
E�cient Minarea Retiming of Large Level-Clocked Circuits�

Naresh Maheshwari Sachin S. Sapatnekar
Department of Electrical & Computer Engineering Department of Electrical & Computer Engineering

Iowa State University, Ames IA 50011 University of Minnesota, Minneapolis, MN 55455
naresh@iastate.edu sachin@ece.umn.edu

Abstract

Delay-constrained area optimization is an impor-
tant step in synthesis of VLSI circuits. Minimum
area (minarea) retiming is a powerful technique to
solve this problem. The minarea retiming problem
has been formulated as a linear program; in this work
we present techniques for reducing the size of this lin-
ear program and e�cient techniques for generating it.
This results in an e�cient minarea retiming method
for large level-clocked circuits (with tens of thousands
of gates).

1 Introduction

Timing optimization plays a vital role in the syn-
thesis of VLSI circuits. One method that is of great
interest to the design and CAD community is the pro-
cedure of retiming [1], which relocates the memory
elements in a circuit without changing its function-
ality, to optimize some cost function. The problem
of �nding the minimum clock period is called minpe-
riod retiming. Since minperiod retiming pays no re-
gard to the area overhead it can signi�cantly increase
the number of memory elements in the circuit. Hence
a method for minimizing the number of memory ele-
ments while satisfying a target clock period is needed.
This is called minarea retiming.

The memory elements in a circuit may be ei-
ther edge-triggered
ip-
ops (FF's) or level-sensitive
latches. In a level-clocked circuit the latch is transpar-
ent during the active period of the clock, and the delay
through a combinational logic path can be longer than
one clock cycle, as long as it is compensated by shorter
paths delays in the subsequent cycles. This transpar-
ent nature of the latch provides more
exibility both in
terms of the minimum clock period achievable and the
minimum number of memory elements needed. Unfor-
tunately this transparency also complicates the anal-

�This work was supported in part by National Science Foun-
dation award MIP-9502556, a Lucent Technologies DAC Gradu-
ate Scholarship and a Iowa State University Computation Cen-
ter Grant.

ysis of level-clocked circuitry because data can ripple
through several stages of memory elements before its
propagation is complete. This makes the design and
optimization of level-clocked circuits an intricate task,
and the need of good automation tools acute.

As a result several e�orts have been made to
perform minperiod retiming on level-clocked circuits,
based on the Leiserson-Saxe approach [1], e.g. [2, 3, 4].
Of these only TIM [3] provides a method of minarea re-
timing. The problem is formulated as a linear program
(LP) similar to the one in [1]. Due to the transparent
nature of the latches the number of constraints in this
LP is extremely large, almost jGj2

2 for a circuit with
jGj gates. This places heavy time and space require-
ments on minarea retiming and TIM is not capable
of retiming large circuits for minimum area. The ob-
jective of this work, called Minaret-L, is to be able to
retime level-clocked circuits with tens of thousands of
gates in reasonable time.

An e�cient method for minarea retiming of edge-
triggered circuits was presented in [5]. This was
achieved by utilizing the observation that in edge-
triggered circuits, if a sub-path satis�es the timing
constraints, then any path containing this sub-path
will also satisfy the timing constraints. Unfortunately
this is not true in level-clocked circuits, because of the
the transparent nature of latches. Therefore the tech-
niques of [5] cannot be applied to level-clocked circuits.

The ASTRA algorithm in [6], presented a di�er-
ent approach to retiming edge-triggered circuits utiliz-
ing the retiming-skew relation. This relation was ex-
tended to level-clocked circuits in [7], which presented
an algorithm for minperiod retiming of level-clocked
circuits under a general multi-phase clocking scheme.
Both of these methods are capable of minperiod re-
timing of large circuits but do not address the harder
problem of minarea retiming.

The work in [8] presented e�cient techniques to
obtain bounds on the variables of the minarea LP for
edge-triggered circuits. It then used these bounds to
further reduce the size of the LP and the time required

1

for generating the LP. Utilizing the retiming-skew re-
lation for level-clocked circuits from [7], bounds on the
variables of the minarea LP are obtained in this work,
along the lines of [8]. However due to the transpar-
ent nature of latches, unlike edge-triggered circuits,
the techniques of [8] cannot be used to reduce the
time required to generate the LP in level-clocked cir-
cuits. This presents a major hurdle in retiming large
level-clocked circuits for minimum area, because in
the absence of any e�ciency-enhancing technique, the
minarea LP cannot be generated in a reasonable time.
This work also presents new techniques for reducing
the time taken to generate the minarea LP in level-
clocked circuits.

The rest of the paper is organized as follows: Sec-
tion 2 presents the required background, followed by
minarea retiming method of TIM [3] in Section 3. We
then present our e�cient minarea retiming method in
Section 4. Section 5 presents experimental results, and
Section 6 concludes the paper.

2 Background
2.1 The Clock Model

As in [3] a k-phase clock is a set of k periodic sig-
nals � = h�1;
1; �2;
2; : : : �k;
ki, where �i is the ac-
tive duration of phase i and
i is the gap between
the falling edge of phase i and the rising edge of
phase (i + 1). We denote the duration of phase i by
�i = �i+
i. We overload the symbol � to also denote
the clock period � =

Pk

i=1 �i. A clocking scheme is
symmetric if all phases have the same duration and
active intervals, i.e. if �i = � 8i = 1; � � � ; k and

i =
 8i = 1; � � � ; k. Thus for a k phase symmet-
ric clocking scheme � = k � � and � = � +
. In this
work we consider only symmetric clocking schemes.

2.2 The retiming model

As in [1], a sequential circuit is represented by a
directed graph, G(V;E), where each vertex v corre-
sponds to a gate, and a directed edge euv represents a
connection from the output of gate u to the input of
gate v, through zero or more latches. Each vertex has
a �xed delay d(v). Each edge has associated with it a
weight w(euv) and a width �(eij). The weight is the
number of latches between the output of gate u and
the input of gate v. The width of an edge is the area
cost of placing one latch on it.

A retiming is a labeling of the vertices r : V ! Z,
where Z is the set of integers. The retiming label r(v)
for a vertex v represents the number of latches moved
from its output towards its inputs.

The weight of an edge euv after retiming, denoted
by wr(euv) is given by wr(euv) = w(euv)+r(v)�r(u).
One may de�ne the weight w(p) of any path p : u; v,

originating at vertex u and terminating at vertex v,
as the sum of the weights on the edges on p, and its
delay d(p) as the sum of the delays of the vertices on
p. Similarly wr(p) is the sum of the weights on the
edges on p after retiming, and is given by

wr(p) = w(p) + r(v) � r(u) (1)

2.3 Alternate view of retiming

In [7] the term Global Departure Time (GDT) is
de�ned for each latch as the latest departure time of
data signal from that latch, with reference to the ar-
rival time at the primary inputs in a global time frame.
GDT is a very approximate analogy of \skew" used for
edge-triggered circuits in [6]. A relation between GDT
and retiming, similar to the one between skew and re-
timing for edge-triggered circuits [6] is also presented
in [7]. This relation is used to solve the minperiod re-
timing problem for level-clocked circuits, by mapping
it to the clock skew optimization problem. The GDT's
so obtained are then used to get the actual retiming.
Moving a latch from the inputs of a gate to its outputs
is equivalent to increasing the GDT of that latch by
an amount equal to the delay of the gate. Likewise,
a motion from outputs to the inputs is equivalent to
reducing the GDT by the gate delay. A value of GDT
between �� and 0 is considered allowable, since it cor-
responds to zero skew. The GDT's are reduced by
relocating latches across gates obtaining the retimed
circuit.

3 Minarea Retiming
In this section we present the method used in TIM

[3] for minarea retiming of level-clocked circuits. The
(constrained) minarea retiming problem is formulated
as an LP. The objective function represents the num-
ber of latches in the circuit and the constraints ensure
that the retimed circuit satis�es the target clock pe-
riod. We will �rst derive these constraints and then
present the LP.

3.1 Conditions for proper clocking

For a level-clocked circuit to be properly clocked
the delay between any two gates should be less than
the time available [4], i.e.,

d(p) � (wr(p) + 1) � � + � (2)

After substituting Equation 1, this constraint can be
rewritten as

r(u) � r(v) � w(p)�
d(p)

�
+ 1 +

�

�
(3)

Clearly if there are multiple paths from u to v only
the tightest constraint (minimum right hand side)

is irredundant. We denote the minimum value of
w(p) � d(p)

�
over all paths from u to v by �(u; v),

i.e.,

�(u; v) = min
8p:u;v

�
w(p)�

d(p)

�

�
(4)

Let us de�ne �(u; v) as

�(u; v) =

�
�(u; v) +

�

�
+ 1

�
(5)

Since the retiming variables r(u) and r(v) are integers,
we can rewrite Equation (3) as

r(u)� r(v) � �(u; v) (6)

3.2 The minarea LP

The minarea retiming problem for a target period
� can be formulated as the following LP [3]:

min
X
v2(V)

2
4
0
@ X

8j2FI(v)

�(ejv)�
X

8j2FO(v)

�(evj)

1
A � r(v)

3
5

subject to r(u) � r(v) � w(euv) 8euv 2 E (7)

r(u)� r(v) � �(u; v) 8u; v 9 p : u; v

�1 � r(u) � 1 8v 2 V

The signi�cance of the objective function and the con-
straints is as follows.

� The objective function represents the number of
latches added to the retimed circuit in relation to
the original circuit, taking into account maximal
latch sharing [1] at the output of a gate. �(eij)
is the cost of a latch on edge eij .Hence the cost
coe�cient of gate v gives the number of latches
added to the circuit if it is retimed by one unit.

� The �rst set of constraints ensures that the weight
euv of each edge (i.e., the number of latches be-
tween the output of gate u and the input of gate
v) after retiming is nonnegative. We will refer to
this set as the circuit constraint set Cc.

� The second set of constraints ensures that after
retiming, every path satis�es the proper timing
constraint of Equation (2). This set, being de-
pendent on the clock period, is referred to as the
period constraint set Cp. Notice that for every
gate we have a period constraint to every other
gate reachable from itself, therefore the number

of period constraints is almost jGj2

2 for a circuit
with jGj gates.

As in [1] this LP is also the dual of a minimum cost
network
ow problem.

4 E�cient Minarea Retiming
The minarea retiming method presented in Sec-

tion 3 is unable to handle large circuits. Firstly, the
size of the LP in Equation (7) is very large, and sec-
ondly, the time required to generate the period con-
straints is very high. In this section, we will present
techniques for reducing the size of the minarea LP,
and for e�ciently generating the period constraints.
We use an e�cient network simplex algorithm from
[8] to solve this LP. This algorithm could solve a LP
with 70,000 variables and 17 million constraints in un-
der 9 minutes.

4.1 Reduced minarea LP

The work in [8] modi�ed the methods in [6] to ob-
tain bounds on the r variables for edge-triggered cir-
cuits. These bounds where then used to reduce the
size of the minarea LP. In this work we modify the
methods in [7] along the same lines to obtain bounds
on the r variables for level-clocked circuits of the form
Lv � r(v) � Uv. The variable set V of the LP in
Equation (7) can now be reduced to V 0 � V the re-
duced variable set, where V 0 = fv 2 V jUv 6= Lvg
The circuit constraint set (Cc) and the period circuit
constraint set (Cp) are also reduced to obtain the re-
duced circuit constraint set C 0

c � Cc, and the reduced
period constraint set C 0

p � Cp. This reduction in the
constraint sets is obtained by dropping redundant con-
straints identi�ed by the following rule from [8].

Rule 1 Any constraint (i; j) of the form r(i)�r(j) �
cij is redundant in the presence of the bounds and can
be dropped if Ui � Lj � cij .

This gives us the following reduced LP which has
the same optimal solution as the LP in Equation (7):

min
X
v2V 0

2
4
0
@ X

8j2FI(v)

�(ejv)�
X

8j2FO(v)

�(evj)

1
A � r(v)

3
5

(8)

subject to r(u) � r(v) � w(euv) 8(u; v) 2 C 0
c

r(u) � r(v) � �(u; v) 8(u; v) 2 C 0
p

Lu � r(u) � Uu 8u 2 V 0

4.2 Generating the constraints

A major portion of the computational e�ort in re-
timing a level-clocked circuit for minimum area is
spent in generating the period constraints set. We
now describe e�cient techniques for generating this
constraint set.

The generation of period constraints requires com-
putation of the � values (see Equation 4 for all-
pairs of gates in the circuit. These � values can

be obtained by re-weighting each edge eij with

w0(eij) = w(eij) �
d(i)
�

and computing all-pair short-
est paths. We use Johnson's algorithm [9] which has
O(jV j) memory requirement, since O(jV j2) memory is
not practical for large circuits. Johnson's algorithm
�rst re-weights all edges to ensure nonnegative edge
weights. The shortest paths between all pair of gates
can then be computed by running Dijkstra's algorithm
for each gate as source.

Let us consider a particular run of Dijkstra's algo-
rithm with gate a as the source, and let b be a gate
to which the shortest path �(a; b) has been obtained.
Let c be any other gate in the circuit, reachable from
gate b.

By de�nition, r(a)� r(b) � Ua � Lb

If Ua � Lb � �(a; b),

then r(a)� r(b) � �(a; b). (9)

From Equation (5) and Equation (6)

r(b)� r(c) � �(b; c) +
�

�
+ 1,

which when combined with Equation (9) gives

r(a) � r(c) � �(a; b) + �(b; c) +
�

�
+ 1 (10)

If the shortest path from gate a to gate c does not
go through gate b then �(a; b) + �(b; c) � �(a; c) and
we do not need to process the fanouts of gate b to
obtain �(a; c). On the other hand, if the shortest path
from gate a to gate c is indeed through gate b then
�(a; b) + �(b; c) = �(a; c) and Equation (10) is same as
the period constraint r(a) � r(c) � �(a; c). If Ua �
Lb � �(a; b) then this period constraint is redundant.
In either case we need not process the fanouts of gate
b. Since this is true for any c, reachable from gate b,
we get the following rule.

Rule 2 If during the shortest path calculations from
source a using the Dijkstra's algorithm, for any gate b
we have Ua � Lb � �(a; b), we do not need to process
the fanouts of gate b.

Notice that unlike TIM, our approach does not
compute the full (all-pairs) shortest path matrix, be-
cause of the pruning provided by Rule 2.

To increase the e�ciency of period constraint gen-
eration further, we reuse some of the computations
performed in obtaining the � values. The idea is moti-
vated by the fact that in many practical circuits a high
percentage of gates are single-fanout gates. Consider
any such gate a with the single fanout b. For gate a,

the shortest path to every other gate must go through
gate b, which implies that �(a; c) = w0(ea;b) + �(b; c).
Therefore we can obtain the shortest paths from gate
a by simply adding w0(ea;b) to the shortest paths from
gate b. Thus if we somehow ensure that shortest paths
from gate b are obtained before those from gate a, we
will save one complete execution of Dijkstra's algo-
rithm (for gate a as source). We perform a prepro-
cessing step to ensure that we process gate b before
gate a. We found that we could obtain up to 50%
savings in the time required to generate the period
constraints using this technique.

4.3 Additional constraint reduction

Due to the transparent nature of level-sensitive
latches the constraint set for level-clocked circuits is
much larger than for the corresponding edge-triggered
circuit. We now describe some e�cient rules for re-
ducing the period constraint set C 0

p further.
Consider three gates a, b and c, such that gate b

lies on the path from gate a to gate c.
If gate b is a fanin of gate c then we have

C1 : r(a) � r(b) � �(a; b)

C2 : r(b) � r(c) � w(ebc)

C3 : r(a) � r(c) � �(a; c)

If �(a; b) + w(ebc) � �(a; c) then constraint C3 is
redundant and can be dropped. This leads us to the
following rule

Rule 3 If b and c are two gates reachable from gate
a, such that gate b is a fanin of gate c and �(a; b) +
w(ebc) � �(a; c) then the period constraint from gate
a to gate c is redundant and can be dropped.

If gate b is a fanout of gate a then we have

C4 : r(a) � r(b) � w(eab)

C5 : r(b) � r(c) � �(b; c)

C6 : r(a) � r(c) � �(a; c)

If w(eab) + �(b; c) � �(a; c) then constraint C6 is
redundant and can be dropped. This leads us to the
following rule.

Rule 4 If gate b is a fanout of gate a and gate c

is some gate reachable from gate a, then if w(eab) +
�(b; c) � �(a; c) then the period constraint from gate
a to gate c is redundant and can be dropped.

Rule 1 and Rule 2 prune the constraints because
the information in the bounds on r variables makes
some constraints redundant. Rule 3 and Rule 4 on
the other hand prune the constraints because of the

discrete nature of the � values. These rules can be
generalized to include implication by more than two
constraints; these generalized rules will, however, be
computationally expensive to apply. Rules 3 and 4
on the other hand, can be e�ciently applied, to drop
redundant constraints as they are generated. This is
because we generate the period constraints from one
gate (say gate a) at a time, therefore both �(a; b) and
�(a; c) are available in the same iteration, and Rule 3
can be e�ciently applied. Because of the reuse of �
computations, if gate b is the fanout of a single-fanout
gate a we have both �(a; c) and �(b; c) available at
the same time and Rule 4 can be e�ciently applied.

5 Experimental Results
We present results for the larger circuits in ISCAS-

89 benchmark suite, and some other large circuits
(myex1 through myex3) created by combining ISCAS-
89 circuits using our approach, Minaret-L. As in [3],
to obtain level-clocked circuits, we replaced each edge-
triggered FF in the ISCAS-89 circuit by two level-
sensitive latches.

In Table 1 we show for each circuit, the number of
gates jGj, the number of latches, the problem size, and
the execution time. The circuits are retimed for the
minimum possible period, and the number of latches
for both minperiod retiming [7] (initial) and minarea
retiming by Minaret-L (for the same clock period) ob-
tained after taking into account the maximum register
sharing [1] are shown. For almost all circuits minarea
retiming reduces the number of latches in the circuit
by a factor of two to three as compared to minperiod
retiming, even though both retime the circuit for the
same clock period. This underscores the importance
of minarea retiming.

We compare the size of the LP in Minaret-L given
in Equation (8) and the original LP in Equation (7)
by presenting the number of variables and constraints
in both, and the percentage reduction as Rv and Rc

respectively. It can be seen that up to three orders of
magnitude reduction is obtained in the number of con-
straints by using Minaret-L. The number of unpruned
constraints grow at the rate of O(jGj2) and our prun-
ing techniques reduce this rate of growth signi�cantly.

The CPU time shown is on a DEC AXP system
3000/900 workstation with 256M RAM, and includes
the time spent in generating the bounds, generating
the LP and solving it. The time required to generate
the LP dominates the total execution time signifying
the importance of the e�ciency enhancing techniques
of Section 4.2. Although the reduction in LP size ob-
tained by the bounds is signi�cant, the time spent in
obtaining them was an insigni�cant fraction of the to-

tal CPU time (e.g., 15 seconds for myex3). The small
execution time of Minaret-L highlights the e�ective-
ness of our techniques. Minaret-L can retime large
level-clocked circuit for minimum area in time compa-
rable to that required for retiming edge-triggered cir-
cuits, thus bringing the techniques for retiming level-
clocked circuits at par with the state of art in retiming
techniques for edge-triggered circuits.

Figure 1 to Figure 4 show area-delay tradeo� curves
obtained from ASTRA [7] and Minaret-L, for some
ISCAS89 circuits. Since ASTRA pays no attention
to minimizing the number of latches, there is no rea-
son for the area-delay curve to be monotonic. The
Minaret-L curve on the other hand must, by de�ni-
tion, be monotonic.

6 Conclusion

A fast algorithm for minarea retiming of large
level-clocked circuits has been presented. The entire
ISCAS-89 benchmark suite could be retimed in min-
utes. This work uni�es the two approaches to retiming
of level-clocked circuits, i.e., the TIM [3] and the AS-
TRA [7] approaches. This uni�cation together with
the other techniques (Rule 2, reuse of � computation,
Rule 3 and Rule 4) leads to an e�cient method of gen-
erating a much smaller LP, with two to three orders
of magnitude less constraints. It makes it feasible to
retime large level-clocked circuits (over 56,000 gates)
for minimum area in very reasonable time (under 1.5
hours). To put this in perspective, the largest level-
clocked circuit for which minarea retiming results had
been published in the past had less than 400 gates [3].

References

[1] C. E. Leiserson and J. B. Saxe, \Retiming syn-
chronous circuitry," Algorithmica, vol. 6, pp. 5{35,
1991.

[2] N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli, \Retiming of circuits with single phase
transparent latches," in Proceedings of the IEEE
International Conference on Computer Design,
pp. 86{89, 1991.

[3] M. C. Papaefthymiou and K. H. Randall, \Tim:
A timing package for two-phase, level-clocked cir-
cuitry," in Proceedings of the ACM/IEEE Design
Automation Conference, pp. 497{502, 1993.

[4] B. Lockyear and C. Ebeling, \Optimal retiming of
level-clocked circuits using symmetric clock sched-
ules," IEEE Transactions on Computer-Aided De-
sign, vol. 13, pp. 1097{1109, Sept. 1994.

[5] N. Shenoy and R. Rudell, \E�cient im-
plementation of retiming," in Proceedings of
the IEEE/ACM International Conference on
Computer-Aided Design, pp. 226{233, 1994.

[6] S. S. Sapatnekar and R. B. Deokar, \Utilizing the
retiming skew equivalence in a practical algorithm
for retiming large circuits," IEEE Transactions on
Computer-Aided Design, vol. 15, pp. 1237{1248,
Oct. 1996.

[7] N. Maheshwari and S. S. Sapatnekar, \A practical
algorithm for retiming level-clocked circuits," in
Proceedings of the IEEE International Conference
on Computer Design, pp. 440{445, 1996.

[8] N. Maheshwari and S. S. Sapatnekar, \An im-
proved algorithm for minimum-area retiming," in
Proceedings of the ACM/IEEE Design Automation
Conference, pp. 2{7, 1997.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms. New York, NY:
McGraw-Hill, 1990.

Table 1: Minarea retiming by Minaret-L

Circuit jGj # Latches # Variables # Constraints CPU Time
Minarea Initial Minaret-L Original Rv Minaret-L Original Rc

s3384 1,685 337 638 2,006 2,166 7.39% 55,980 761,365 92.65% 2.56s

s4863 2,342 234 473 2,706 2,995 9.65% 72,451 5,481,911 98.68% 5.36s

s5378 2,779 286 480 2,970 3,664 18.94% 31,765 4,595,645 99.31% 3.22s

s6669 3,080 542 960 3,735 4,100 8.90% 20,841 1,923,524 98.92% 6.17s

s13207.1 7,791 890 1,795 7,656 9,180 16.60% 55,395 22,908,799 99.76% 18.61s

s15850.1 9,617 1,041 1,777 9,013 11,332 20.46% 69,142 39,493,334 99.83% 45.82s

s35932 16,065 3,523 4,144 20,264 21,716 6.69% 189,068 130,080,328 99.85% 1m:7.26s

s38584.1 19,253 2,852 7,558 20,590 23,390 11.97% 127,488 293,482,797 99.96% 1m:57.52s

s38417 21,370 2,766 4,938 25,735 25,923 0.73% 2,446,798 149,492,588 98.36% 6m:26.99s

myex1 28,946 3,891 9,065 30,489 34,417 11.41% 154,603 504,055,977 99.97% 6m:37.48s

myex2 40,661 5,551 13,820 48,560 49,214 1.33% 3,638,182 819,701,299 99.56% 31m:16.52s

myex3 56,761 9,041 17,019 70,000 70,414 0.59% 8,207,036 1,624,913,333 99.50% 1h:19m:43.07s

0

50

100

150

200

250

300

350

400

450

500

50 60 70 80 90 100 110 120 130

#

L
a
t
c
h
e
s

Clock Period

Area-Delay Tradeoff of s4863

Minaret-L
ASTRA

Figure 1: Area-Delay Tradeo� of s4863

0

200

400

600

800

1000

40 60 80 100 120 140 160 180

#

L
a
t
c
h
e
s

Clock Period

Area-Delay Tradeoff of s6669

Minaret-L
ASTRA

Figure 2: Area-Delay Tradeo� of s6669

0

500

1000

1500

2000

2500

140 145 150 155 160 165 170 175 180 185 190

#

L
a
t
c
h
e
s

Clock Period

Area-Delay Tradeoff of s15850.1

Minaret-L
ASTRA

Figure 3: Area-Delay Tradeo� of s15850.1

0

1000

2000

3000

4000

5000

6000

50 60 70 80 90 100

#

L
a
t
c
h
e
s

Clock Period

Area-Delay Tradeoff of s38417

Minaret-L
ASTRA

Figure 4: Area-Delay Tradeo� of s38417

