
DAG Based Library-Free Technology Mapping

F. S. Marques
1
, L. S. Rosa Jr

1
, R. P. Ribas

1
, S. S. Sapatnekar

2
, A. I. Reis

1,3

1
Instituto de Informática – UFRGS

Porto Alegre, RS, Brazil

{felipem, leomarjr, rpribas}@inf.ufrgs.br

2
EECS - University of Minnesota

Minneapolis, MN, USA

sachin@ece.umn.edu

3
Nangate Inc.

Menlo Park, CA, USA

are@nangate.com

ABSTRACT
This paper proposes a library-free technology mapping algorithm
to reduce delay in combinational circuits. The algorithm reduces
the overall number of series transistors through the longest path,
considering that each cell network has to obey to a maximum
admitted chain. The number of series transistors is computed in a
Boolean way, reducing the structural bias. The mapping algorithm
is performed on a Directed Acyclic Graph (DAG) description of
the circuit. Preliminary results for delay were obtained through
SPICE simulations. When compared to the SIS technology
mapping, the proposed method shows significant delay reductions,
considering circuits mapped with different libraries.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,

optimization.

General Terms
Algorithms, Performance, Design, Experimentation, Theory.

Keywords
Logic Synthesis, Switching Theory, Technology Mapping, Library
Free Synthesis, Virtual Libraries.

1. INTRODUCTION
Technology Mapping (TM) is the step of logic synthesis that
chooses the cells that will be used to implement a circuit in a
given technology. Normally, the cells are chosen from a pre-
characterized library [1-4]. First methods for Technology
Mapping used trees as the initial description of the circuit to be
mapped. More recent methods are based on Directed Acyclic
Graph (DAG) representations that allow duplicating logic to some
extent to increase speed. Another important contribution to
technology mapping was Boolean matching [5], where the
matching of a portion of the circuit and a cell from the library is
done by comparing the Boolean function of the candidates,
instead of the structure. Structural comparison would not be able
to find all matches.

In the early phase of technology mapping, it was considered that
the use of a cell generator [6] would enable the use of larger
virtual (built on demand) cell libraries. Unfortunately, the use of
such approaches was not widely verified in a commercial level,
even if other references suggest that the increased number of cells
in a library could lead to significant improvements in the quality
of the final design [7-10]. A recent approach presented in [11]
suggests that the addition of some custom cells to a library can
improve the speed of the final circuit. Recently, some methods for
generating efficient cell networks were proposed [12-15],
including a method [15] to compute the minimum number of
transistors in series needed to implement an arbitrary Boolean
function. These improvements were presented only at the cell
level, lacking of an efficient method for mapping a larger circuit.

The contribution of this paper is to combine the method for
Boolean computation of the number of series transistors presented
in [15] with a state of the art technology mapping algorithm
inspired by the approach presented in [4]. Significant gains are
obtained in delay due to both aspects combined into the proposed
mapping tool. The algorithm is library-free, as it chooses the
transistor configuration for the cells that will have to be created
through a cell generation tools in a subsequent step.

This paper is organized as follows. Section 2 presents the
background. It describes why the method used to compute series
transistors is Boolean, and presents the rationale that relates series
transistors to circuit delay. Section 3 presents the proposed
algorithm. Results are presented in section 4 and conclusions are
presented in section 5.

2. BACKGROUND
The method used in this paper to compute the number of series
transistor in a cell network is a Boolean method. It computes the
lower bounds [15] for the number of series transistors in the
longest pull-up and pull-down chains of a cell implementing a
given logic function. Boolean methods are able to overcome the
structural bias [18] of the circuit being mapped, because they do
not depend on the DAG structure, but only on the function being
mapped. Another important point is that the associative methods
to compute series transistor constraints used in [6, 7, 8, 9, 10] are
monotonically increasing with the association, meaning the
association of two functions will always have more transistors in
series. The Boolean method is non monotonic, meaning the
association of two functions can reduce the number of transistors
in series. The differences between the Boolean method (lower
bound) used in this paper and the well known complementary
series-parallel approach (CSP) are highlighted in Table 1.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.

Copyright 2007 ACM 978-1-59593-605-9/07/0003...$5.00.

Table 1. Methods for computing length of transistor chains.

 Logic used

Characteristic CSP Lower Bound

Cells used Restricted to
series-parallel

complementary

Not always
topologically

complementary

Constraint
computation

Monotonically
increasing and

structural

Non-monotonic
and Boolean

Minimum length
transistor chains

Not guaranteed Guaranteed

Structural bias Very dependent
on initial

description

Reduced by
Boolean

computation of
constraints

Approaches [6, 7, 8, 9, 10] [15]

a) CSP CMOS cell b) Lower bound cell
Figure 1. CSP and NCSP topologies for transistor networks

For computing the lower bound we use a modified version of
ESPRESSO-SIGNATURE [19] that does not generate the final
SOP, only computes the length of minimum transistor chains. Our
algorithm also uses a method to produce cell networks with
minimum length transistor chains for the selected functions. Fig. 1
shows a comparison between a CSP and a lower bound
implementation for the same function. Notice that the number of
series transistors in the pull-up is reduced in Fig.1.b, leading to a
faster implementation. More details can be found in [15].

3. LLWF ALGORITHM
The Library-Less Wavefront (LLWF) technology mapping
algorithm is outlined in Fig. 2. It uses matching and covering
routines presented in Fig. 3and Fig 4, respectively. Our algorithm
uses a data structure very similar to the AIG in OAgear [20]. The
library-less wavefront algorithm is illustrated by the Fig. 5,
considering the initial circuit of the Fig. 5.a, which is a 2-input
decomposition of the Boolean function f presented in section 2 (Fig.
1). Fig. 5.d shows the possible heads and all the discovered matches.
The labeled vertical dashed lines represent the successive heads of
the wavefront. In the algorithm proposed here, the matching
generation window is given by the wave_width. Hence, the pattern
matches are generated in the interval [head - wave_width : head], as
described by the algorithm in Fig. 3. The covering algorithm relies
on a function for computing the lower bound of series transistors. As

this procedure needs to be fast, we developed a routine similar to
ESPRESSO-SIGNATURE [19]. The covering algorithm is shown
in Fig. 4, and it minimizes the accumulated sum of transistor lengths
along the critical path. This initial cost function is a first order
approach, but our results show that it correlates well with circuit
delay. A possible explanation is that the reduction of the number of
series transistors decreases the logical effort [16] of the cells. In the
future we intend to use a more precise delay model during the
covering approach. For the moment our first order approach
produces results that demonstrate the contribution of the method.

Procedure LLWF_mapper(max_pu, max_pd, wave_width) {
remove_all_inverters();
levelize_circuit();
highest_level = highest level of the circuit;
head_level = 1;

while (head_level ≤ highest_level) {
head_nets = list of all nets on head_level;

foreach net, n in head_nets {
/*Generate all matches considering a set of

constraints*/

generate_matches(n, max_pu, max_pd, head,
wave_width);

/*Select the best match for the net n*/
covering_algorithm(n);}

increment head_level;}
add_inverters();

}

Figure 2. Main Algorithm.

Procedure generate_matches(n, max_pu, max_pd, head,
wave_width) {

- In the DAG, generate all the pattern matches for the net
n, such that the search for pattern matches is performed
in the interval [head – wave_width : head]; At this point,
other constraints can be used to limit the match
generation;

foreach pattern match, pat in the list of pattern matches {
/* Compute lower bound for pull-up and pull-down
planes*/

cost_pu = compute_lower_bound_pu(pat);
cost_pd = compute_lower_bound_pd(pat);
if (cost_pu <= max_pu && cost_pd <= max_pd) {

- Store pat as a logic_cell;
- Make logic_cell, a driver of n in the DAG
representation;
- Connect all inputs of logic_cell to their
correspondent nets;

}
}

}

Figure 3. Matching Algorithm.

Procedure covering_algorithm(n) {
- Compute the sum of pull-up for all cells driving net n;
- Compute the sum of pull-down for all cells driving net n;
- Select the cell with the lowest sum of pull-up and pull-
down;
- Disconnect all driver cells on n, except the selected cell,
and perform a cleanup operation on their exclusive inputs;

}

Figure 4. Covering Algorithm.

a) 2-Input decomposition

b) circuit mapped using wave_width = 3

c) circuit mapped using wave_width = 2

d) best matches for each net in the circuit
Figure 5. The LLWF technology mapping method

In the algorithm, two constraints are used to validate the patterns:
max_pu and max_pd. Both limit the maximum number of series
transistors for the pull-up (max_pu) and pull-down (max_pd)
chains for each match of a given circuit net. As an example of the
application of the algorithm, assume the following constraint
values: max_pu = 2, max_pd = 3 and wave_width = 3. Initially,
the head starts at level 0 (primary input nets). It advances level-
by-level and the match generation is done for all nets on the head
level. After the matching generation for a given net n, the covering
algorithm is immediately invoked to choose the best match for n.
These steps will be repeated until the head reaches the highest
level in the circuit. In the Fig. 5.d, when the head reaches the level
1, the 2-Input NAND gates are added as drivers of their respective
nets in the circuit, creating multi-source nets. After the covering
algorithm selects the best match for the last net on level 1, the
head is moved to level 2. As the wave_width is equal to the
highest level of the circuit, on level 2 and 3, matches are
generated until the primary inputs. Finally, considering the
inversion flags in the circuit representation, inverters are inserted
when it is necessary. Fig. 5.b shows the mapped circuit under
initial constraints. If the wave_width is reduced to 2, the circuit in

the Fig. 5.c is obtained. This shows how the wave_width affects
the quality of the mapped circuit.

All cells in the final circuit are enforced to have an equal or
smaller pull-up compared to pull-down. This is achieved by
changing the polarity of cell inputs and outputs and exchanging
pull-up and pull-down networks. Besides the constraints max_pu
and max_pd, another set of restrictions can be used to avoid an
excessive number of matches. For instance, the number of
variables and/or the number of literals can also limit pattern
matches. The matches are not limited to fanout-free (tree) regions;
i.e. the match generation search process performs its search across
fanout, since these nets are in the interval [head - wave_width :

head]. However, it can be easily limited to fanout-free regions
testing the fanout of each net in the search space. This technique
can be used in order to save area.

4. RESULTS
In this section we present results of the algorithm developed in
this paper. It was implemented in a tool called VIRMA-WF,
which has been written in Java. All results were generated on a PC
workstation running Windows XP using an AMD Athlon

64/3200+ processor. First experiment investigates the effect of the
wave_width parameter. Second experiment compares the
technology mapping performed by VIRMA-WF, using SIS [17] as
a reference, for a set of benchmark circuits.

First study to analyze the effect of varying the wave_width sizes.
The effect on delay is illustrated in Fig. 6 using four benchmark
circuits and varying the wave_width from 1 to 6. As it happens for
the original wavefront [4], for widths of more than 4 the delay is
constant or presents slight improvements. Since the width 4 is
more practical, this wavefront size was chosen in order to realize
the comparison between SIS and LLWF technology mapping
algorithms.

The second experiment is a comparison between SIS technology
mapping and our method. The circuits were first decomposed into
inverters and 2-Input NAND/NOR gates using SIS. Next, we
performed technology mapping, using SIS and our method, for all
benchmark circuits. Finally, using our cell generator, NCSP and
CSP CMOS transistor networks are derived for the mapped
circuits produced by our method and by SIS, respectively. Results
are shown in five different tables. In tables 2-6, the first columns
show the name of the circuit. The labels of the following columns
describe the cell libraries used during the technology mapping.
The columns 33-4 and lib2 show results for the cell libraries 33-

4.genlib and lib2.genlib, respectively, mapped by SIS targeting
minimum delay. Since the cell libraries 33-4.genlib and
lib2.genlib have cells with costs equal or lesser than 3 for the pull-
up and pull-down planes, and few cells where PU or PD cost can
be 4 (such as cells found in the lib2.genlib), all circuits were
mapped by our method using wave_width = 4 and the constraints
3,3 and 3,4 to limit PU and PD costs. The label T (e.g. (3,3)-T and
(3,4)-T) indicates that the mapping was limited to trees (fanout
free regions). The label D (e.g. (3,3)-D and (3,4)-D) indicates that
the mapping was allowed to duplicate logic, resulting on DAG
mapping.

Table 2 shows the accumulated sum of series transistors on the
pull-up and pull-down planes of each cell on the longest path of
the circuit. It is noticeable that VIRMA-WF reduces the
accumulated transistor chains along the longest path.

In order to prove that the reduction of transistor in the pull-up and
pull-down planes can reduce the circuit delay, we used SPICE
simulation to estimate delay. The transistors used on the SPICE
description have fixed size. Table 3 presents a delay comparison
between the SIS technology mapping VIRMA-WF technology
mapping. The second column (33-4 (ns)) shows delay values
expressed in nanoseconds for circuits mapped by SIS. The
columns 3-7 show normalized values correspondent to the delay
values of the second column. Our method provides better results
than SIS results, with average delay reductions of about 27% and
33% considering virtual cell libraries restricted by the constraints
3,3 and 3,4, respectively. The technology mapping limited to tree
(T) regions performed by our method also shows improvements of
13%-15% in average.

Area comparison, considering the number of transistors of each
circuit, can be seen in table 4. Due to logic duplications during the
technology mapping, inherent to DAG mapping, our method can
increase the area. The area penalty for using our technology
mapping algorithm is 18% and 31% in average for the virtual cell
libraries 3,3 and 3,4, respectively. There are cases where the
average area increase is negligible. It happens for the technology

mapping limited by fanout. Although for these cases the delay
gains were not maximized, a good area/delay trade-off is still
achieved.

Figure 6. The effect of varying the wave_width

Table 5 shows the execution times for SIS and VIRMA-WF,
given in seconds. The VIRMA-WF is more time consuming than
SIS. As the time values show, they are not proportional to the size
of the circuit. For instance, considering the virtual cell library
(3,4), the circuit c499 uses more time than the circuit c3540.
However, c499 is smaller than c3540. This is mainly due to the
complexity of the lower bound calculus for each match, and also
to the number of generated matches during the technology
mapping process.

Table 2. Accumulated pull-up and pull-down along the longest

path of the circuit.

 SIS VIRMA-WF

33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D

Bench. SPU SPD SPU SPD SPU SPD SPU SPD SPU SPD SPU SPD

c1355 31 52 31 55 34 45 25 30 31 46 19 27

c1908 41 58 40 56 39 52 30 38 37 50 27 40

c3540 60 78 54 69 42 67 39 60 39 69 33 52

c432 39 55 34 52 33 49 31 43 25 47 24 41

c499 29 35 24 35 27 32 25 27 24 33 18 26

c6288 124 243 131 247 153 213 95 113 153 213 88 125

c880 32 41 21 39 26 35 21 32 20 36 16 38

Table 3. Delay for VIRMA-WF vs. SIS.

 SIS VIRMA-WF

Bench. 33-4 (ns) lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D

c1355 2.32 1.07 0.94 0.61 0.93 0.52

c1908 2.53 1.08 0.87 0.65 0.87 0.71

c3540 3.37 1.04 0.94 0.90 0.91 0.65

c432 2.70 0.88 0.82 0.76 0.79 0.70

c499 1.87 0.91 0.82 0.71 0.80 0.64

c880 2.27 0.91 0.83 0.77 0.82 0.80

Average 0.98 0.87 0.73 0.85 0.67

Table 4. Area for VIRMA-WF vs. SIS.

 SIS VIRMA-WF

Bench. 33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D

c1355 2140 1.03 0.92 0.87 0.89 1.15

c1908 2390 1.01 1.02 1.19 0.94 1.11

c3540 4410 1.09 0.99 1.32 1.05 1.38

c432 790 1.13 1.13 1.37 1.08 1.39

c499 1484 1.00 1.04 1.00 1.00 1.26

c880 1256 1.00 1.08 1.33 1.03 1.54

Average 1.05 1.03 1.18 1.00 1.31

Table 5. CPU time for VIRMA-WF vs. SIS.

 SIS VIRMA-WF

Bench. 33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D

c1355 0.4 0.3 13.0 494.1 27.8 542.4

c1908 0.6 0.5 15.3 404.7 19.1 766.3

c3540 2.9 2.6 41.3 469.2 44.6 777.7

c432 0.2 0.1 5.5 25.6 6.3 36.0

c499 0.3 0.3 12.7 992.8 27.3 1641.3

c880 0.3 0.2 1.7 93.0 2.1 281.2

Total 4.7 4.0 89.5 2479.3 127.1 4044.9

Table 6. C6288 results.

 SIS VIRMA-WF

 33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D

Delay 10.20 1.02 1.00 0.57 1.00 0.63

Area 9444 1.01 1.00 1.90 1.00 2.07

CPU time 9.0 8.6 7.6 1028.4 8.0 1304.0

Table 6 shows results for the benchmark circuit c6288. For delay
and area results, the column ’33-4’ presents, respectively, absolute
values in nanoseconds and number of transistors. The following
columns show the correspondent relative values. The CPU time is
expressed in seconds for all libraries. Delay gains are very
significant for the libraries (3,3) and (3,4), when DAG mapping is
applied. However, the area penalty is high. The c6288 is a
multiplier composed by regular logic blocks, and it has several
regions that are not fanout-free. Therefore, best matches that cross
fanout, will probably be best matches for other regions, resulting
in many duplications. This area penalty can be reduced by
allowing duplication of logic only for timing critical regions.

The prototype implemented to obtain the experimental results is
devoted to prove our concepts. Our results show considerable
delay gains. Nevertheless, area results show that we have to look
for better area/delay trade-offs. We expect to find it by allowing
duplication only in critical regions of the circuit. It can also
decrease the CPU time, since the number of matches will be
reduced. Another possibility to reduce CPU time is to store pre-
computed lower bounds in a hash table, to avoid repeated
computations.

5. CONCLUSIONS
We have presented a library-less technology mapping algorithm to
reduce delay in combinational circuits. A comparison among the
tradition technology mapping using SIS and our method using

different virtual cell libraries shows delay reductions from 6% to
48%. For some circuits, better delay means high penalty in area.
The VIRMA-WF technology mapping limited to fanout-free
regions produce circuits with negligible area increase and with
delay improvements around 15% in average. In order to find a
good trade-off between area and delay, the VIRMA-WF algorithm
can be extended using a mix of tree-mapping on non timing
critical regions and DAG-mapping on timing critical regions of
the circuit, as suggested in the previous section.

The method presented here can be implemented in a non-
disruptive way in existing design flows, if a cell/library generation
tool is available. After mapping, the bespoke logic functions must
be generated as cells to compose a library that is used for place &
route and design closure of the mapped logic network. Future
works will address this issue.

6. ACKNOWLEDGMENTS
This research was partially supported by CNPq/PNM and CAPES
Brazilian Funding Agencies.

7. REFERENCES
[1] K. Keutzer, “Dagon: Technology binding and local

optimization by DAG matching”, In Proc of the 24th Design
Automation Conference, June 1987, pp. 341-347.

[2] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness,
“Logic decomposition during technology”, IEEE

Transactions on Computer-Aided Design, August 1997,
16(8):813-834.

[3] Y. Kukimoto, R.K. Brayton, and P. Sawkar, “Delay-optimal
technology mapping by DAG covering”, In Proc of the
DAC’98, 1998. pp. 348-351.

[4] L. Stok, M.A. Iyer, and A.J. Sullivan, “Wavefront
Technology Mapping”, In Proc. of the DATE’99, Germany,
1999.

[5] F. Mailhot, and G. DeMicheli. “Algorithms for technology
mapping based on binary decision diagrams and on Boolean
operations”, IEEE Transactions on CAD for IC and Systems,
vol. 12 n° 5, May 1993, pp. 599-620.

[6] M. Berkelaar, and J. Jess, “Technology mapping for
standard-cell generators”, In Proc. Int. Conf. Computer-
Aided Design, Santa Clara, CA, Nov. 1988, pp. 470-473.

[7] K. Keutzer, K. Kolwicz, and M. Lega, “Impact of library size
on the quality of automated synthesis”, ICCAD 1987, pp.
120-123.

[8] K. Scott, and K. Keutzer, “Improving cell libraries for
synthesis”, In Proc. of CICC, 1994, pp. 128-131.

[9] C. Sechen, and B. Guan, “Large standard cell libraries and
their impact on layout area and circuit performance”, In Proc.
of ICCD, 1996, pp. 378-383.

[10] S. Gavrilov, A. Glebov, S. Pullela, S. Moore, A.
Dharchoudhury, R. Panda, G. Vijayan, and D. Blaauw,
“Library-less synthesis for static CMOS combinational logic
circuits”, in Proc. of ICCAD, 1997, pp:658 – 662.

[11] R. Roy, D. Bhattacharya, and V. Boppana, “Transistor-level
optimization of digital designs with flex cells”, IEEE

Computer, Feb. 2005, pp. 53-61.

[12] M. Kanecko and J. Tian, “Concurrent cell generation and
mapping for CMOS logic circuits”, In Proc. of ASPDAC97,
1997, pp. 247–252.

[13] R. Poli, F. Schneider, R. Ribas, and A. Reis. “Unified theory
to build cell-level transistor networks from BDDs”. In Proc.
of SBCCI 2003, pp.199 – 204.

[14] K. Tanaka, and Y. Kambayashi,. “Transduction method for
design of logic cell structure”, In Proc. of ASPDAC2004, pp.
600–603.

[15] F. Schneider, R. Ribas, S. Sapatnekar, and A. Reis, “Exact
lower bound for the number of switches in series to
implement a combinational logic cell”, In Proc of ICCD05,
2005, pp. 357-362.

[16] I. Sutherland, B. Sproull, and D. Harris “Logical Effort:
Designing Fast CMOS Circuits”, Morgan Kaufmann, 1999.

[17] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton,

A. Sangiovanni-Vincentelli, “SIS: A system for sequential
circuit synthesis”, Technical Report No. UCB/ERL M92/41,
EECS Department, University of California, Berkeley, 1992.

[18] S.Chatterjee, A.Mishchenko, R.Brayton, X.Wang, T.Kam.
“Reducing Structural Bias in Technology Mapping”. IEEE
TCAD, accepted for future publication, 2006.

[19] P.McGeer, J.Sanghavi, R.Brayton, A.Sangiovanni-Vicentelli.
“ESPRESSO-SIGNATURE: a new exact minimizer for logic
functions”. IEEE Transactions on VLSI, Volume 1, Issue 4,
Dec. 1993 Pp:432 – 440.

[20] Z.Xiu, D.A.Papa, P.Chong, C.Albrecht, A.Kuehlmann,
R.A.Rutenbar, I.L.Markov. “Early research experience with
OpenAccess gear: an open source development environment
for physical design”, In Proc. of ISPD05, pp. 94-100.

