the value, espe-
cially for a long line. Significantly different input capac-
itances also may potentially indicate an ill-sized sink.
Overall, we find that sink capacitance gets overshad-
owed by wire capacitance on nets that require buffering.

• The intrinsic buffer delay is zero. This terms tends to be
dominated by the term. However, an intrinsic
delay term can easily be incorporated if desired.

2.1 Delay Formula with No Blockages
The following result was also derived by Otten [12]. We
present it here for completeness.
Theorem 1: The delay function of an optimally
buffered line of length with no blockages asymptotically
approaches the linear function of the design and buffer
parasitics given by:

(1)
Proof: Let be number of stages (so there are
buffers) that results in the optimal delay along , as in
Figure 1(a). Several works have proven that the optimal
buffer configuration spaces the buffers at equal distances.
Since the source and sink have the same parasitics as , all
stages have the same delay. The length of wire between
consecutive stages is . The delay on the line is given by

 times the sum of the buffer delay and the wire delay.
(2)

We wish to find the optimal number of buffers . Taking
the derivative with respect to , setting the expression to
zero, and solving for yields the optimal number of buffers

(3)

Obviously, if is not an integer one may need to try
rounding up or down and see which yields the best delay.
Substituting Equation (3) into Equation (2) yields the
theorem.
Observe that is a lower bound on the realizable delay.
A nice property of Theorem 1 is that it is independent of the
number of buffers. Of course, this will introduce some error
because the delay in (1) is not realizable when the optimal
number of stages is not an integer. However, the error is
actually quite small, as illustrated by Figure 2.
The figure presents the ratio of the delay according to the
estimation formula in Equation (1) to the delay of Equation
(2). As goes to infinity, the ratio goes to one, meaning the
error goes to zero. Note that the maximum error occurs
when the optimum number of buffers is not an integer.
However, the realizable delay will actually be even less than
in Equation (2) if one permits additional buffer sizing. For
example, if the number of buffers , then one may
size up the buffer type until the ideal number is three or size
down until it is four, thereby achieving a slightly better
delay. Even without sizing though, Equation (1) is within
0.5% of Equation (2) when more than one buffer is required.
This result is perhaps not surprising, given the observations
of Cong et al. [5]. They show that a fairly large “feasible
region” exists for each buffer to be manipulated without
suffering significant degradation in timing. Our example
bears this out as buffers are shifted slightly when is not an
integer in order to get equal spacing between buffers. This
shifting results in close to the ideal delay of Equation (1).
Corollary 1: The optimum spacing between buffers is

. (4)

Figure 2 Ratio of Equation (1) to (2) as a function of wirelength.

2.2 Delay Formula with Blockages
Next we consider inserting a block of width somewhere
on the line . This notion can be generalized to include jogs
and bends as in Figure 3. Let be the length on the
route from to . In the figure, we consider to be

 and to be . We wish to derive a delay
formula that is a function solely of and . Our strategy is
as follows:

L
b

b Rb Cb

R
C

b

Rb

b

b

Cb

RbCb

D L()
L

D L() L RbC RCb 2RbCbRC+ +()=
k k 1–

L

b

L k⁄
k

D L() k Rb
CL
k------- Cb+() RL

k------- CL
2k------- Cb+()+()=

k
k

k

k L RC
2RbCb
----------------=

k
k

D L()

L

k

k 3.5=

k

Lopt

Lopt
2RbCb

RC----------------=

The length of a two-pin net in millimeters.

w
L

l u v,()
u v L

l s0 s1,() w l x0 x1,()
L w

3

• For , we assume that buffers can be placed (and
potentially sized) in such a way as to avoid the blockage
while only suffering a nominal delay penalty. Hence, we
ignore and just use Theorem 1.

• For , we try placing a buffer immediately
before and after a blockage. This minimizes the qua-
dratic effect on delay that the width of the blockage has.
For the rest of the line, we simply invoke Theorem 1,
again accepting the potential error from the inability to
have the optimal number of buffers be a non-integer.

Figure 3 Buffering scheme on a route of length
with a single blockage spanning length .

For the second scenario (), the buffered delay is
given by the buffered delays of the unblocked wires plus the
delay needed to cross the blockage. The latter term is given
by the Elmore delay:

(5)
Given a set of blockages with crossing width ,
then one can assume the existence of a single buffer before
and after each blockage and summing the pieces together.
We overload the function so that is the formula in
Equation (1) for no blockages and is the following
delay for a set of blockages .
Blockage Buffered Delay Formula:

 (6)

Like Theorem 1, this formula is a lower bound on the actual
achievable delay. It could conceivably underestimate delay
since inserting buffers right after one blockage and right
before another may result in overly tight buffer spacing.
However, the optimal buffered solution may actually
approach the lower bound on delay via a different buffering
configuration, as we demonstrate in the next section.

3. Two-Pin Experiments
We use the following parameters from 100 nanometer
technology [6]: , ,

, and . For these values,
Equation (4) yields . Assume that the sink
and source are both buffers . We first illustrate the
accuracy of Equation (6) is accurate, even though it is
independent of the blockage location. For each possible
blockage location, we compute and the optimal
delay according to van Ginneken’s algorithm (using only
buffer type).
Figure 4 shows this for a ten wire for blockages with
widths 0.5, 2.0, 3.0, and 4.0 . The horizontal axis give
the location of the blockage in terms of the distance from
the source. We observe the following. First, for all
examples, the closed form of Equation (6) is a tight lower
bound. Next, the error is less than 1% for all blockage
widths and blockage placement. Finally, the maximum error
occurs at the tail ends because this is where one may have to

either insert two buffers that are too close together or drive a
distance that is actually longer than the blockage. With a
library of multiple buffer types for van Ginneken’s
algorithm, this small error is reduced even further. Thus, for
a single blockage the error is insignificant.

Figure 4 Comparison of the blockage buffered delay formula
with van Ginneken’s algorithm for the case of a single blockage

on a 2-pin net with length ten .
Next, consider the scenario when multiple blockages cover
a significant part of the wire. We generated ten different
instances with either 3 or 4 blockages, covering a large
percentage of a 12 wire. The ten cases are shown in
Table 1, where the second column gives the blockage
widths and the third column gives the corresponding
distances from the source). For each case, we report the
Blockage Buffered Delay formula and the optimal delay
according to van Ginneken’s algorithm in columns four and
five. From the last error column we see that our formula is
well within one percent of optimal for all ten cases.

Table 1 Comparison of the blockage buffered delay formula
with van Ginneken’s algorithm for multiple blockages on a 2-

pin net with length 12 .

w Lopt<

w
w Lopt≥

x0

x1

s0
s1

L l s0 s1,()=
w l x0 x1,()=

w Lopt≥

ED w() Rb Cw Cb+() Rw Cw
2-------- Cb+()+=

W w Lopt≥

D D L()
D L W,()

W
D L W,() =

D L LW–() ED w() where LW w
w W∈
∑=

w W∈
∑+

R 0.184 Ω µm⁄= C 0.0715= ff µm⁄
Rb 246.3 Ω= Cb 7.2= ff

Lopt 519µm=
b

D L W,()

b
mm

mm

test
case

Block widths
(mm)

Positions
(mm)

Eq. (6)
(ps)

van Gin
delay (ps)

Error
(%)

1 1.8/4.0/2.9 0.1/2.2/6.7 437.0 438.5 0.35
2 2.5/4.0/2.9 0.3/3.2/8.7 451.9 452.5 0.11
3 0.5/4.7/2.1 1.3/2.2/9.7 440.6 441.5 0.21
4 3.5/4.7/2.0 0.0/4.2/9.7 497.0 497.8 0.14
5 4.5/0.7/3.0 0.5/6.2/8.7 454.1 454.7 0.12
6 2.5/2.1/2.9/1.1 0.3/3.2/6.7/10.0 390.9 391.6 0.16
7 2.5/1.1/5.9/0.5 0.0/3.2/4.7/11.0 527.7 528.1 0.08
8 2.6/4.4/0.9/1.8 0.3/3.2/8.7/10.2 448.5 449.2 0.15
9 1.5/3.3/0.9/4.2 0.3/2.2/5.7/7.3 456.5 457.8 0.28

10 1.5/3.3/3.9/2.2 0.0/2.2/5.7/9.8 456.5 461.7 0.11

mm

mm

mm

4

We have effectively shown that for single and multiple
blockages, the error from our formula is insignificant.

4. Linear Time Estimation for Trees
We now show how to extend the two-pin formulae to trees
in the presence of blockages. Two convenient properties of
the following estimation technique are that:
• It can be decomposed into a summation of piecewise

components, just like the Elmore delay, thereby enabling
efficient optimization algorithms.

• The delay can be broken into the sum of the delays on a
given path, allowing one to compute the worst slack of
the tree in a single bottom-up traversal.

Let be a Steiner tree with nodes and source node
 and sinks . Let be the required arrival

time for sink and let be the parent of node
. The quality of a given buffer solution is

typically measured by the slack at the source node, which is
given by

(7)
where is the buffered delay from the to

.

Figure 5 Multi-sink tree with only unblocked Steiner points.
The key idea is to assume that if a path from to is the
most critical, that all sub-trees off the critical path will be
decoupled. To achieve the lowest delay to the critical sink,
the decoupling buffer should have the minimum possible
input capacitance; we assume input capacitance zero. We
show in Section 5, that this is a second order effects, as
compared to the first order blockage effect.

4.1 Case 1: Unblocked Steiner Points
Consider the case where all Steiner points are unblocked, as
in the four-sink example of Figure 5. Here, all decoupling of
branches can be accomplished by placing the buffer right
near the Steiner point. Hence, the delay to a given sink can
be broken piecewise into the sum of its sub-paths. For
example, the delays in Figure 5 are given by:

(8)
where is given by Equation (6).

4.2 Case 2: Blocked Steiner Points
Now consider when Steiner points may lie inside blockages,
as in Figure 6. In this case, decoupling may only occur

outside of the blockage after incurring potentially
significant wirelength. This is modeled by keeping track of
the off-path capacitance and multiplying it by the upstream
resistance inside the blockage. Also, we need to add the
delay from the extra capacitance loading on the (imaginary)
driving buffer. Define the function to be the
delay from the off-path capacitance inside a blockage as:

(9)

Figure 6 Multi-sink tree example with blocked Steiner points.
For example, some of the delays in Figure 6 are given by:

(10)

4.3 Linear Time Estimation Algorithm
The examples of Figure 5 and Figure 6 show that the
estimation can be expressed as a formula to find the delay to
any sink. It is not as clear how to compute the slack at the
source without having to compute the delay to each
individual sink. We now present a linear time algorithm to
compute the slack at the source in a single bottom-up tree
traversal. The key component is to recognize that at any
given Steiner point, the most critical downstream path can
be determined because any upstream delay will be the same
for all sinks downstream from the Steiner point.
For each node , let denote the slack at node , and
let denote the sub-tree capacitance downstream from

 that is in the same blockage as . In Figure 6,
 and

(11)
Note that the input buffer capacitance is not stored in

, but is only invoked when making a delay calculation.
We only want to consider this additional capacitance on the
critical path, but not for the whole sub-tree, since the non-
critical paths can be decoupled with much smaller buffers.
We assume the edges in the tree are segmented such that
whenever a blockage in intersects a tree edge, the edge is
broken into two edges incident to an intermediate boundary
node (as the ‘s are in Figure 5 and Figure 6). So each edge

 lies either completely inside or outside a blockage in
. Boundary nodes lie outside . A node lies inside

T V E,() n
s0 s1 … sk, , RAT si()

si p v()
v V s0{ }–∈

q s0() min1 i k≤ ≤ RAT si() Delay s0 si,()–{ }=
Delay s0 si,() s0

si

s0

s1

s3

s2

s4

s5

s6 x2
x1x3

x5

x4

s0 si

Delay s0 s1,() D l s0 s1,() l x3 x2,() l x1 s1,(),{ },()=
Delay s0 s2,() D l s0 s2,() l x3 x2,(){ },()=
Delay s0 s3,() D l s0 s3,() l x3 x2,(){ },()=

Delay s0 s4,() D l s0 s4,() l x5 x4,(){ },()=
D L W,()

OD lr lc,()

OD lr lc,() R lr⋅ Rb+() C lc⋅()=

s0

s1

s3

s2

s4

s5s6 x2

x1

x3x4

x5x6

Delay s0 s1,() D l s0 s1,() l x6 x5,() l x1 s1,(),{ },()=
OD l x6 s5,() l s5 x2,() l s5 x3,()+,()+

OD l x6 s6,() l s6 x4,(),()+
Delay s0 s4,() D l s0 s4,() l x6 x4,(){ },()=

OD l x6 s6,() l s6 x5,() l s5 x2,() l s5 x3,()+ +,()+

v q v() v
C v()

v v
C s5() C l s5 x3,() l s5 x5,() l s5 x2,()+ +()=
C s6() C s5() C l s6 x4,() l s6 s5,()+()⋅+=

Cb
C v()

W

xi
u v,()

W W W

5

only if it is completely inside a block in , e.g., in Figure 6
only and lie inside .
The algorithm is shown in Figure 7. Instead of using the
formulae from Section 2, the delay is computed piecewise
since this affords the simplest direct implementation. Step 1
visits each node in a bottom-up tree traversal, initializing
the downstream capacitance to zero. Step 2 handles
the case where is a sink, initializing the slack to the
required arrival time. Step 3 handles multiple children and
iterates through the children of . Step 4 updates
upstream information when going from node to via the
intermediate variable . If the edge is not in a
blockage, the downstream in-blockage length is zero and the
slack is updated by the linear delay from to . The slack
is updated to include the Elmore delay from to the critical
node downstream from that is just outside the blockage
containing . Finally, for edges that lie within
blockages, all downstream capacitance is summed in .
Step 5 then identifies the child of that is the ancestor
of the most critical sink, and the slack at is then set.
Finally, if is not in a blockage, but the edge is,
then one must incorporate into the slack the additional delay
required for a buffer just outside the blockage to drive.
Since is not outside the blockage, its downstream
capacitance is then set to zero. Finally, Step 6 returns the
slack at the source. The time complexity is linear in the
number of nodes.

Figure 7 Linear time estimation algorithm for trees.

5. Experiments for Multi-Sink Nets
We call our estimation algorithm in Figure 7 BELT for

Blockage Estimation in Linear Time. We consider three
other buffered slack calculations.
1. One can compute the estimation formula while ignoring

blockages. This in effect reduces to the estimations of
[5][12], whereby one just looks at the length of each
path and performs an optimal buffering as if it were a 2-
pin net. Since this is essentially the BELT estimation
without the blockages, we call this formula ELT.

2. As in Section 3, we run van Ginneken’s algorithm using
the single buffer type , and call this VG1 since there is
one buffer type.

3. In practice, we have the ability to run actual buffer inser-
tion with additional buffers types. We generated three
additional smaller buffers (since is already a larger
buffer) to use with van Ginneken framework. We call
this algorithm VG4.

All codes were written in C++, and compiled using g++
version 2.95 on a Sun Ultra-4 running SunOS 5.7.
For the following experiments, the required arrival times
were chosen to be the same for each sink since this actually
increases the likelihood of error in the delay estimation
formula. If one sink is substantially more critical, then this
sink will have all off-path branches decoupled, making it an
easier problem. Consequently, instead of reporting slack, we
report the maximum path delay (which also makes
interpreting results more intuitive).

5.1 Results on Random Nets
Our first experiment examines randomly generated nets.
First we created a simple artificial floorplan. The plan has
16 high level square blocks, each five millimeters on a side.
The block are arranged in a regular pattern on a square
layout that is 21 millimeters on a side. Thus, there is
sufficient space in the alleys (wide) between
blocks to allow buffer insertion. This type of layout loosely
corresponds to the kind of behavior one might expect from a
large chunky hierarchical design.
Next, we generated ten nets each of size three through ten
pins. We ran the four different algorithms on each net and
summarize the results in Table 2. In each case we set the
driver strength and the sink size to be equal to buffer . The
Steiner topology was generated using the C-Tree algorithm
which ignores blockages [2]. Delay calculations are for 0.10
micron technology [6].

Table 2 Experiments on randomly generated nets. Each row
represents the average of ten different nets.

The table presents a single row summarizing the average of
ten different nets each having the specified number of sinks.

Inputs: Given Steiner tree
 , resistance/ capacitance per unit length
 , resistance/ input capacitance of buffer
 set of blockages

Variables: slack at node
 slack at node on path to child
 in-blockage capacitance downstream from

Let:

1. for each (in bottom-up order) do
 set
2. if is a sink,
 set .
3. if has children for , then
 for to do
4. if then

 if , then

 set
 set
5. let be such that
 set
 if and there exists s.t. then
 set
 set
6. if is the source, then return

W
s5 s6 W

v
C v()

v

u1 … uk, , v
ui v

qi v() ui v,()

v ui
v

ui
v ui v,()

C v()

uj v
v

v uj v,()

v

T V E,()
R C
Rb Cb b
W

q v() v
qi v() v ui
C v() v

α RbC RCb 2RbCbRC+ +=

v V∈
C v() 0=

v
q v() RAT v()=

v u1 … uk, , k 1≥
i 1= k

ui v,() W∉
qi v() q ui() α l v ui,()⋅–=
ui v,() W∈

ED R l ui v,()⋅ C l v ui,()⋅ 2⁄ C ui() Cb+ +()=
qi v() q ui() ED–=
C v() C v() C l v ui,()⋅+= C ui()+

j qj v() min1 i k≤ ≤ qi v(){ }=
q v() qj v()=

v W∉ uj v uj,() W∈
q v() q v() Rb C v() Cb+()–=
C v() 0=

v q v()

net
sinks

WL
()

 %
Blk ELT BELT VG1 VG4 %ELT/

BELT
3 29104 88.5 552.8 1225.9 1235.0 1232.8 45.0
4 41983 93.3 617.0 1416.6 1428.7 1422.1 43.5
5 39904 90.2 512.8 1216.6 1230.2 1225.9 42.1
6 46559 90.2 569.8 1295.6 1308.0 1303.7 43.9
7 50373 88.9 548.6 1299.3 1314.2 1309.4 42.2
8 59190 91.1 663.0 1541.7 1558.0 1551.2 43.0
9 54659 90.5 539.0 1353.0 1375.3 1368.2 39.8
10 65350 94.0 595.1 1426.4 1449.1 1441.8 41.7

b

b

0.25mm

b

µm

6

For each net, we report the average wirelength and percent
of the net that was blocked. For the four algorithms we
present the average maximum delay for the net. The last
column gives the ratio of ELT to BELT delay as a
percentage. Note that by definition ELT will always be less
than BELT. We observe the following:
• By comparing the ratio of ELT to BELT in the last col-

umn, observe if one ignores blockage, the errors are typ-
ically off by over a factor of two. Of course the degree of
the error will depend on the size of the blocks. Clearly,
ignoring blocks causes gross underestimation of the
achievable delay.

• Comparing BELT to VG1, we see that the delay estima-
tion is quite accurate, and tends to underestimate the
achievable delay by 1.1% on average.

• Comparing BELT to VG4, we see that the error is
reduced even further, to 0.8% on average.

Clearly, the accuracy of BELT is sufficient while the
accuracy of an estimation technique that is not blockage
aware begins to suffer fairly significant underestimation.
This effect becomes magnified when the blockage map has
large blocks that may correspond to IP cores or memory.

5.2 Results on Large Real Nets
Our next experiments use the Steiner trees for a set of the
industrial nets reported in [2] and [11]. We perform the
same set of experiments as in Section 5.1 and report the
results in Table 3. This time the nets are listed on an
individual basis.

Table 3 Experiments for 13 nets from an industry design.
We observe the following:
• On average, the ELT/BELT percentage is 36.2%, which

means that blockage has on average about a 64% impact
for these nets.

• For some cases, the impact of blockage is not that signif-
icant, e.g., for net n107 ELT is a reasonable estimate. For
others, it is quite large, e.g., netbig1 has an ELT/BELT
percentage of 19.3%. In this case, we see that ELT
underestimates the (realizable) VG4 delay by 81%,
while BELT underestimates the VG4 delay by 3%.

• On average the error of BELT compared to VG4 is
5.2%, while on average the VG4 delay is almost a factor
of three higher than that predicted by ELT.

These experiments illustrates that our estimation technique
is sufficiently accurate for design planning, while ignoring
blockages is prohibitively costly.
Finally, note how efficient the estimation technique is. The
total runtime in seconds for running the above 13 test cases
was 0.24, 23.0 and 29.0 for BELT, VG1 and VG4,
respectively. In other words, BELT is about 100 times faster
than running an actual buffer insertion algorithm.

6. Conclusions
We presented closed form formulae for estimating the
achievable buffered delay when buffering restrictions exist
in the layout. We demonstrate that adding blockages to the
layout can cause significant error in estimation techniques
that ignore the blockage terrain. We also showed that our
technique is a lower bound, has an error of less than one
percent for two-pin nets, and has only a few percent error
for multi-sink nets.

References
[1] C. J. Alpert and A. Devgan, “Wire segmenting for improved

buffer insertion”, ACM/IEEE DAC pp. 588-593, 1997.
[2] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, A.B. Kahng, J. Lil-

lis, B. Liu, S.T. Quay, S.S. Sapatnekar and A.J. Sullivan,
“Buffered Steiner trees for difficult instances”, IEEE Transac-
tions on CAD, 21(1):3-14, January 2002.

[3] C. C. N. Chu and D. F. Wong, “Closed form solution to simul-
taneous buffer insertion/sizing and wire sizing”, ACM/IEEE
Intl. Symposium on Physical Design, pp. 192-197, 1997.

[4] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance
Optimization of VLSI Interconnect Layout”, Integration: the
VLSI Journal, 21, 1996, pp. 1-94.

[5] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for
interconnect-driven floorplanning”, IEEE/ACM Conf. on
Computer-Aided Design, pp. 358-363, 1999.

[6] J. Cong and D. Z. Pan, “Interconnect performance estimation
models for design planning” IEEE Transactions on CAD,
20(6):739-752, June 2001.

[7] J. Cong and X. Yuan, “Routing tree construction under fixed
buffer locations”, ACM/IEEE DAC, pp. 379-384, 2000.

[8] S. Dhar and M. A. Franklin, “Optimum buffer circuits for
driving long uniform lines”, IEEE Journal of Solid State Cir-
cuits, 26(1):33-38, January 1991.

[9] W. C. Elmore, “The Transient Response of Damped Linear
Network with Particular Regard to Wideband Amplifiers”, J.
Applied Physics, 19, 1948, pp. 55-63.

[10] M. Hrkic and J. Lillis, “Buffer tree synthesis with consider-
ation of temporal locality, sink polarity requirements, solution
cost and blockages”, ACM/IEEE ISPD, pp. 98-103, 2002.

[11] J. Hu, C.J. Alpert, S.T. Quay and G. Gandham, “Buffer inser-
tion with adaptive blockage avoidance”, ACM/IEEE Interna-
tional Symposium on Physical Design, pp. 92-97, 2002.

[12] R. H. J. M. Otten, “Global Wires Harmful?”, ACM/IEEE Intl.
Symposium on Physical Design, pp. 104-109, 1998.

[13] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick,
“The scaling challenge: can correct-by-construction design
help?”, ACM/IEEE ISPD, pp. 51-58, 2003.

[14] X. Tang, R. Tian, H. Xiang and D.F. Wong, “A new algorithm
for routing tree construction with buffer insertion and wire
sizing under obstacle constraints”, IEEE/ACM International
Conf. on Computer-Aided Design, pp. 49-56, 2001.

[15] L. P. P. P. van Ginneken, “Buffer Placement in Distributed
RC-Tree Network for Minimal Elmore Delay”, Intl Symp. on
Circuits and Systems, pp. 865-868, 1990.

[16] C. J. Alpert, M. Hrkic, J. Hu, and S. T. Quay, “Fast and Flexi-
ble Buffer Trees that Navigate the Layout Environment”,
IEEE/ACM DAC, pp. 24-29, 2004.

net
name

WL
() Sinks %

Blk ELT BELT VG1 VG4

mcu0 50540 18 89.9 380 822 872 864
mcu1 41780 19 96.2 492 1052 1084 1080
n107 14870 17 97.6 257 361 396 395
n189 64700 29 83.8 573 1486 1556 1532
n313 69430 19 96.6 587 1821 1850 1840
n786 53110 32 96.4 1126 3574 3880 3873
n869 42180 21 96.6 1042 2605 2816 2813
n870 45230 21 97.3 972 2326 2498 2498
n873 49290 43 78.0 527 1363 1381 1375
poi3 63600 20 96.8 1256 3746 3854 3847
big1 195300 88 85.8 1143 5920 6115 6063
big2 122500 79 93.1 545 1577 1657 1643
big3 95320 63 94.1 403 1415 1478 1460

µm

