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Abstract [8] presented efficient and clever implementations of the Leiserson-
Saxe algorithms for both minarea and minperiod retiming. At about

The concept of improving the timing behavior of a circuit by relo-  the same time, the ASTRA algorithm [9, 10] was published, dis-
cating flip-flops is called retiming and was first presented by Leis- playing a different view of retiming by using an equivalence be-
erson and Saxe. The ASTRA algorithm proposed an alternative tween clock skew and retiming. It proposed an minperiod retim-
view of retiming using the equivalence between retiming and clock ing algorithm that was quite different from the Leiserson-Saxe ap-
skew optimization. This work defines the relationship between proach. A similar approach for retiming level-clocked circuits was
the Leiserson-Saxe and the ASTRA approaches and utilizes it to presented in [11].
solve the problem of retiming for minimum area. The new algo- For digital circuit design the most useful problem is that of
rithm, Minaret, uses the linear programming formulation of the minarea retiming. However, due to the high computational ex-
Leiserson-Saxe approach. The underlying philosophy of the AS- pense of this optimization its use has been limited. In this work
TRA approach is incorporated to reduce the number of variables we approach the problem of constrained minarea retiming through
and constraints in the linear program. This reduction in the size an amalgamation of the Leiserson-Saxe approach and the ASTRA
of the linear program makes Minaret space and time efficient, en- approach. By utilizing the merits of both, we develop a much faster
abling minimum area retiming of circuits with over 56,000 gates in algorithm for minarea retiming.
under 15 minutes. As in the Leiserson-Saxe approach, Minaret also formulates the
minarea retiming problem as a linear program (LP). The ASTRA
approachis utilized to obtain reliabd®@unds on the variables in this
LP. These bounds are then used to reduce the problem size by re-
ducing both the number of variables and the number of constraints.
Thus by spending a small amount of &@hal CPU time on the
ASTRA runs, this method leads to significant reductions in the to-
tal execution time of the minarea retiming problem. Experimental
results show that large circuits (with tens of thousands of gates can
be retimed for minimum area in minutes). As in most of the refer-
ences on retiming listed above, this paper assumes the circuit to be
composed of gates with constant delays.

The paper is organized as follows. In Section 2, the outline of
. the ASTRA and Leiserson-Saxe approaches is presented. Next, in
Section 3, we show the relationship between these two, and utilize
it to prune the constraint set for minarea retiming. Experimental
results are presented in Section 4, followed by concluding remarks
in Section 5.

1 Introduction

Retiming is a procedure that involves the relocation of flip-flops
(FF’s) across logic gates to allow the circuit to be operated under
a faster clock. The technique was first proposed by Leiserson and
Saxe [1, 2], where the algorithmic basis of retiming circuits with
edge-triggered FF’s was described without specifically focusing on
implementational aspects. Retiming to achieve the minimum clock
period is termed minperiod retiming, while retiming to minimize
the number of memory elements for a given target clock period is
called minarea retiming.

Leiserson-Saxe method to handle variations of the original prob-
lem, for example, retiming level-clocked circuits [3, 4], improving
the delay model [5], retiming with equivalent initial states [6] and
retiming for low power [7]. It was only recently that algorithms for
handling large VLSI circuits were introduced [8, 9]. The work in
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output to the inputs of a gate. Hence both retiming and clock skew The matrices are defined for all pairs of vertigesv) such that
are equivalent and can be used for timing optimization of sequen- there exists a path: « ~+ v that does not include the host vertex.
tial circuits. Since clock skew is a continuous optimization while W (u, v) denotes the minimum latency, in clock cycles, for the data
retiming is a discrete one, the minimum clock period achievable flowing from« to v andD(u, v) gives the maximum delay froma

by application of clock skews may not be obtained by retiming. to v for the minimum latency.

This relationship between skew and retiming motivates the follow-

ing two-phase solution to the minperiod retiming problem in the . ..
ASTRA gpproach [9]. P 9P 2.2.2 The Minarea Retiming Problem

d The minarea retiming problem can be formulated as the following

Phase A : The clock skew optimization problem is solved to find . -
linear program:

the optimal values of the skew at each FF, with the objective
of minimizing the clock period, or to satisfy a given feasible

clock period. This involves the (possibly repeated) applica- ¢ > vev I FI(0)] = [FOW)]) - r(v) ©)
tion of the Bellman-Ford algorithm on a constraint graph. subject to r(u) —r(v) < wleuw) Veuws € E
Phase B : The skew solution is translated to a retiming by relo- r(u) —r(v) < W(u,v) —1 VD (u,v) > ¢

cating FF’s across gates in an attempt to set the values of

all skews to be as close to zero as possible. We attempt to where|F'/(v)| and |F'O(v)| represent the number of fanins and
move each positive skew FF opposite to the direction of sig- fanouts of a gate.

nal propagation, and each negative skew FF in the direction The significance of the objective function and the constraints is
of signal propagation to reduce the magnitude of its skew. A as follows (the reader is referred to [2] for details).

formal rationalization is provided in [10]. - . .
P [10] ¢ The objective function represents the number of registers added

After Phase B, any skews that could not be set exactly to zero to the retimed circuit in relation to the original circuit.
are forced to zero. This could cause the clock period to increase
from Phase A; however, it is shown that this increase will be no
greater than the maximum gate delay. Note that the minimum clock
period using skews may not be achievable using retiming, since
retiming allows cycle-borrowing only in discrete amounts (corre-
sponding to gate delays), while skew is a continuous optimization

e The first constraint ensures that the weight of each edge
(i.e., the number of registers between the output of gate
and the input of gate) after retiming is nonnegative. We
will refer to these constraints a®nnegativity constraints

e The second constraint ensures that after retiming, each path

[12]. whose delay is larger than the clock period has at least one
register on it. These constraints, being dependent on the
2.2 The Leiserson-Saxe Algorithm clock period, are often referred to psriod constraints
221 Notation This formulation assumes that all FF's fanout to exactly one gate.
e However, in physical circuits a FF can fanout to several gates. Thus
A sequential circuit can be represented by a directed gEphH F), FF's at the fanouts of a gate can be combined or shared. To accu-

where each vertex Corresponds to a gate, and a directed e{ige rately model the number of FFs in a circuit we need to take this
represents a connection from the output of gate the input of sharing into account. For this purpose we use the model given by
gatev, through zero, one or more registers. Each edge has a weight-eiserson-Saxe in [2], which introduces for every gatgith mul-
w(eqs ), which is the number of registers between the output of gate tiple fanouts a mirror vertex:,,. The objective function of the LP

u and the input of gate. Each vertex has a constant delt{y ). is also modified as described in [2]. _ o

A special vertex, thdostvertex, is introduced in the graph, with Itis also pointed outin [2] that the dual of this problemis an in-
edges from the host vertex to all primary inputs of the circuit, and Stance of a minimum cost network flow problem. Hence the LP can
edges from all primary outputs to the host vertex. be efficiently solved by solving the minimum cost flow problem.

A retiming is a labeling of the vertices: V' — Z, whereZ is
the set of integers. The retiming lab¢b) for a vertexv represents
the number of registers moved from its output towards its inputs.
The weight of an edge.. after retiming, denoted by, (e.. ) is

3 The Reduced Linear Program

On practical circuits, it is found that the number of period con-

given by wr(ews) = r(v) + w(ewn) — r(u) ) straints is ph_e_nomenally_large; considerably more than the number
T w of nonnegativity constraints. However, it is also true that a large
One may define the weight(p) of any pathp originating at number of these constraints are redundant as they are implied by
vertexu and terminating at vertex (represented ag ~+ v), as some of the other constraints, and any algorithm with pretensions
the sum of the weights on the edgesgrand its delayl(p) as to practicality must use techniques for pruning thesenelant con-
the sum of the delays of the vertices nA path withw(p) = 0 straints. Note that the exactness of the solutiomoissacrificed in
corresponds to a purely combinational path with no registers on it; doing so, since none of the essential constraints are removed. Our
therefore, the clock period can be calculated as approach is to find reliable bounds on the variable values, and to
use these bounds to prune the constraints. By appropriate applica-
¢= max {d(p)} 2 tion of these bounds, we expect not only to prune the constraint set

but also to reduce the number of variables. In this way by simplify-

Another important conceptused in the Leiserson-Saxe approac jng the problem we can generate the LP efficiently and also solve it

is that of thel¥ and D matrices that are defined as follows: aster.
Wiu,v) = min {w(p)} (® 3.1 The Concept of Restricted Mobility of FF’s
D(u,v) = max ){d(P)} 4 Consider the circuits in Figure 1(a) and 1(b). Assuming unit gate

¥ prunev ANCuw(p) =W (w0 delays, the minimum achievable value of the clock period is 4.0



/\ ing long-path constraint must hold:
OUTPUT
INPUT FFB 3 G4, G5 G6 G7 -
xi+di]+Tsetup§x] +c (6)

wheresz; andx; are the skews at FF5andj, respectivelyc is

the clock period as before, add.:., is the setup time for Ff.

For a specified clock period, this may be written as a difference
G10 constraint [13] as follows:

(a) Ty — Ty Z C _Ei] - Tsetup (7)

FFA Cl2prc

Note that the right hand side of the above equation is a constant.
For a given circuit, one may build a set of difference constraints
with one such constraint for every pair of FF's that have a purely
INPUT FFB/\ OUTPUT combinational path connecting them, and may be represented by a
constraint graph. It is shown in [10] that the Bellman-Ford algo-
rithm may be applied to this graph to find the longest path in the
graph; the final values associated with each vertex provides the re-
quired skew at that vertex and givesepossible set of skews that
can achieve the clock periad Note that this is not the only allow-
able set of skews, since slacks in the arcs of the constraint graph
can lead to other allowable solutions. Therefore, the first order of
business is to determine bounds on the allowable skew at each FF.
When the version of the Bellman-Ford algorithm in [13] is ap-
plied to the constraint graph for a specified clock period, the as-
soon-as-possible (ASAP) skews are calculated for the network. It
is possible to easily modify the Bellman-Ford algorithm to calcu-
late the as-late-as-possible (ALAP) skew for the constraint graph
Note that these skews could be either negative or positive.
These ASAP/ALAP skews can be translated to ASAP/ALAP
locations for FF’s, which in turn can are translated to bounds on the

Figure 1: Possible FF locations after retiming.

units; each of these two circuits achieves this period, but the latter
utilizes more FF's. In order to achieve the minimum clock period

of 4.0 units, one must move one copy of FF B to the output of gate
G4. The possible locations for FF’s along the other paths to FF C

are atthe input to gate G8, or at the output of gate G8 or the outputs " . - -
of gates (GE?GlO)g no other locations a?e per?nisé;ible P retiming variables from the Leiserson-Saxe approacassociated

Therefore, it can be seen that the FF's cannot be sgmstany with the gates in the circuit as illustrated by the following example.

location in the circuit; rather, there is a restricted range of locations Example: For the circuit in Figure 1, the locations for the FF's in
into which each FF may be moved, and the ititybof each FF the retimed circuit corresponding to the ASAP and ALAP skew so-
is restricted. This range can be derived from the skews calculatedlutions are shown in Figure 1 (a) and (b), respectively. This implies
by the Bellman-Ford procedure (which calculates the minimum al- that during retiming, no FF will move across gates G1, G2, G5,
lowable skew value at each FF), and the corresponding slacks in theG6, G7, G11 and G12; one FF each will move from the input to the
constraint graph. Since the motion of the FF’s is closely related to output of gates G3 and G4, and either 0 or 1 FF will move from the
the retiming labelsr() of the gates, this restriction on the mobility  input to the output of gates G8, G9 and G10.
of FF’s also restricted the range of values the retiming labels can  Referring to Section 2.2.1 for the definition of thevariables,
take. this implies that one may set the following bounds on theari-
The idea of this work is that the skew values can be used to ables.
reduce the search space for the minarea retiming algorithm using(1) r(u) = 0 for u € {G1, G2, G5,G6,G7, G11,G12}
restricted mobility. This is seen to translate into a smaller linear (2) r(u) = —1foru € {G3, G4}, and
program. (3)—1 < r(u) <0foru € {G8, G9, G10}. m
We will now show the relation between the Leiserson-Saxe ap-  As explained in [10], FF’s that have positive skews are moved
proach and the ASTRA approach, and how the a modified version j, the direction opposite to the signal flow direction, and FF’s with
of ASTRA can be used to obtain the bounds on:thariables in ~ negative skews are relocated in the direction of signal flow (see
the Leiserson-Saxe method. Next, we show how these bounds carsection 2.1 for a brief explanation). The procedure for relocation

be used to prune the number of constraints in minarea LP of Equa-pere to find the ASAP and ALAP locations proceeds along the same

tion (5). Finally, we present an example to illustrate thetroet lines as in [10], with a few variations described below. During this
procedure, we also obtain the bounds onitivariables.

3.2 Deriving Bounds for ther Variables ~ Whenwe conS|de’rthe ASAP locations for the retimed FF's, the
aim is to push the FF’s as far as possible in a direction opposite to

The concept of restricted mobility is related to thearliest” and the direction of signal propagation. Therefore, each positive skew

“latest” location that any FF can occupy under the target clock pe- FF is moved as far as possible in the direction opposite to the signal
riod. This is relatively easy to map on to the clock skew optimiza- flow, and each negative skew FF is movedittle as possible in the
tion problem. To understand this, we provide a brief review of the direction of signal flow.

clock skew optimization problem. The ALAP locations can be found analogously with positive
Given a pair of FF's; and, if the maximum delay of any skew FF's being moved as little as possible in the direatipposite
purely combinational path connecting thendjs, then the follow- to the signal flow direction, and negative skew FF's being moved

as much as possible in the signal flow direction.
"Unlike this specific example, it is not always possible to say which FF was While moving the FF’'s to ASAP and ALAP locations, subject

relocated to exactly which location. However, our method does not require this P : )
information. to the specified clock periodl we count the number of FF's that

?The calculation of ASAP and ALAP times is a technique that is routinely used in
scheduling in high-level synthesis; see, for example, [14].



traverse each gate; this count gives us the upper and lower bound,

respectively, on the variable for the gate.

To keep the memory requirements of the LP in Equation (5)
low we must identify and drop the redundant constraints as they

For the ASAP locations, we move FF’s as far as possible againstare generated. Any constraint of the forfu) — r(v) < cuv iS

the direction of signal propagation. In other words, we relocate the
largest number of FF’s that move from the output to the input of
any gate. By the definition of thevariables, this gives us an upper
bound onr for the gates.

Similarly, the ALAP times are used to relocate the largest num-
ber of FF’s that move from the input of a gate towards the output,
and this gives us a lower bound on thealues for the gates in the
circuit.

redundant ift, — a, < cu». Hence when generating the period
constraints we only keep the constraints for whigch- a, > cy,.

Note that the constraints associated with fixed gates are redundant
since ther value of fixed gate is not a variable.

The techniques presented in this section yield a significant re-
duction in the number of constraints (both period and nonnegativ-
ity) in the LP. Thus by adding a upper bound and a lower bound
on each retiming variable in the LP of Equation (5) we can reduce

Therefore, this procedure provides upper and lower bounds on the total number of constraints. These upper/lower bounds are typ-

ther variable corresponding ®achgatey of the form.
ay <r(y) < by (8)

We will refer toa, as the lower bound of gateand tob, as the
upper bound of gatg. If a, = b, = k we say that gate is

ically much easier to handle in linear programs than general linear
constraints; in fact, for the network simplex algorithm [15] used
by Minaret these, upper and lower bounds are actually helpful in
solving the LP.

fixedsincer(y) = k is not really a variable anymore. Thuswecan 3.4 An Example

reduce the number of variables in the linear program. The gates for

whicha, # b, are said to bélexible
The bounds on the value of the mirror vertexn,, of a gate
u can be easily derived from the bounds on the fanouts of gate

The following example illustrates the method and shows how the
number of constraints can be reduced using our approach.
Consider the circuit example shown in Figure 2. As in the pre-

Therefore the algorithm that calculates the bounds need only runvious examples, we make the assumption that the gates have unit

on the original circuit model and the mirror vertices need not be
introduced explicitly in the circuit graph. Theunds on the mirror
vertex are

Gm, = max (a; + Wuj) — Wimaz,
Y j EFO(u)
brm

max
Y j EFO(u)

u

(bj + wuj) — Winaaz,

wherewmas, = maxy ; epo(w) (Wug)-

3.3 Eliminating Redundant Constraints

For large circuits, generation of the period constraints of Equation
(5) is expensive in terms of both memory and computation require-
ments. We will now show how the bounds obtained in Section 3.2
can be used to reduce both these requirements.

From Equation (2) it is clear that in edge-triggered circuits the
requirement for correct operation under a given clock peflod
that all paths with delay greater th&must have at least one FF on

them. Since path weights are monotonic, if a subpath has at least
one FF on it, then any path containing this subpath also has at least

one FF oniit.

The period constraints in Equation (5) ensure that this condition
is satisfied after retiming. While generating period constraints from
a gates if we add a period constraint from gat¢o gateu to ensure
that there will be at least one FF on the patk- u after retiming.
Then we do not need to consider any path via gate its fanouts
for period constraints. Since this period constraint from gate
gateu assures us that any path from gatpassing through gate
u at least one FF on it. This idea was used in [8] to prune the
period constraints by adding a period constraint only to a vertex
reachable frons, that satisfies the following:

D(s,u) > candD(s,v) <cVulyingons~ FI(u) (9)

In the presence of the bounds suppose for a vertexeach-
able fromw we haveW (w,v) + a, — b, > 1, then we are as-
sured that any retiming will have at least on FF on any path from
w 1o v. This makes any period edge between gatendv redun-
dant. Thus while generating the period constraints from a gate
we do not process the fanouts of any gafer which the inequality
W(w,v) + ay — by > 1 is satisfied. We observed that incorpo-
rating this rule in the period constraint generation algorithm of [8]
gave us significantimprovements in the CPU time.

delays. We consider two possible clock periods of 2 units and 3

units in this example.
d I

I | | |
a ‘ b ‘ [ ‘
ouT

IN FF1

Figure 2: Example illustrating the approach.

When ¢ = 2 units
For a clock period of two units, the list of constraints generated
by the approach in [8] is listed below.

Nonnegativity constraintsr(h) — r(a) <1
r(a) —r(d) <0
r(d) —r(c) <0
r(c)—r(d) <0
r(d)—r(h) <0
Period constraints r(h) — r(c) <0
r(a) —r(c) < -1
r(d) —r(d) < -1

Note that

(a) the delay associated with the host node is zero, and

(b) the value ofr(h) is set to zero as a reference, so that it is not
really a variable.

Therefore, this is a problem with fowariables and eighlinear
constraints.

In our approach, for a clock period of 2, we first calculate the
ASAP and ALAP skews and then translate them into the ASAP
and ALAP locations getting thbounds on the variables in the
process. Since the FF’s at the input and output may not be moved,
therefore, the only movable FF is FF1. The ASAP skew at FF1
is -2.0 units and hence the ASAP location of FF1 is at the output
of gateb. Since to arrive at this ASAP location FF1 must move
forward across gateand gaté the upper bounds on thevariables
of both the gate: and the gaté is -1. Since no FF's move across
gatec and gatel their upper bounds are both 0.

It so happens in this circuit that the ALAP skew of FF1 is also
-2.0 units and the ALAP location of FF1 is also at the the output of



gateb. Thus the lower bound on thevariables of gate and gate Table 1: Minarea Retiming using Minaret

bis -1, while it is O for gate: and gatel. Therefore, we find that by Circuit [G] P #FFs Tevec
using the concept of restricted mobility of FF’s we can derive these ASTRA | Minaret

bounds $3330 | 1,789 | 14.0 331 110] 0.22s
. sb378 2,779 | 21.0 555 173 1.28s

“lsr(@ -1 = (e =-1 6660 | 3,080 | 26.0 7191 305 2.20s

-1<r(p) <=1 =rb)=-1 s9234.1 | 3,270 | 38.0 205 134 6.18s
0<r(c)<0 =r(c)=0 s13207.1] 7,791 | 51.0 629 446 || 10.38s
0<r(d)<0 = r(d)=0 s15850.1] 9,617 | 63.0 571 525 || 38.81s

s35932 | 16,065] 27.0 1,729 1,729 7.56s
In other words, all of the constraints and variables have been elim- || s38584.1] 19,253| 48.0 1,428 1,427 || 65.07s
inated ! The correctness of these bounds is easily verified since to || s38417 | 21,370| 32.0 1,616 1,370 || 146.92s
obtain a clock period of 2.0 units the only solution is to locate FF1 myex1 28,946| 45.0 5,655 2,022 160.47s
at the output of gate, and hence there is only one feasible set of myex2 40,661 35.0| 11,591 2,803| 421.50s
values for the gates. myex3 56,751 47.0 11,488 3,378 || 799.64s
When ¢ = 3 units

With the clock period is set to 3 units, the list of constraints is

Wi i _ number of gatef7/|, the target clock period®, the number of FF’s
Nonnegativity constraints(h) —r(a) < 1 from applying ASTRA for minperiod retiming, the number of final
r(a) —r(b) <0 FF’s provided by Minaret, and CPU tiniE.,.. on a DEC AXP
r(b) —r(c) <O system 3000/900 workstation are shown. The number of FFs both
for ASTRA and Minaret are obtained after taking into account the
r(c)—r(d) <0 X . : L9
maximum sharing of FFs at all nodes in the circuit.
r(d)—r(h) <0 The significant decrease in the number of FF's obtained by
Period constraintsr(h) — r(d) <0 Minaret proves the importance of minarea retiming. The results
r(a) —r(d) < -1, also show that Minaret can perform minarea retiming for large cir-

cuits in very reasonable time. About 75% of the total execution
As before,r(h) = 0 is set as a reference, giving a problem with ~ time T.... was spentin computing the period constraints, and the
four variables (as before) and severear constraints. rest in solving the LP.
The relocated FF can reside either at the input of gate b, the
output of gate b, or the output of gate c. To arrive at the ASAP  Taple 2: Reduction of Variables and Constraints in Minaret

location, FF1 must move across only gatetherefore, the upper Circuit £y Fouvg Reduction

bound on gate is -1, while on gaté, gatec and gatel it is 0 since N A
no FF’s moved across them. The ALAP location of FF1 is at the 53330 63.46%]| 0.39 || 61.21% ] 84.84%
output of gater, to arrive at which FF1 has to move across gate 5378 36.12% 0.85 || 34.91% | 88.63%
gateb and gate:. This gives us the following bounds 56660 20.02%] 0.76 1| 38.07% | 94.14%

s9234.1 || 14.62%| 1.55 || 13.54%| 60.42%

i@ < -1 = r(a)=-1 s13207.1|| 21.49%| 2.96 || 20.45% | 92.14%

—1<r(b) <0 S15850.1]| 24.15% | 1.52 || 22.87%| 96.34%

—1<r(c) <0 s35932 55.27%| 0.54 || 52.54% | 86.38%

0<r(d)<0 = r(d)=0 $38584.1|| 14.22%| 2.13 || 12.42%| 99.18%

s38417 0.88% | 4.35 0.74% | 7.45%

These bounds may now be applied to eliminate all of the nonnega- myex1 8.73% | 2.26 8.09% | 97.68%
tivity and period constraints except myex2 1.80% | 4.12 1.62% | 67.81%

myex3 4.95% | 3.98 4.57% | 85.20%

r(b) —r(c) <0

Therefore, we have reduced the problem complexity from four vari- ~ Table 2 presents the reduction in the number of variabiés (
ables and seven constraints to tvariables, each with fixed upper ~ and the number of constraintd), obtained by Minaret. The ba-
and lower bounds orlmear constraint. sis of this percentage calculation is the LP obtained after applying

Equation (9) only. Also shown are two metrics on the circults;
) the percentage of gates found to be fixed, &hd,, the average
4 Experimental Results flexibility, i.e., the average value d{— a,)). The metric §, — a,,)
gives the possible range invalue of gatey and hence is a mea-
We performed minarea retiming using Minaret on the complete IS- sure of its flexibility. The reduction in problem size was seen to be
CAS89 benchmark suite but present results only on the larger cir- closely related to the flexibility in the circuit, which is as expected
cuits. The results presented are for unit delay gates, although wesince Minaret uses restricted mobility to reduce the problem size.
emphasize that the algorithm is applicable when gates have non-As is clear from the table Minaret obtains significant reduction in
unit delays. The target clock period is set to be the minimum the number of constraints over the work in [8]. For example, for the
achievable clock period for the circuit. Thus we get the smallest circuit s38584.1 the number of constraints. reduced from 11 mil-
number of FFs for the best clock period. We artificially created |ion to less than 0.1 million. Altough not shown in the results, the
some large circuits (myex1,myex2 and myex3) which are derived time spent in computing the bounds was found to be insignificant
from the circuits in the ISCAS89 benchmark suite. at about 1% to 2% of the total execution time. Thus Minaret would
We present the results in two tables. Table 1 presents the qual-be useful even if a circuit has a unusually high flétitip
ity of minimum area retiming in the circuits. For each circuit, the We also note that in [8] the circuit s38584 needed 39 hours of



CPU time while Minaret could retime it in about one minute. We ¢i; + ¢;; < cks, then the last of the three constraints is redundant.
point out, though, that such a comparison is not entirely fair since However the reduction in constraints by this method was much
(a) the results are generated on different platforms and (b) the cir- less than that achieved by Minaret even for circuits like s38417
cuits used in [8] are modified ISCAS89 benchmarks and have a where Minaret did not perform well. Furthermore, the computa-
much smaller number of gates. (for example, s38584.1 has 7882tional complexity of redundant constraint removal by transitivity is
gates in [8] while the original benchmark used here has 19,253 orders of magnitude more than the one used in Minaret, and unlike

gates). Minaret, transitivity can only reduce the number of constraints but
not the number of variables in the problem.
Table 3: Area-Delay Tradeoff
Circuit | P Fouvg £ Reduction REFERENCES
N [A
s1269 | 19.0|| 0.49| 54.77%/|| 51.50% | 93.27% [1] C. Leiserson, F. Rose, and J. B. Saxe, “Optimizing syn-
s1269 | 22.0|| 0.69| 36.52% | 32.03%| 79.36% chronous circuitry by retiming,” irProceedings of the 3rd
s1269 | 25.0|| 0.79| 25.96%]|| 22.88%| 74.14% Caltech Conference on VL3Ip. 87-116, 1983.
s1269 | 28.0 || 0.87) 18.43%]| 16.34%]| 72.36% [2] C. E. Leiserson and J. B. Saxe, “Retiming synchronous cir-
s1269 | 32.0|| 0.92| 13.57%]|| 11.50%| 72.55% cuitry,” Algorithmica, vol. 6, pp. 5-35, 1991.
$3330 | 14.0}) 0.39) 63.46%) 61.21%) 84.89% [3] A. Ishii, C. E. Leiserson, and M. C. Papaefthymiou, “Opti-
s3330 | 16.0|| 0.69| 35.59%]| 33.36%| 64.23% mizin L
g two-phase, level-clocked circuitry,” ikdvanced Re-
53330 | 18.0] 0.87] 22.40% | 20.98%]| 53.10% searchin VLS| and Parallel Systems: Proceedings of the 1992
53330 | 2201 099 15.98%1 15.05%] 52.84% [4] B. Lock d C. Ebeling “Opt,imal retiming of level
5 5 5 . Lockyear and C. , -
S;g:gg igg 822 33;;0;2 g;ggéz ggggéz clocked circuits using symmetric clock schedulekEEE
: - : : : i -Ai igol. . 1097-
prolog | 17.0]| 0.94 | 21.23%]| 19.73%| 67.02% I&%%s?é'gpigg4comp“ter Aided Desigol. 13, pp. 109
prolog | 19.0 | 1.00| 17.72%]|| 16.62%| 64.09% ' T o )
prolog | 21.0 || 1.06 | 15.67%] 14.86%]| 59.17% [5] K. N. Lalgudi and M. Papaefthymiou, “DeLaY: An effi-

Table 3 shows the variation in problem size reduction and cir-
cuit flexibility with respect to different clock periods. As expected
the circuit flexibility increases with the target clock period. Thus,
Minaret gives better problem size reduction on the more useful
problem of retiming circuits under tight clock periods.

5 Conclusion

An improved algorithm for minarea retiming has been presented.
The contributions of this work are twofold. Firstly, it reconciles the
Leiserson-Saxe algorithm with the ASTRA algorithm and shows
the relation between them. Secondly,titizes this relationship to
good purpose by modifying the ASTRA algorithm to make avail-
able information from the skew-retiming equivalence that is of great

benefitin solving the minarea retiming problem under the Leiserson-

Saxe framework. The bounds obtained by the ASTRA algorithm
provide a efficient way to significantly reduce the size of the linear
program in the Leiserson-Saxe framework.

Experimental results on benchmark circuits in the ISCAS89

benchmark suite have been presented, and the procedure is seen

to give good benefits.The number of variables and the number of

constraints were dramatically reduced. The entire ISCAS89 bench-

mark suite could be retimed for minarea in less than five minutes.
Minaret could also retime a circuit (myex3) with over 56,000 gates
in under 15 minutes.

Minaret also has a reduced memory requirement since a signif-
icant number of constraints are not stored. In our implementation
of [8] we found that large circuits can have constraints ilions,
which makes the memory requirement a bottleneck. To the best of
our knowledge, no other retiming algorithm incorporates pruning
methods to reduce the number of variahléhis reduction in the
number of variables is important because (a) it significantly reduces
the problem solution time and (b) it helps in pruning the number of
constraints significantly.

We also attempted to reduce the problem size by other means

like use of transitivity to eliminate constraints. For example, given
the constraints, — z; < ciy,0; —x; < ¢ji, andey — x; < cg, If
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