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Abstract—Automated subcircuit identification and annotation enables
the creation of hierarchical representations of analog netlists, and can
facilitate a variety of design automation tasks such as circuit layout and
optimization. Subcircuit identification must navigate the numerous alter-
native structures that can implement any analog function, but traditional
graph-based methods cannot easily identify the large number of such
structural variants. The novel approach in this paper is based on the use
of a trained graph convolutional neural network (GCN) that identifies
netlist elements for circuit blocks at upper levels of the design hierarchy.
Structures at lower levels of hierarchy are identified using graph-based
algorithms. The proposed recognition scheme organically detects layout
constraints, such as symmetry and matching, whose identification is
essential for high-quality hierarchical layout. The subcircuit identification
method demonstrates a high degree of accuracy over a wide range of
analog designs, successfully identifies larger circuits that contain sub-
blocks such as OTAs, LNAs, mixers, oscillators, and band-pass filters,
and provides hierarchical decompositions of such circuits.

I. INTRODUCTION

Analog layout automation has been an active research topic for several
decades, but prior research is largely applicable only to a narrow class
of circuits with specific topologies. Real-world circuits appear in a
large number of variants even for a single functionality, e.g., between
textbooks [1] and research papers, there are well over 100 widely
used operational transconductor amplifier (OTA) topologies of various
types (e.g., telescopic, folded cascode, Miller-compensated).

A prerequisite for truly generalizable analog automation is to
recognize all variants – including those that have not even been
designed to date. This capability is crucial, because analog designers
exercise such variants as a “secret sauce” for enhanced performance.
Prior methods are library-based [2], [3], matching a circuit to
prespecified templates, and requiring an enumeration of possible
topologies in an exhaustive database, or knowledge-based [4], [5],
embedding rules for recognizing circuits; however, the rules must
come from an expert designer who may struggle to provide a list
(many rules are intuitively ingrained rather than explicitly stated).
Moreover, it is difficult to capture rules for all variants.

Both methods involve prohibitive costs in terms of designer input,
and cannot be easily adapted to new topology variants. In contrast, an
experienced expert designer can examine a large circuit and recognize
substructures of known blocks; minor variations do not affect this
judgment. For instance, an OTA circuit consists of a bias network, a
current mirror, a differential pair, a differential load, and an output
stage: one look at a schematic is enough for an expert to decipher
these stages. The inability of conventional algorithms to replicate this
has limited the industrial application of analog design automation.

We seek to build a foundation for a generalizable analog design
methodology with no human in loop [6]. At the core of such a
methodology is the ability to recognize blocks in a circuit, at the
level of an expert human designer. We draw inspiration from machine
learning (ML) methods that are adept at recognizing variants of a
target, and have been widely used for recognizing images. However,

This work is supported in part by the DARPA IDEA program, as part of the
ALIGN project, under SPAWAR Contract N660011824048.

unlike images, a netlist cannot be abstracted into a planar 2D graph,
and convolutional neural networks (CNNs) cannot be used directly.

Our approach inputs a transistor-level netlist, aggregates elements
that implement a set of functionalities, and outputs a circuit hierarchy.
We abstract the circuit netlist as a graph and leverage recent advances
in the field of graph convolutional networks (GCNs) [7]–[9] to perform
approximate subgraph isomorphism, classifying circuit elements into
classes, depending on which subcircuit they belong to. Once smaller
subcircuits are identified, we use graph-based approaches on their
subgraphs and identify basic structures (“primitives”) that compose
these blocks. Primitives (e.g., differential pairs, current mirrors) contain
a small number of transistors/passives and do not vary significantly
across circuits and can be handled using graph-based methods. In
contrast, the larger blocks (OTAs, low noise amplifiers (LNAs), mixers,
etc.) may appear in a number of variants, and can benefit from using
trained GCNs, which can handle variants naturally. A GCN learns
the rules during training, thus mimicking the human expert.

Prior work on using ML for subcircuit identification includes a
compiler-inspired learning approach in [10] that applies recursive
compositions of prespecified rules to recognize structures from a
netlist, but inherits the limitations of rule-based methods, and a CNN-
based method [11] that translates a matrix embedding of a circuit
to a set of templates. Both works operate on small structures with
< 50 transistors, and face challenges in scaling to larger netlists; our
method is demonstrated on blocks with > 500 transistors.

Our extracted circuit hierarchy can be used in various ways: for
automated layout using hierarchical block assembly using the identified
hierarchies; for automated constraint annotation (e.g., identifying
symmetry, matching, common centroid); or constraint budgeting to
each block while meeting system-level constraints. This paper focuses
on algorithms for generating circuit hierarchies and presents a use
case that illustrates how these hierarchies can service the above tasks.

II. HIERARCHICAL RECOGNITION

A. Representing circuits hierarchically

Our recognition scheme creates a hierarchical representation of the
netlist, identifying smaller structures composed into larger structures:
(1) Elements, i.e., transistors (NMOS/PMOS) and passives (resistors,
capacitors, inductors), lie at the lowest level. (2) Primitives, composed
from a few elements form basic building blocks of a circuit. These
are typically simple structures, largely invariant across circuits, e.g.,
differential pairs, current mirrors. (3) Sub-blocks, form multiple levels
of the design hierarchy (i.e., some sub-blocks could be contained
in others), and are composed of primitives or other sub-blocks, and
contribute to building larger systems. Examples of sub-blocks include
operational transconductance amplifiers (OTAs), analog-to-digital
converters (ADCs), voltage-controlled oscillators (VCOs), equalizers,
and clock/data recovery (CDR) circuits. Systems lie at the uppermost
level of the hierarchy, and may correspond to structures such as RF
transceivers, DC-DC converters, and a high-speed SerDes system. The
effort reported in this paper goes up to the level of sub-blocks.
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Figure 1: Multiple levels of abstraction in a sample-and-hold schematic.

Fig. 1 decomposes a sample-and-hold circuit at the schematic
level and shows the corresponding hierarchy tree. The uppermost
level of hierarchy is the sample-and-hold switched-capacitor circuit
block (SH-SC). Below this are the switched capacitor circuit and
the OTA (shaded in Fig. 1(a)). These are further decomposed into
smaller structures (Fig. 1(c)). Note that the decomposition of the
high level OTA sub-block (marked as “Big OTA”) contains another
simpler “Little OTA” sub-block within the current reference, while
other sub-blocks are primitives: the PMOS current mirror (CM-P),
PMOS differential pair (DP-P), NMOS common-source amplifier (CS-
Amp-N), common-mode feedback (CMF), current reference (CR-N),
voltage reference (VR), and various passives (R, C, CC-RC).

Our approach builds multiple levels of hierarchy, with potentially
multiple level of sub-blocks in the hierarchy tree. Our recognition
algorithm processes primitives and sub-blocks hierarchically to
recognize an entire circuit of this type, and build its hierarchy tree.

B. Outline of the approach

Our input is a SPICE circuit netlist, and a netlist for a library of
primitive templates. The overall flow of our approach is:
Netlist flattening: During preprocessing, we flatten the input netlist
of the system to bypass designer-specified hierarchies, which are
highly dependent on the choices of individual designers: different
design houses, or even different designers within the same house, may
create different hierarchy styles. Flattening allows our approach to
be independent of designer idiosyncrasies, and allows us to integrate
design constraints into the recognized blocks in a consistent manner,
e.g., it is common to place bias networks in a different hierarchy
than an OTA, but this splits current mirror functionality across blocks,
making recognition difficult. Beyond consistency, it should be noted
that hierarchies that are logical to the netlist designer may not be the
most logical for annotation or layout optimization, e.g., passives and
switches in a DAC logically lie within the same hierarchy, but the
passives should be grouped together in a common-centroid layout,
separately from the noisy switches. Preprocessing also identifies netlist
features that help performance but do not affect functionality (and
can be disregarded during recognition), e.g., parallel transistors for
sizing, series transistors for large transistor lengths, dummies, decaps.
GCN-based recognition: We create a graph representation of the
flattened netlist and identify sub-blocks using a GCN-based approach
(Section III) for approximate subgraph isomorphism. The output of
this stage annotates nodes of the netlist as being part of specific sub-

blocks. Note that it is possible for graph vertices (e.g., a net that is the
output of one sub-block and the input of another) to belong to multiple
sub-blocks. At this level of abstraction there is substantial scope for
variation in the way designers build circuits. The GCN recognizes
features at various levels and identifies subcircuits corresponding to
known functionalities, even under design style variations.
Primitive annotation: We take each sub-block and recursively
identify lower-level blocks primitives within it. At the lowest level,
primitives are detected using an exact graph isomorphism approach
rather than a GCN: the element-level structure of primitives is invariant
across circuits and we may work with a library of patterns that can
be recognized using exact subgraph isomorphism (Section IV).
Post-processing: After primitive annotation, we use postprocessing to
determine which primitives are an integral part of a specific unit, and
which are auxiliary to the unit (e.g., input buffers) and can be separated.
This step is necessary because any neural network based approach
can never be 100% accurate under a limited training set. Even with
a rich training set, we run the risk of overfitting if we attempt to
capture every possible detail in every sub-block variant. We show
in Section V how simple post-processing can enhance recognition
accuracy to very high levels (100% for all of our testcases).

Each recognition step is helpful in providing a set of substructures
that can be transmitted to a placement/routing algorithm to be
independently placed. Moreover, after recognizing a substructure, it
is easy to annotate it with any geometric constraints (e.g., symmetry,
matching, or common centroid) that must be honored by layout tools.

C. Graph representation of the netlist

As in [12], we represent an element-level circuit netlist as an undirected
bipartite graph G(V,E). The set of vertices V can be partitioned into
two subsets, Ve, corresponding to the elements (transistors/passives)
in the netlist, and Vn, the set of nets. The edge set E consists of
edges between the vertex corresponding to each element to the nets
connected to its terminals. There are no edges between elements of
Ve or elements of Vn, and therefore the graph is bipartite.

Fig. 2 illustrates an example of a current mirror primitive with two
transistors, M0 and M1, and the graph corresponding to this structure,
where blue vertices represent Ve and pink vertices represent Vn. Each
edge connected to a transistor is assigned a three-bit label, lglsld,
where lg = 1 if the edge from the transistor vertex connects to the
net vertex through its gate, and is 0 otherwise; similarly, ls (ld) are
1 if the transistor connects to the net through its source (drain), and
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Figure 2: (a) An NMOS current mirror primitive, CM-N(2), with two
transistors. (b) Its representation as a bipartite graph.

Current mirror

Differential OTA
Differential OTA Graph

Labeled Graph

M0

100

010

M1
001

S

Vbp

Vinp Vinn

VoutpVoutn
Id

Load

Diff.
pair

Current 
Mirror 

vdd!

Vbp

Voutp

Voutn

Vinn

Vinp

n1

Vbn

gnd!

Id

M5

M4

M3

M2

M1

M0

D2

D1

S
010

101

Vbn n1

M0 M1

D1 D2

Current mirror

Differential OTA
Differential OTA Graph

Labeled Graph

M0

100

010

M1
001

S

Vbp

Vinp Vinn

VoutpVoutn
Id

Load

Diff.
pair

Current 
Mirror 

vdd!

Vbp

Voutp

Voutn

Vinn

Vinp

n1

Vbn

gnd!

Id

M5

M4

M3

M2

M1

M0

D2

D1

S
010

101

Vbn

M0 M1

D1 D2

(a)

Current mirror

Differential OTA
Differential OTA Graph

Labeled Graph

M0

100

010

M1
001

S

Vbp

Vinp Vinn

VoutpVoutn
Id

Load

Diff.
pair

Current 
Mirror 

vdd!

Vbp

Voutp

Voutn

Vinn

Vinp

n1

Vbn

gnd!

Id

M5

M4

M3

M2

M1

M0

D2

D1

S
010

101

Vbn n1

M0 M1

D1 D2

Current mirror

Differential OTA
Differential OTA Graph

Labeled Graph

M0

100

010

M1
001

S

Vbp

Vinp Vinn

VoutpVoutn
Id

Load

Diff.
pair

Current 
Mirror 

vdd!

Vbp

Voutp

Voutn

Vinn

Vinp

n1

Vbn

gnd!

Id

M5

M4

M3

M2

M1

M0

D2

D1

S
010

101

Vbn

M0 M1

D1 D2

(b)

Figure 3: (a) A differential OTA (for simplicity, body connections are
not shown). (b) Its bipartite graph, showing the subgraph that can be
recognized as a current mirror (for clarity, edge labels are not shown).

is 0 otherwise. Edges connected to passives have no labels. Similar
approaches can be used for larger structures: Fig. 3 shows a differential
OTA and its bipartite graph (without edge labels, for simplicity).

III. GRAPH CONVOLUTIONAL NETWORKS

A GCN can achieve good separation between the feature represen-
tations of vertices in a graph by using the graph structure. The
notion of convolutional neural networks (CNNs) is well established
in image recognition. An image is an arrangement of pixels that
can be represented by a graph where the vertices correspond to
pixels connected to neighboring pixel vertices by an edge. The graph
therefore has a very local and structured set of connections. The
natural embedding of the graph in the plane is the image itself: a filter
can identify features in an image simply by performing a convolution
over repeated windows of the image.

General graphs have no unique embedding. A GCN performs
convolutions that are independent of the embedding of the graph
in the plane. Various types of GCNs have been proposed [7]–[9], [13],
but they all share a framework that requires three fundamental steps:
(i) the application of localized convolutional filters on graphs, (ii) a
graph coarsening procedure that groups together similar vertices and
(iii) a graph pooling operation for graph reduction. GCN techniques
primarily differ in the nature of the filter that is used for convolution.

A. Spectral GCN filters

A major class of GCNs is based on spectral methods [8], [9], which
have been found to be extremely effective and therefore form the basis
of the GCN used in our work. Spectral operators are independent
of the graph embedding. Spectral graph theory creates a convolution
operator using Fourier analysis. A spectral representation in the Fourier
space of a graph is enabled through the graph Laplacian representation.
The Laplacian L ∈ Rn×n of an unweighted graph G(V,E) with n
vertices is often defined as D−A where A ∈ Rn×n is the adjacency
matrix of the graph and D ∈ Rn×n is a diagonal matrix whose
diagonal entry corresponds to the degrees of all vertices, i.e., the row

sums of the adjacency matrix. We will work with the normalized
Laplacian representation,

L = I −D−1/2AD−1/2 (1)

The matrix L is symmetric, real, and positive definite (i.e., it has real
nonnegative eigenvalues, and these eigenvalues are interpreted as the
frequencies of the graph).

The normalized graph Laplacian can be eigendecomposed as L =
UΛUT , with an eigenvalue matrix Λ ∈ Rn×n and a Fourier basis U
corresponding to the eigenvector matrix. The graph Fourier transform
of a signal x ∈ Rn is given by x̃ = UTx ∈ Rn, and its inverse
as x = Ux̃ ∈ Rn. This transform enables operations such as graph
filtering, which are vital to the definition of a GCN.

In this work, we use the approach proposed by [8], which creates
spectral filters around a vertex that function within a region of radius
K of (i.e., up to K edges away from) the vertex. A convolution
operator on the graph is defined as

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx (2)

where gθ is a filtering operator that acts on an input signal x to
produce an output signal y. In this case, the signal corresponds to a
region of the graph around a specific vertex.

However, in general, a spectral domain filter may not be localized
and could be computationally expensive to compute, with O(n2)
operations due to the multiplication with U , even if the eigende-
composition of L is known. Defferrard [8] proposed a solution to
this problem that parameterizes gθ(L) as a polynomial Chebyshev
expansion, which truncates the filter expansion to order of K − 1 as:

gθ(Λ) =
∑K−1
k=0 θkTk(Λ̂) (3)

Here Λ̂ = 2Λ/λmax− In scales and translates the eigenvalues by the
largest eigenvalue, λmax, so that |Λ̂ii| ≤ 1; θ ∈ RK is a vector of
coefficients, and Tk(Λ̂) ∈ Rn×n is a Chebyshev polynomial of order
k. The Chebyshev polynomials are defined as T0(x) = 1, T1(x) = x,

Tk(x) = 2 x Tk−1(x)− Tk−2(x), (4)

Given the K top eigenvalues of L (computed inexpensively using
the Lanczos algorithm), for a graph of bounded degree where the
number of edges is O(n), this polynomial can be evaluated using K
multiplications by a sparse L with a cost of O(Kn)� O(n2).

As a result, Equation (2), which defines the convolution operator
at a graph, can be written as:

y = gθ(L)x =
∑K−1
k=0 θkTk(L̂)x (5)

where L̂ is defined similarly as Λ̂. The truncation to K terms restricts
the filter to operate at most K hops away from each vertex, thus
creating an inexpensive and localized filter.

B. GCN topology for circuit recognition
For the filter is defined in Equation (5), we construct a GCN that
uses multiple convolutional stages consisting of filtering and pool
layers. The GCN topology used in this work is shown in Fig. 4: it
has two convolutional and two pooling layers, which then feed a fully
connected (fc) layer, whose outputs provide the classification results.

The pooling layer combines similar vertices in a graph. Pooling at
multiple levels of the GCN can be interpreted as multilevel clustering.
Since optimal multilevel clustering is NP-hard, it is typical to use a
heuristic method. The GCN used in this work uses the greedy Graclus
heuristic, built on top of the Metis algorithm [14] for multilevel
clustering [15]. The pooling operator is based on a balanced binary tree
that represents each cluster: pooling operations can be performed very
efficiently by traversing the tree. The final layer is a fully connected
layer of size 512 along with softmax function for classification.
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C. Sub-block constraint annotation

The sub-blocks identified by the GCN have known functionalities,
and are typically associated with a set of specific constraints. For
example, an OTA layout should be symmetric about a differential
pair axis; it is vital for an LNA to be placed close to the antenna;
devices in RF blocks such as LNAs and mixers need guard rings
for isolation; oscillators and BPFs must be symmetric about a cross-
coupled transistor pair. Moreover, recognizing the class of circuit
brings forward other important constraints, e.g., if a sub-block is
recognized as part of a wireless circuit, minimization of wire lengths
is important due to the sensitivity to parasitics. Therefore, for every
known category of blocks, it is possible to associate the recognized
block with a set of layout constraints based on its functionality.

IV. ANNOTATING PRIMITIVES

We populate a library of 21 basic primitives that are building blocks
for larger sub-blocks. The primitives are specified as SPICE netlists,
enabling a user to easily add new primitives to the library. For each
primitive, we perform a one-time translation to a graph (Section II-C).

A. Identifying primitives

The problem of identifying primitives within a sub-block corresponds
to performing subgraph isomorphism checks between the sub-block
graph G and pattern graph Gi for every element i of a library of
primitives. For example, the current mirror primitive of Fig. 2(a) is a
subcircuit of the OTA, and correspondingly, the graph of the CM is
a subgraph of the OTA. This is indicated by the blue edges in the
Fig. 3, which match Fig. 2(a) [recall that to reduce clutter, edge labels
are omitted from Fig. 3].

The subgraph isomorphism problem is not known to be NP-
complete, but no polynomial time solution is known for the general
isomorphism problem. This problem is speculated to be in the NPI
class of intermediate difficulty [16]. We use VF2, an established graph
matching algorithm [17]. This method has a worst-case complexity
of Θ(n!n) for the general subgraph isomorphism problem, where
n is the number of vertices, but for our problem where the library
subgraph to be matched has O(1) diameter and O(1) degree, the
complexity is O(n). Specifically, the complexity of VF2 can be
estimated by calculating the computation required for calculating
the next candidate pair P (s) of nodes (p, q) from two graphs and
determining the semantic feasibility of the new pair. Computing the
next pair takes O(N1 + N2) time where N1 and N2 are the sizes
of the original graph and the subgraph. Since N2 = O(1), this
becomes O(N1). The computation of semantic feasibility depends
on the number of edges incident on nodes p and q, which is O(1)
for a bounded degree graph. Thus, for our problem, VF2 has O(n)
complexity.

B. Constraint annotation

The primitive library allows designer annotation of basic constraints.
For instance, a symmetry and matching constraint can be set at the

primitive level for a differential pair (DP) primitive. These geometric
constraints can be transmitted to a layout generator and used to identify
further higher-level symmetries involving groups of primitives or sub-
blocks, e.g., in Fig. 1, the primitives for CM-N and DP in Stage 1
can be annotated with matching/common centroid constraints. When
propagated to the next level, these two may be combined to ensure a
common symmetry axis for both structures.

V. EXPERIMENTAL RESULTS

Our flow is implemented in Python 3.7.0 including TensorFlow for
GCN training/testing, and scikit for sparse matrix computations.

A. GCN training

Training set for the GCN: The training set for the GCN was taken
from several sources, including standard textbooks [1], [18] and papers
in the literature (e.g., [19]–[22]). We chose the SPICE format because
it is the most natural and universal mode in which an analog designer
(who typically does not have experience with graph abstractions) may
use the software can expand the training set. Using these sources, two
labeled datasets for OTA and radio frequency (RF) sub-blocks have
been created with characteristics as listed in Table I. The OTA bias
dataset consists of multiple OTA configuration with appropriate signal
and bias subcircuit labels, while the RF data dataset consists of
different RF circuits, with labels attached to elements that compose
low noise amplifiers (LNAs), mixers and oscillators (OSC).

Datasets # Circuits # Nodes # Labels # Features

OTA bias 624 32152 2 18
RF data 608 21886 3 18

Table I: A description of our training dataset.

The input to the GCN is the circuit graph, G(V,E), in the form
of an adjacency matrix and an n× d matrix of features, where d is
the number of features. Our implementation associates vertices in the
graph with 18 features:

• 12 features that annotate the element type, e.g., whether it is
an NMOS/PMOS transistor, resistor, inductor, capacitor, voltage
reference, current reference, or a hierarchical block (and if so,
the level of hierarchy); whether its value is low, medium, or high
(e.g., this can be used to distinguish a DC-DC converter from a
filter since the former uses much larger capacitors).

• 5 features that denote the type of net – input, output, bias signal,
supply net, ground net – associated with an edge in the graph.

• 1 feature that describes the edges incident on a transistor vertex
(Section II-C).

The task of the GCN is to (a) identify and extract such features,
(b) compose a combination of [possibly approximate versions of]
these features from the training set to infer circuit functionality as
one of several trained classes of circuits, and (c) identify the vertices
(primitives) and edges (nets) that belong to the recognized class.
Architecture and hyperparameter optimization: The training step uses
standard regularization techniques: batch normalization, which ensures
that all input quantities are in the same numerical range so that no
one input dominates the others, and dropout, which randomly ignores
a set of neurons during training to avoid overfitting. The input data
is split into an 80% : 20% ratio for the training set and validation
set, and a random search method is used to optimize hyperparameters
such as the learning rate, regularization, decay rate, and filter size.
Choosing the number of layers: Several versions of the GCN
architecture in Fig. 4 were explored to determine a good topology.
For the activation function, the use of the ReLU and tanh functions
was examined across all layers, and we empirically found that ReLU
provides consistently better results.
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We observed that in going from one layer to two, there is a
noticeable improvement in accuracy, but moving to three layers reduces
the accuracy. This is due to the fact that each graph convolution layer
acts as an approximate aggregation of characteristics of neighboring
nodes, and adding too many layers over-smoothens the output features.
Although some recent methods [13] can use deeper models they require
larger training data – but large training sets of analog circuit are not
easily found in the public domain. Therefore, we choose a two-layer
GCN for our implementation, whose training accuracy is 88.89%, with
a variance of 1.71%, for the OTA bias dataset, and 83.86%, with a
variance of 1.98%, on the RF data dataset. This choice corresponds to
the best accuracy as well as the smallest variance. While this accuracy
is not quite 100%, as stated in Section II-B, it is supplemented by the
effective use of post-processing, which we will be detailed shortly.
The training time is under 2 hours for each dataset.
Impact of filter size: Since the value of K in Eq. (5) indicates the
number of hops away from a vertex that a GCN filter can “see,”
an appropriate choice of filter depends on the radius of the graph
structure that corresponds to each class. Multiple configurations of
filter sizes were tested for the two-layer GCN. Fig. 5 shows that larger
filters provide improved accuracy but this is achieved at a cost of
increased runtimes. The accuracy flattens out beyond a filter size of
about 30. A five-fold cross validation is used to reduce the sensitivity
to data partitioning, and a filter size of 32 was chosen.
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Figure 5: Two-layer GCN accuracy as a function of filter size.

Postprocessing: Rather than placing the full burden of recognition on
the GCN, we use an engineering approach that allows the GCN to
perform a large fraction of the recognition task and then uses a set of
simple postprocessing heuristics to complete the annotation. A simple
set of postprocessing steps is shown to bring the recognition accuracy
to 100% for all evaluated circuits. Our postprocessing operation uses
two classes of heuristics after GCN classification:
Postprocessing I involves graph-based heuristics in which we associate
the nodes that belong to the same channel-connected component
(CCC)1 with a sub-block. Next, we identify all primitives within a
CCC using graph-based approaches as described in Section IV for
extracting primitives within a sub-block. All primitives in a CCC that
are an integral part of a sub-block (e.g., a differential pair in an OTA)
are added to the hierarchy tree at the same level; a primitive that can
be considered a stand-alone unit (e.g., an input buffer for an oscillator,
encountered in our phased array example) is separated and listed as a
stand-alone primitive in the hierarchy tree.
Postprocessing II is related to knowledge that is specific to circuit
classes, and is based on information about connections to input/output
ports. For example, LNA and mixers may have structurally similar
topologies, but can be differentiated because an LNA has an antenna
input, while a mixer has an oscillating input. Such information can

1A channel-connected component is a cluster of transistors connected at the
sources and drains (not counting connections to supply and ground nodes).
It can be identified using simple linear-time graph traversal schemes [23].

be provided by the designer as a separate label on the port, or can be
inferred from the test bench in the input SPICE netlist.2

Together, these heuristics solve all of the misclassifications in
the training and test set for the given class of circuits. Note that
the Postprocessing I heuristic is the same across all designs, while
Postprocessing II requires domain-specific annotation, and may require
new rules as new classes of subcircuits are added.

B. Experimental evaluation

To evaluate the annotation procedure, we apply our procedure on
four different types of test sets, as summarized in Table II. Note
that the switched capacitor filter and phased array testcases are more
complex systems that include OTA and RF sub-blocks, respectively,
and correspond to hand-crafted circuits provided to us by designers.

Test set # Circuits # Nodes GCN accuracy

OTA bias 168 9296 90.5%
Switched capacitor filter 1 57 98.2%
RF data 105 17640 83.64%
Phased array system 1 902 79.8%

Table II: Results of classification on test data
The first test set consists of 168 OTA circuits with different signal

and bias configurations, disjoint from the training data. We utilize
our GCN-based model to extract the subcircuit components of signal
and the bias components of the circuit. The training set for the
OTA annotates the nodes as OTA nodes or bias nodes. Though
the GCN in itself does not to correctly classify all nodes of the
subcircuit, misclassifications are rectified using the postprocessing
steps. Specifically, on this dataset, the GCN achieves an accuracy of
90.5% which is raised to 100% after the “Postprocessing I” step.

The second testcase consist of a composite circuit, a switched
capacitor filter, with an OTA. This is similar to the sample and hold
circuit in Fig. 1(a) and contains 32 devices and 25 nets, including
an OTA sub-block and switched capacitors. The telescopic OTA
subcircuit is used in this circuit is not seen by the training set.
The design netlist is initially flattened, and various features such
as the device type, connectivity information, and sizing are extracted.
During preprocessing in the first step in Section II-B, dummy devices
and stacking of resistors, capacitors, and transistors are ignored (for
recognition purposes only). Using the GCN alone we achieve an
accuracy of 56/57 in identifying OTA and bias circuit nodes. The
misclassified vertices belong to the OTA interconnect ports, and all
nodes (100%) are correctly classified after “Postprocessing I.”

Figure 6: Layout of the filter based on the extracted hierarchy.

To illustrate a use case for circuit annotation, we take the results of
circuit recognition to pass the design through a custom layout generator
for the ASAP7 [24] PDK. The hierarchies identified by our algorithm
are used by the layout tool to construct layouts for primitives, which
are assembled into layouts for larger blocks. For example, by clustering

2Since these are deterministic features (without variants), there is no value
to building them into a training set: this would require a larger training set,
where all correspondingly labeled items would have this feature.
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the OTA circuit vertices together and annotating the differential pair
and current mirror primitives, we build a hierarchical representation
that generates layouts for these primitives and assembles them together.
The symmetry and proximity constraints detected at the primitive level
are propagated to other levels of hierarchy (Section III-C), creating a
common axis of symmetry for the entire layout. The generated layout
is shown in Fig. 6. The annotation helps in identifying and clustering
the central annotated OTA sub-block shown in the figure. The other
elements of the layout correspond to the switched capacitors, and
are shown as the large capacitor arrays (green rectangles) and small
switches (shown in blue) next to the capacitor array.

The third test set is associated with RF circuits and consists of 105
different datasets that combine various LNAs, mixers, and oscillators
in a receiver [19]. The architectures that combine LNAs, mixers, and
oscillators used in this set are similar to some architectures in the
RF data training set, but the precise circuits are distinct, with no
repetitions from the training set. We use our trained model to identify
nodes associated with LNA, mixer, and oscillator subcircuits. The
GCN achieves an accuracy of 83.64%, which goes to 89.24% after
“Postprocessing I.” After “Postprocessing II,” this rises to 100% and
all nodes are correctly identified: here, the antenna at the LNA port
and the oscillating signal at the oscillator port are used to correct
LNA/oscillator misclassifications.
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Figure 7: (a) Phased array system [25] and (b) results of GCN after
postprocessing, showing the correctness of vertex classification.

The fourth and largest testcase consists of a phased array sys-
tem [25], illustrated in Fig. 7(a), containing a mixer (red), LNA (green),
BPF (orange), oscillator (gray), VCO buffer (BUF) and inverter-based
amplifier (INV) (violet) sub-blocks. The graph for the input netlist has
902 vertices (522 devices + 380 nets). The GCN based classification
identifies nodes belonging to LNA, mixer, and oscillator and passes
these results through postprocessing. After “Postprocessing I,” the
BPF is identified as a combination of an oscillator with two input
transistors. INV and BUF primitives are identified and a separate
hierarchy is created for them which boosts the accuracy to 87.3%.
During “Postprocessing II,” which uses an antenna label at LNA input
and oscillating input for mixer, all nodes are identified correctly. At
this point, the classification result after post-processing is shown in
Fig. 7(b): all 522 devices (100%) are classified correctly.

Our annotation scheme is fast, and is dominated by the runtime
of the GCN. We report numbers on the more complex circuits on
an Ubuntu host with an Intel Core i7 processor @2.6GHz with 8
cores and 32GB RAM: the procedure takes 135s for the switched
capacitor filter circuit, and 514s for the phased array system. The
postprocessing step requires less than 30s.

VI. CONCLUSION

In this paper, a novel approach for the classification of analog
circuits into a multilevel hierarchy using a library-based primitive

matching and a GCN-based machine learning method, is presented.
The GCN-based approach can handle different design topologies of
the same sub-blocks and is demonstrated on a variety of testcases,
including two hand-crafted circuits. The method is more scalable
than prior approches and shows success in classifying circuits into
sub-blocks and creating circuit hiearchy trees. This can be used to
guide optimization steps such as circuit layout, as demonstrated in the
case of a switched-capacitor filter. Although the GCN-based approach
does not provide complete accuracy, it can be improved using a more
diverse training set. Even for a limited training set, postprocessing
provides 100% accuracy in all 275 test cases evaluated here.
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