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ABSTRACT 
This paper proposes a library-free technology mapping algorithm 
to reduce delay in combinational circuits. The algorithm reduces 
the overall number of series transistors through the longest path, 
considering that each cell network has to obey to a maximum 
admitted chain. The number of series transistors is computed in a 
Boolean way, reducing the structural bias. The mapping algorithm 
is performed on a Directed Acyclic Graph (DAG) description of 
the circuit. Preliminary results for delay were obtained through 
SPICE simulations. When compared to the SIS technology 
mapping, the proposed method shows significant delay reductions, 
considering circuits mapped with different libraries. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – automatic synthesis, 

optimization. 

General Terms 
Algorithms, Performance, Design, Experimentation, Theory. 

Keywords 
Logic Synthesis, Switching Theory, Technology Mapping, Library 
Free Synthesis, Virtual Libraries. 

1. INTRODUCTION 
Technology Mapping (TM) is the step of logic synthesis that 
chooses the cells that will be used to implement a circuit in a 
given technology. Normally, the cells are chosen from a pre-
characterized library [1-4]. First methods for Technology 
Mapping used trees as the initial description of the circuit to be 
mapped. More recent methods are based on Directed Acyclic 
Graph (DAG) representations that allow duplicating logic to some 
extent to increase speed. Another important contribution to 
technology mapping was Boolean matching [5], where the 
matching of a portion of the circuit and a cell from the library is 
done by comparing the Boolean function of the candidates, 
instead of the structure. Structural comparison would not be able 
to find all matches. 

In the early phase of technology mapping, it was considered that 
the use of a cell generator [6] would enable the use of larger 
virtual (built on demand) cell libraries. Unfortunately, the use of 
such approaches was not widely verified in a commercial level, 
even if other references suggest that the increased number of cells 
in a library could lead to significant improvements in the quality 
of the final design [7-10]. A recent approach presented in [11] 
suggests that the addition of some custom cells to a library can 
improve the speed of the final circuit. Recently, some methods for 
generating efficient cell networks were proposed [12-15], 
including a method [15] to compute the minimum number of 
transistors in series needed to implement an arbitrary Boolean 
function. These improvements were presented only at the cell 
level, lacking of an efficient method for mapping a larger circuit. 

The contribution of this paper is to combine the method for 
Boolean computation of the number of series transistors presented 
in [15] with a state of the art technology mapping algorithm 
inspired by the approach presented in [4]. Significant gains are 
obtained in delay due to both aspects combined into the proposed 
mapping tool. The algorithm is library-free, as it chooses the 
transistor configuration for the cells that will have to be created 
through a cell generation tools in a subsequent step. 

This paper is organized as follows. Section 2 presents the 
background. It describes why the method used to compute series 
transistors is Boolean, and presents the rationale that relates series 
transistors to circuit delay. Section 3 presents the proposed 
algorithm. Results are presented in section 4 and conclusions are 
presented in section 5. 

2. BACKGROUND 
The method used in this paper to compute the number of series 
transistor in a cell network is a Boolean method. It computes the 
lower bounds [15] for the number of series transistors in the 
longest pull-up and pull-down chains of a cell implementing a 
given logic function. Boolean methods are able to overcome the 
structural bias [18] of the circuit being mapped, because they do 
not depend on the DAG structure, but only on the function being 
mapped. Another important point is that the associative methods 
to compute series transistor constraints used in [6, 7, 8, 9, 10] are 
monotonically increasing with the association, meaning the 
association of two functions will always have more transistors in 
series. The Boolean method is non monotonic, meaning the 
association of two functions can reduce the number of transistors 
in series. The differences between the Boolean method (lower 
bound) used in this paper and the well known complementary 
series-parallel approach (CSP) are highlighted in Table 1. 
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Table 1. Methods for computing length of transistor chains. 

 Logic used 

Characteristic CSP Lower Bound 

Cells used Restricted to 
series-parallel 

complementary 

Not always 
topologically 

complementary 

Constraint 
computation 

Monotonically 
increasing and 

structural 

Non-monotonic 
and Boolean 

Minimum length 
transistor chains 

Not guaranteed Guaranteed 

Structural bias Very dependent 
on initial 

description 

Reduced by 
Boolean 

computation of 
constraints 

Approaches [6, 7, 8, 9, 10] [15] 

 

 

 

a) CSP CMOS cell b) Lower bound cell 
Figure 1. CSP and NCSP topologies for transistor networks 

For computing the lower bound we use a modified version of 
ESPRESSO-SIGNATURE [19] that does not generate the final 
SOP, only computes the length of minimum transistor chains. Our 
algorithm also uses a method to produce cell networks with 
minimum length transistor chains for the selected functions. Fig. 1 
shows a comparison between a CSP and a lower bound 
implementation for the same function. Notice that the number of 
series transistors in the pull-up is reduced in Fig.1.b, leading to a 
faster implementation. More details can be found in [15]. 

3. LLWF ALGORITHM 
The Library-Less Wavefront (LLWF) technology mapping 
algorithm is outlined in Fig. 2. It uses matching and covering 
routines presented in Fig. 3and Fig 4, respectively. Our algorithm 
uses a data structure very similar to the AIG in OAgear [20]. The 
library-less wavefront algorithm is illustrated by the Fig. 5, 
considering the initial circuit of the Fig. 5.a, which is a 2-input 
decomposition of the Boolean function f presented in section 2 (Fig. 
1). Fig. 5.d shows the possible heads and all the discovered matches. 
The labeled vertical dashed lines represent the successive heads of 
the wavefront. In the algorithm proposed here, the matching 
generation window is given by the wave_width. Hence, the pattern 
matches are generated in the interval [head - wave_width : head], as 
described by the algorithm in Fig. 3. The covering algorithm relies 
on a function for computing the lower bound of series transistors. As 

this procedure needs to be fast, we developed a routine similar to 
ESPRESSO-SIGNATURE [19]. The covering algorithm is shown 
in Fig. 4, and it minimizes the accumulated sum of transistor lengths 
along the critical path. This initial cost function is a first order 
approach, but our results show that it correlates well with circuit 
delay. A possible explanation is that the reduction of the number of 
series transistors decreases the logical effort [16] of the cells. In the 
future we intend to use a more precise delay model during the 
covering approach. For the moment our first order approach 
produces results that demonstrate the contribution of the method. 

Procedure LLWF_mapper(max_pu, max_pd, wave_width) { 
remove_all_inverters(); 
levelize_circuit(); 
highest_level = highest level of the circuit; 
head_level = 1; 

while (head_level ≤ highest_level) { 
head_nets = list of all nets on head_level; 

foreach net, n in head_nets { 
/*Generate all matches considering a set of 

constraints*/ 

generate_matches(n, max_pu, max_pd, head, 
wave_width); 

/*Select the best match for the net n*/ 
covering_algorithm(n);} 

increment head_level;} 
add_inverters(); 

} 

Figure 2. Main Algorithm. 

Procedure generate_matches(n, max_pu, max_pd, head, 
wave_width) { 

- In the DAG, generate all the pattern matches for the net 
n, such that the search for pattern matches is performed 
in the interval [head – wave_width : head]; At this point, 
other constraints can be used to limit the match 
generation; 

foreach pattern match, pat in the list of pattern matches { 
/* Compute lower bound for pull-up and pull-down 
planes*/ 

cost_pu = compute_lower_bound_pu(pat); 
cost_pd = compute_lower_bound_pd(pat); 
if (cost_pu <= max_pu && cost_pd <= max_pd) { 

- Store pat as a logic_cell; 
- Make logic_cell, a driver of n in the DAG 
representation; 
- Connect all inputs of logic_cell to their 
correspondent nets; 

} 
} 

} 

Figure 3. Matching Algorithm. 

Procedure covering_algorithm(n) { 
- Compute the sum of pull-up for all cells driving net n; 
- Compute the sum of pull-down for all cells driving net n; 
- Select the cell with the lowest sum of pull-up and pull-
down; 
- Disconnect all driver cells on n, except the selected cell, 
and perform a cleanup operation on their exclusive inputs; 

} 

Figure 4. Covering Algorithm. 



 

a) 2-Input decomposition 

 

b) circuit mapped using wave_width = 3 

 

c) circuit mapped using wave_width = 2  

 

d) best matches for each net in the circuit 
Figure 5. The LLWF technology mapping method 

 
In the algorithm, two constraints are used to validate the patterns: 
max_pu and max_pd. Both limit the maximum number of series 
transistors for the pull-up (max_pu) and pull-down (max_pd) 
chains for each match of a given circuit net. As an example of the 
application of the algorithm, assume the following constraint 
values: max_pu = 2, max_pd = 3 and wave_width = 3. Initially, 
the head starts at level 0 (primary input nets). It advances level-
by-level and the match generation is done for all nets on the head 
level. After the matching generation for a given net n, the covering 
algorithm is immediately invoked to choose the best match for n. 
These steps will be repeated until the head reaches the highest 
level in the circuit. In the Fig. 5.d, when the head reaches the level 
1, the 2-Input NAND gates are added as drivers of their respective 
nets in the circuit, creating multi-source nets. After the covering 
algorithm selects the best match for the last net on level 1, the 
head is moved to level 2. As the wave_width is equal to the 
highest level of the circuit, on level 2 and 3, matches are 
generated until the primary inputs. Finally, considering the 
inversion flags in the circuit representation, inverters are inserted 
when it is necessary. Fig. 5.b shows the mapped circuit under 
initial constraints. If the wave_width is reduced to 2, the circuit in 

the Fig. 5.c is obtained. This shows how the wave_width affects 
the quality of the mapped circuit. 

All cells in the final circuit are enforced to have an equal or 
smaller pull-up compared to pull-down. This is achieved by 
changing the polarity of cell inputs and outputs and exchanging 
pull-up and pull-down networks. Besides the constraints max_pu 
and max_pd, another set of restrictions can be used to avoid an 
excessive number of matches. For instance, the number of 
variables and/or the number of literals can also limit pattern 
matches. The matches are not limited to fanout-free (tree) regions; 
i.e. the match generation search process performs its search across 
fanout, since these nets are in the interval [head - wave_width : 

head]. However, it can be easily limited to fanout-free regions 
testing the fanout of each net in the search space. This technique 
can be used in order to save area. 

4. RESULTS 
In this section we present results of the algorithm developed in 
this paper. It was implemented in a tool called VIRMA-WF, 
which has been written in Java. All results were generated on a PC 
workstation running Windows XP using an AMD Athlon 



64/3200+ processor. First experiment investigates the effect of the 
wave_width parameter. Second experiment compares the 
technology mapping performed by VIRMA-WF, using SIS [17] as 
a reference, for a set of benchmark circuits. 

First study to analyze the effect of varying the wave_width sizes. 
The effect on delay is illustrated in Fig. 6 using four benchmark 
circuits and varying the wave_width from 1 to 6. As it happens for 
the original wavefront [4], for widths of more than 4 the delay is 
constant or presents slight improvements. Since the width 4 is 
more practical, this wavefront size was chosen in order to realize 
the comparison between SIS and LLWF technology mapping 
algorithms. 

The second experiment is a comparison between SIS technology 
mapping and our method. The circuits were first decomposed into 
inverters and 2-Input NAND/NOR gates using SIS. Next, we 
performed technology mapping, using SIS and our method, for all 
benchmark circuits. Finally, using our cell generator, NCSP and 
CSP CMOS transistor networks are derived for the mapped 
circuits produced by our method and by SIS, respectively. Results 
are shown in five different tables. In tables 2-6, the first columns 
show the name of the circuit. The labels of the following columns 
describe the cell libraries used during the technology mapping. 
The columns 33-4 and lib2 show results for the cell libraries 33-

4.genlib and lib2.genlib, respectively, mapped by SIS targeting 
minimum delay. Since the cell libraries 33-4.genlib and 
lib2.genlib have cells with costs equal or lesser than 3 for the pull-
up and pull-down planes, and few cells where PU or PD cost can 
be 4 (such as cells found in the lib2.genlib), all circuits were 
mapped by our method using wave_width = 4 and the constraints 
3,3 and 3,4 to limit PU and PD costs. The label T (e.g. (3,3)-T and 
(3,4)-T) indicates that the mapping was limited to trees (fanout 
free regions). The label D (e.g. (3,3)-D and (3,4)-D) indicates that 
the mapping was allowed to duplicate logic, resulting on DAG 
mapping.  

Table 2 shows the accumulated sum of series transistors on the 
pull-up and pull-down planes of each cell on the longest path of 
the circuit. It is noticeable that VIRMA-WF reduces the 
accumulated transistor chains along the longest path. 

In order to prove that the reduction of transistor in the pull-up and 
pull-down planes can reduce the circuit delay, we used SPICE 
simulation to estimate delay. The transistors used on the SPICE 
description have fixed size. Table 3 presents a delay comparison 
between the SIS technology mapping VIRMA-WF technology 
mapping. The second column (33-4 (ns)) shows delay values 
expressed in nanoseconds for circuits mapped by SIS. The 
columns 3-7 show normalized values correspondent to the delay 
values of the second column. Our method provides better results 
than SIS results, with average delay reductions of about 27% and 
33% considering virtual cell libraries restricted by the constraints 
3,3 and 3,4, respectively. The technology mapping limited to tree 
(T) regions performed by our method also shows improvements of 
13%-15% in average. 

Area comparison, considering the number of transistors of each 
circuit, can be seen in table 4. Due to logic duplications during the 
technology mapping, inherent to DAG mapping, our method can 
increase the area. The area penalty for using our technology 
mapping algorithm is 18% and 31% in average for the virtual cell 
libraries 3,3 and 3,4, respectively. There are cases where the 
average area increase is negligible. It happens for the technology 

mapping limited by fanout. Although for these cases the delay 
gains were not maximized, a good area/delay trade-off is still 
achieved. 

 
Figure 6. The effect of varying the wave_width 

Table 5 shows the execution times for SIS and VIRMA-WF, 
given in seconds. The VIRMA-WF is more time consuming than 
SIS. As the time values show, they are not proportional to the size 
of the circuit. For instance, considering the virtual cell library 
(3,4), the circuit c499 uses more time than the circuit c3540. 
However, c499 is smaller than c3540. This is mainly due to the 
complexity of the lower bound calculus for each match, and also 
to the number of generated matches during the technology 
mapping process. 

Table 2. Accumulated pull-up and pull-down along the longest 

path of the circuit. 

 SIS VIRMA-WF 

33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D 

Bench. SPU SPD SPU SPD SPU SPD SPU SPD SPU SPD SPU SPD 

c1355 31 52 31 55 34 45 25 30 31 46 19 27 

c1908 41 58 40 56 39 52 30 38 37 50 27 40 

c3540 60 78 54 69 42 67 39 60 39 69 33 52 

c432 39 55 34 52 33 49 31 43 25 47 24 41 

c499 29 35 24 35 27 32 25 27 24 33 18 26 

c6288 124 243 131 247 153 213 95 113 153 213 88 125 

c880 32 41 21 39 26 35 21 32 20 36 16 38 

 
Table 3. Delay for VIRMA-WF vs. SIS. 

 SIS VIRMA-WF 

Bench. 33-4 (ns) lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D 

c1355 2.32 1.07 0.94 0.61 0.93 0.52 

c1908 2.53 1.08 0.87 0.65 0.87 0.71 

c3540 3.37 1.04 0.94 0.90 0.91 0.65 

c432 2.70 0.88 0.82 0.76 0.79 0.70 

c499 1.87 0.91 0.82 0.71 0.80 0.64 

c880 2.27 0.91 0.83 0.77 0.82 0.80 

Average 0.98 0.87 0.73 0.85 0.67 

 



Table 4. Area for VIRMA-WF vs. SIS. 

 SIS VIRMA-WF 

Bench. 33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D 

c1355 2140 1.03 0.92 0.87 0.89 1.15 

c1908 2390 1.01 1.02 1.19 0.94 1.11 

c3540 4410 1.09 0.99 1.32 1.05 1.38 

c432 790 1.13 1.13 1.37 1.08 1.39 

c499 1484 1.00 1.04 1.00 1.00 1.26 

c880 1256 1.00 1.08 1.33 1.03 1.54 

Average 1.05 1.03 1.18 1.00 1.31 

 
Table 5. CPU time for VIRMA-WF vs. SIS. 

 SIS VIRMA-WF 

Bench. 33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D 

c1355 0.4 0.3 13.0 494.1 27.8 542.4 

c1908 0.6 0.5 15.3 404.7 19.1 766.3 

c3540 2.9 2.6 41.3 469.2 44.6 777.7 

c432 0.2 0.1 5.5 25.6 6.3 36.0 

c499 0.3 0.3 12.7 992.8 27.3 1641.3 

c880 0.3 0.2 1.7 93.0 2.1 281.2 

Total 4.7 4.0 89.5 2479.3 127.1 4044.9 

 
Table 6. C6288 results. 

 SIS VIRMA-WF 

 33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D 

Delay 10.20 1.02 1.00 0.57 1.00 0.63 

Area 9444 1.01 1.00 1.90 1.00 2.07 

CPU time 9.0 8.6 7.6 1028.4 8.0 1304.0 

 

Table 6 shows results for the benchmark circuit c6288. For delay 
and area results, the column ’33-4’ presents, respectively, absolute 
values in nanoseconds and number of transistors. The following 
columns show the correspondent relative values. The CPU time is 
expressed in seconds for all libraries. Delay gains are very 
significant for the libraries (3,3) and (3,4), when DAG mapping is 
applied. However, the area penalty is high. The c6288 is a 
multiplier composed by regular logic blocks, and it has several 
regions that are not fanout-free. Therefore, best matches that cross 
fanout, will probably be best matches for other regions, resulting 
in many duplications. This area penalty can be reduced by 
allowing duplication of logic only for timing critical regions. 

The prototype implemented to obtain the experimental results is 
devoted to prove our concepts. Our results show considerable 
delay gains. Nevertheless, area results show that we have to look 
for better area/delay trade-offs. We expect to find it by allowing 
duplication only in critical regions of the circuit. It can also 
decrease the CPU time, since the number of matches will be 
reduced. Another possibility to reduce CPU time is to store pre-
computed lower bounds in a hash table, to avoid repeated 
computations.  

5. CONCLUSIONS 
We have presented a library-less technology mapping algorithm to 
reduce delay in combinational circuits. A comparison among the 
tradition technology mapping using SIS and our method using 

different virtual cell libraries shows delay reductions from 6% to 
48%. For some circuits, better delay means high penalty in area. 
The VIRMA-WF technology mapping limited to fanout-free 
regions produce circuits with negligible area increase and with 
delay improvements around 15% in average. In order to find a 
good trade-off between area and delay, the VIRMA-WF algorithm 
can be extended using a mix of tree-mapping on non timing 
critical regions and DAG-mapping on timing critical regions of 
the circuit, as suggested in the previous section.  

The method presented here can be implemented in a non-
disruptive way in existing design flows, if a cell/library generation 
tool is available. After mapping, the bespoke logic functions must 
be generated as cells to compose a library that is used for place & 
route and design closure of the mapped logic network. Future 
works will address this issue. 
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