
An Improved Algorithm for Minimum-Area Retiming

Naresh Maheshwari and Sachin S. Sapatnekar
Department of Electrical & Computer Engineering

Iowa State University, Ames IA 50010

naresh@iastate.edu sachin@iastate.edu

Abstract

The concept of improving the timing behavior of a circuit by relo-
cating flip-flops is called retiming and was first presented by Leis-
erson and Saxe. The ASTRA algorithm proposed an alternative
view of retiming using the equivalence between retiming and clock
skew optimization. This work defines the relationship between
the Leiserson-Saxe and the ASTRA approaches and utilizes it to
solve the problem of retiming for minimum area. The new algo-
rithm, Minaret, uses the linear programming formulation of the
Leiserson-Saxe approach. The underlying philosophy of the AS-
TRA approach is incorporated to reduce the number of variables
and constraints in the linear program. This reduction in the size
of the linear program makes Minaret space and time efficient, en-
abling minimum area retiming of circuits with over 56,000 gates in
under 15 minutes.

1 Introduction

Retiming is a procedure that involves the relocation of flip-flops
(FF’s) across logic gates to allow the circuit to be operated under
a faster clock. The technique was first proposed by Leiserson and
Saxe [1, 2], where the algorithmic basis of retiming circuits with
edge-triggered FF’s was described without specifically focusing on
implementational aspects. Retiming to achieve the minimum clock
period is termed minperiod retiming, while retiming to minimize
the number of memory elements for a given target clock period is
called minarea retiming.

Several papers have been published since then, extending the
Leiserson-Saxe method to handle variations of the original prob-
lem, for example, retiming level-clocked circuits [3, 4], improving
the delay model [5], retiming with equivalent initial states [6] and
retiming for low power [7]. It was only recently that algorithms for
handling large VLSI circuits were introduced [8, 9]. The work in

1This work was supported in part by the National Science Foundation under award
MIP-9502556.

Design Automation ConferenceR

Copyright c
 1997 by the Association for ComputingMachinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

[8] presented efficient and clever implementations of the Leiserson-
Saxe algorithms for both minarea and minperiod retiming. At about
the same time, the ASTRA algorithm [9, 10] was published, dis-
playing a different view of retiming by using an equivalence be-
tween clock skew and retiming. It proposed an minperiod retim-
ing algorithm that was quite different from the Leiserson-Saxe ap-
proach. A similar approach for retiming level-clocked circuits was
presented in [11].

For digital circuit design the most useful problem is that of
minarea retiming. However, due to the high computational ex-
pense of this optimization its use has been limited. In this work
we approach the problem of constrained minarea retiming through
an amalgamation of the Leiserson-Saxe approach and the ASTRA
approach. By utilizing the merits of both, we develop a much faster
algorithm for minarea retiming.

As in the Leiserson-Saxe approach, Minaret also formulates the
minarea retiming problem as a linear program (LP). The ASTRA
approach is utilized to obtain reliablebounds on the variables in this
LP. These bounds are then used to reduce the problem size by re-
ducing both the number of variables and the number of constraints.
Thus by spending a small amount of additional CPU time on the
ASTRA runs, this method leads to significant reductions in the to-
tal execution time of the minarea retiming problem. Experimental
results show that large circuits (with tens of thousands of gates can
be retimed for minimum area in minutes). As in most of the refer-
ences on retiming listed above, this paper assumes the circuit to be
composed of gates with constant delays.

The paper is organized as follows. In Section 2, the outline of
the ASTRA and Leiserson-Saxe approaches is presented. Next, in
Section 3, we show the relationship between these two, and utilize
it to prune the constraint set for minarea retiming. Experimental
results are presented in Section 4, followed by concluding remarks
in Section 5.

2 Background

We first briefly describe the ASTRA approach for minperiod retim-
ing, and the Leiserson-Saxe approach for minarea retiming. These
approaches will later be combined to form “Minaret”, an improved
algorithm for minimum area retiming.

2.1 The ASTRA Algorithm

The introduction of clock skew at a FF has an effect that is similar
to moving it across combinational logic module boundaries (gates)
[12]. The effect of applying a positive skew on a FF is equivalent to
moving it from the inputs of a gate to the outputs. Similarly appli-
cation of a negative clock skew is equivalent to moving it from the

output to the inputs of a gate. Hence both retiming and clock skew
are equivalent and can be used for timing optimization of sequen-
tial circuits. Since clock skew is a continuous optimization while
retiming is a discrete one, the minimum clock period achievable
by application of clock skews may not be obtained by retiming.
This relationship between skew and retiming motivates the follow-
ing two-phase solution to the minperiod retiming problem in the
ASTRA approach [9].

Phase A : The clock skew optimization problem is solved to find
the optimal values of the skew at each FF, with the objective
of minimizing the clock period, or to satisfy a given feasible
clock period. This involves the (possibly repeated) applica-
tion of the Bellman-Ford algorithm on a constraint graph.

Phase B : The skew solution is translated to a retiming by relo-
cating FF’s across gates in an attempt to set the values of
all skews to be as close to zero as possible. We attempt to
move each positive skew FF opposite to the direction of sig-
nal propagation, and each negative skew FF in the direction
of signal propagation to reduce the magnitude of its skew. A
formal rationalization is provided in [10].

After Phase B, any skews that could not be set exactly to zero
are forced to zero. This could cause the clock period to increase
from Phase A; however, it is shown that this increase will be no
greater than the maximum gate delay. Note that the minimum clock
period using skews may not be achievable using retiming, since
retiming allows cycle-borrowing only in discrete amounts (corre-
sponding to gate delays), while skew is a continuous optimization
[12].

2.2 The Leiserson-Saxe Algorithm

2.2.1 Notation

A sequential circuit can be represented by a directed graphG(V;E),
where each vertexv corresponds to a gate, and a directed edgeeuv
represents a connection from the output of gateu to the input of
gatev, through zero, one or more registers. Each edge has a weight
w(euv), which is the number of registers between the output of gate
u and the input of gatev. Each vertex has a constant delayd(v).
A special vertex, thehostvertex, is introduced in the graph, with
edges from the host vertex to all primary inputs of the circuit, and
edges from all primary outputs to the host vertex.

A retiming is a labeling of the verticesr : V ! Z, whereZ is
the set of integers. The retiming labelr(v) for a vertexv represents
the number of registers moved from its output towards its inputs.
The weight of an edgeeuv after retiming, denoted bywr(euv) is
given by

wr(euv) = r(v) +w(euv)� r(u) (1)

One may define the weightw(p) of any pathp originating at
vertexu and terminating at vertexv (represented asu ; v), as
the sum of the weights on the edges onp, and its delayd(p) as
the sum of the delays of the vertices onp. A path withw(p) = 0
corresponds to a purely combinational path with no registers on it;
therefore, the clock period can be calculated as

c = max
8 pjw(p)=0

fd(p)g (2)

Another important conceptused in the Leiserson-Saxe approach
is that of theW andD matrices that are defined as follows:

W (u; v) = min
8 p:u;v

fw(p)g (3)

D(u; v) = max
8 p:u;v andw(p)=W (u;v)

fd(p)g (4)

The matrices are defined for all pairs of vertices(u; v) such that
there exists a pathp : u ; v that does not include the host vertex.
W (u; v) denotes the minimum latency, in clock cycles, for the data
flowing fromu to v andD(u; v) gives the maximum delay fromu
to v for the minimum latency.

2.2.2 The Minarea Retiming Problem

The minarea retiming problem can be formulated as the following
linear program:

minimize
P

v2V
(jFI(v)j � jFO(v)j) � r(v) (5)

subject to r(u)� r(v) � w(euv) 8euv 2 E

r(u)� r(v) � W (u; v)� 1 8D(u; v) > c

wherejFI(v)j and jFO(v)j represent the number of fanins and
fanouts of a gatev.

The significance of the objective function and the constraints is
as follows (the reader is referred to [2] for details).

� The objective function represents the number of registers added
to the retimed circuit in relation to the original circuit.

� The first constraint ensures that the weighteuv of each edge
(i.e., the number of registers between the output of gateu

and the input of gatev) after retiming is nonnegative. We
will refer to these constraints asnonnegativity constraints.

� The second constraint ensures that after retiming, each path
whose delay is larger than the clock period has at least one
register on it. These constraints, being dependent on the
clock period, are often referred to asperiod constraints.

This formulation assumes that all FF’s fanout to exactly one gate.
However, in physical circuits a FF can fanout to several gates. Thus
FF’s at the fanouts of a gate can be combined or shared. To accu-
rately model the number of FFs in a circuit we need to take this
sharing into account. For this purpose we use the model given by
Leiserson-Saxe in [2], which introduces for every gateu with mul-
tiple fanouts a mirror vertexmu. The objective function of the LP
is also modified as described in [2].

It is also pointed out in [2] that the dual of this problem is an in-
stance of a minimum cost network flow problem. Hence the LP can
be efficiently solved by solving the minimum cost flow problem.

3 The Reduced Linear Program

On practical circuits, it is found that the number of period con-
straints is phenomenally large; considerably more than the number
of nonnegativity constraints. However, it is also true that a large
number of these constraints are redundant as they are implied by
some of the other constraints, and any algorithm with pretensions
to practicality must use techniques for pruning these redundant con-
straints. Note that the exactness of the solution isnot sacrificed in
doing so, since none of the essential constraints are removed. Our
approach is to find reliable bounds on the variable values, and to
use these bounds to prune the constraints. By appropriate applica-
tion of these bounds, we expect not only to prune the constraint set
but also to reduce the number of variables. In this way by simplify-
ing the problem we can generate the LP efficiently and also solve it
faster.

3.1 The Concept of Restricted Mobility of FF’s

Consider the circuits in Figure 1(a) and 1(b). Assuming unit gate
delays, the minimum achievable value of the clock period is 4.0

(a)

INPUT FF B

FF CFF A

OUTPUT

G1

G3

G9

G2

G4 G5 G6 G7

G12

G11
G10

G8

(b)

FF B

FF A FF C

INPUT OUTPUT

G8

G10
G11

G7

G12

G5 G6G4G3

G2G1

G9

Figure 1: Possible FF locations after retiming.

units; each of these two circuits achieves this period, but the latter
utilizes more FF’s. In order to achieve the minimum clock period
of 4.0 units, one must move one copy of FF B to the output of gate
G4. The possible locations for FF’s along the other paths to FF C
are at the input to gate G8, or at the output of gate G8 or the outputs
of gates (G9,G10); no other locations are permissible1.

Therefore, it can be seen that the FF’s cannot be sent tojust any
location in the circuit; rather, there is a restricted range of locations
into which each FF may be moved, and the mobility of each FF
is restricted. This range can be derived from the skews calculated
by the Bellman-Ford procedure (which calculates the minimum al-
lowable skew value at each FF), and the corresponding slacks in the
constraint graph. Since the motion of the FF’s is closely related to
the retiming labels (r) of the gates, this restriction on the mobility
of FF’s also restricted the range of values the retiming labels can
take.

The idea of this work is that the skew values can be used to
reduce the search space for the minarea retiming algorithm using
restricted mobility. This is seen to translate into a smaller linear
program.

We will now show the relation between the Leiserson-Saxe ap-
proach and the ASTRA approach, and how the a modified version
of ASTRA can be used to obtain the bounds on ther variables in
the Leiserson-Saxe method. Next, we show how these bounds can
be used to prune the number of constraints in minarea LP of Equa-
tion (5). Finally, we present an example to illustrate the method.

3.2 Deriving Bounds for ther Variables

The concept of restricted mobility is related to the“earliest” and
“latest” location that any FF can occupy under the target clock pe-
riod. This is relatively easy to map on to the clock skew optimiza-
tion problem. To understand this, we provide a brief review of the
clock skew optimization problem.

Given a pair of FF’s,i and j, if the maximum delay of any
purely combinational path connecting them isdij, then the follow-

1Unlike this specific example, it is not always possible to say which FF was
relocated to exactly which location. However, our method does not require this
information.

ing long-path constraint must hold:

xi + dij + Tsetup � xj + c (6)

wherexi andxj are the skews at FF’si andj, respectively,c is
the clock period as before, andTsetup is the setup time for FFj.
For a specified clock period, this may be written as a difference
constraint [13] as follows:

xj � xi � c� dij � Tsetup (7)

Note that the right hand side of the above equation is a constant.
For a given circuit, one may build a set of difference constraints
with one such constraint for every pair of FF’s that have a purely
combinational path connecting them, and may be represented by a
constraint graph. It is shown in [10] that the Bellman-Ford algo-
rithm may be applied to this graph to find the longest path in the
graph; the final values associated with each vertex provides the re-
quired skew at that vertex and givesonepossible set of skews that
can achieve the clock periodc. Note that this is not the only allow-
able set of skews, since slacks in the arcs of the constraint graph
can lead to other allowable solutions. Therefore, the first order of
business is to determine bounds on the allowable skew at each FF.

When the version of the Bellman-Ford algorithm in [13] is ap-
plied to the constraint graph for a specified clock period, the as-
soon-as-possible (ASAP) skews are calculated for the network. It
is possible to easily modify the Bellman-Ford algorithm to calcu-
late the as-late-as-possible (ALAP) skew for the constraint graph2.
Note that these skews could be either negative or positive.

These ASAP/ALAP skews can be translated to ASAP/ALAP
locations for FF’s, which in turn can are translated to bounds on the
retiming variables from the Leiserson-Saxe approach,r, associated
with the gates in the circuit as illustrated by the following example.

Example: For the circuit in Figure 1, the locations for the FF’s in
the retimed circuit corresponding to the ASAP and ALAP skew so-
lutions are shown in Figure 1 (a) and (b), respectively. This implies
that during retiming, no FF will move across gates G1, G2, G5,
G6, G7, G11 and G12; one FF each will move from the input to the
output of gates G3 and G4, and either 0 or 1 FF will move from the
input to the output of gates G8, G9 and G10.

Referring to Section 2.2.1 for the definition of ther variables,
this implies that one may set the following bounds on ther vari-
ables.
(1) r(u) = 0 for u 2 fG1;G2; G5;G6;G7; G11;G12g
(2) r(u) = �1 for u 2 fG3;G4g, and
(3)�1 � r(u) � 0 for u 2 fG8; G9;G10g. 2

As explained in [10], FF’s that have positive skews are moved
in the direction opposite to the signal flow direction, and FF’s with
negative skews are relocated in the direction of signal flow (see
Section 2.1 for a brief explanation). The procedure for relocation
here to find the ASAP and ALAP locations proceeds along the same
lines as in [10], with a few variations described below. During this
procedure, we also obtain the bounds on ther variables.

When we consider the ASAP locations for the retimed FF’s, the
aim is to push the FF’s as far as possible in a direction opposite to
the direction of signal propagation. Therefore, each positive skew
FF is moved as far as possible in the direction opposite to the signal
flow, and each negative skew FF is moved aslittle as possible in the
direction of signal flow.

The ALAP locations can be found analogously with positive
skew FF’s being moved as little as possible in the directionopposite
to the signal flow direction, and negative skew FF’s being moved
as much as possible in the signal flow direction.

While moving the FF’s to ASAP and ALAP locations, subject
to the specified clock periodc, we count the number of FF’s that

2The calculation of ASAP and ALAP times is a technique that is routinely used in
scheduling in high-level synthesis; see, for example, [14].

traverse each gate; this count gives us the upper and lower bound,
respectively, on ther variable for the gate.

For the ASAP locations, we move FF’s as far as possible against
the direction of signal propagation. In other words, we relocate the
largest number of FF’s that move from the output to the input of
any gate. By the definition of ther variables, this gives us an upper
bound onr for the gates.

Similarly, the ALAP times are used to relocate the largest num-
ber of FF’s that move from the input of a gate towards the output,
and this gives us a lower bound on ther values for the gates in the
circuit.

Therefore, this procedure provides upper and lower bounds on
ther variable corresponding toeachgatey of the form.

ay � r(y) � by (8)

We will refer toay as the lower bound of gatey and toby as the
upper bound of gatey. If ay = by = k we say that gatey is
fixedsincer(y) = k is not really a variable anymore. Thus we can
reduce the number of variables in the linear program. The gates for
whichay 6= by are said to beflexible.

The bounds on ther value of the mirror vertexmu of a gate
u can be easily derived from the bounds on the fanouts of gateu.
Therefore the algorithm that calculates the bounds need only run
on the original circuit model and the mirror vertices need not be
introduced explicitly in the circuit graph. Thebounds on the mirror
vertex are

amu
= max

8 j 2FO(u)
(aj +wuj)�wmaxu

bmu
= max

8 j 2FO(u)
(bj +wuj)�wmaxu

wherewmaxu = max8 j 2FO(u)(wuj).

3.3 Eliminating Redundant Constraints

For large circuits, generation of the period constraints of Equation
(5) is expensive in terms of both memory and computation require-
ments. We will now show how the bounds obtained in Section 3.2
can be used to reduce both these requirements.

From Equation (2) it is clear that in edge-triggered circuits the
requirement for correct operation under a given clock periodP is
that all paths with delay greater thanP must have at least one FF on
them. Since path weights are monotonic, if a subpath has at least
one FF on it, then any path containing this subpath also has at least
one FF on it.

The period constraints in Equation (5) ensure that this condition
is satisfied after retiming. While generating period constraints from
a gates if we add a period constraint from gates to gateu to ensure
that there will be at least one FF on the paths; u after retiming.
Then we do not need to consider any path via gateu to its fanouts
for period constraints. Since this period constraint from gates to
gateu assures us that any path from gates passing through gate
u at least one FF on it. This idea was used in [8] to prune the
period constraints by adding a period constraint only to a vertexu,
reachable froms, that satisfies the following:

D(s;u) > c andD(s;v) � c 8 v lying ons; FI(u) (9)

In the presence of the bounds suppose for a vertexv, reach-
able fromw we haveW (w; v) + av � bw > 1, then we are as-
sured that any retiming will have at least on FF on any path from
w to v. This makes any period edge between gatew andv redun-
dant. Thus while generating the period constraints from a gatew

we do not process the fanouts of any gatev for which the inequality
W (w; v) + av � bw > 1 is satisfied. We observed that incorpo-
rating this rule in the period constraint generation algorithm of [8]
gave us significant improvements in the CPU time.

To keep the memory requirements of the LP in Equation (5)
low we must identify and drop the redundant constraints as they
are generated. Any constraint of the formr(u) � r(v) � cuv is
redundant ifbu � av � cuv. Hence when generating the period
constraints we only keep the constraints for whichbu � av > cuv.
Note that the constraints associated with fixed gates are redundant
since ther value of fixed gate is not a variable.

The techniques presented in this section yield a significant re-
duction in the number of constraints (both period and nonnegativ-
ity) in the LP. Thus by adding a upper bound and a lower bound
on each retiming variable in the LP of Equation (5) we can reduce
the total number of constraints. These upper/lower bounds are typ-
ically much easier to handle in linear programs than general linear
constraints; in fact, for the network simplex algorithm [15] used
by Minaret these, upper and lower bounds are actually helpful in
solving the LP.

3.4 An Example

The following example illustrates the method and shows how the
number of constraints can be reduced using our approach.

Consider the circuit example shown in Figure 2. As in the pre-
vious examples, we make the assumption that the gates have unit
delays. We consider two possible clock periods of 2 units and 3
units in this example.

IN OUTFF1

a b c d

Figure 2: Example illustrating the approach.

When c = 2 units
For a clock period of two units, the list of constraints generated

by the approach in [8] is listed below.

Nonnegativity constraintsr(h)� r(a) � 1

r(a)� r(b) � 0

r(b)� r(c) � 0

r(c)� r(d) � 0

r(d)� r(h) � 0

Period constraints r(h)� r(c) � 0

r(a)� r(c) � �1

r(b)� r(d) � �1

Note that
(a) the delay associated with the host node is zero, and
(b) the value ofr(h) is set to zero as a reference, so that it is not
really a variable.
Therefore, this is a problem with fourvariables and eightlinear
constraints.

In our approach, for a clock period of 2, we first calculate the
ASAP and ALAP skews and then translate them into the ASAP
and ALAP locations getting thebounds on ther variables in the
process. Since the FF’s at the input and output may not be moved,
therefore, the only movable FF is FF1. The ASAP skew at FF1
is -2.0 units and hence the ASAP location of FF1 is at the output
of gateb. Since to arrive at this ASAP location FF1 must move
forward across gatea and gateb the upper bounds on ther variables
of both the gatea and the gateb is -1. Since no FF’s move across
gatec and gated their upper bounds are both 0.

It so happens in this circuit that the ALAP skew of FF1 is also
-2.0 units and the ALAP location of FF1 is also at the the output of

gateb. Thus the lower bound on ther variables of gatea and gate
b is -1, while it is 0 for gatec and gated. Therefore, we find that by
using the concept of restricted mobility of FF’s we can derive these
bounds

�1 � r(a) � �1) r(a) = �1

�1 � r(b) � �1) r(b) = �1

0 � r(c) � 0) r(c) = 0

0 � r(d) � 0) r(d) = 0

In other words, all of the constraints and variables have been elim-
inated ! The correctness of these bounds is easily verified since to
obtain a clock period of 2.0 units the only solution is to locate FF1
at the output of gateb, and hence there is only one feasible set ofr

values for the gates.
When c = 3 units
With the clock period is set to 3 units, the list of constraints is

Nonnegativity constraintsr(h)� r(a) � 1

r(a)� r(b) � 0

r(b)� r(c) � 0

r(c)� r(d) � 0

r(d)� r(h) � 0

Period constraints r(h)� r(d) � 0

r(a)� r(d) � �1;

As before,r(h) = 0 is set as a reference, giving a problem with
four variables (as before) and sevenlinear constraints.

The relocated FF can reside either at the input of gate b, the
output of gate b, or the output of gate c. To arrive at the ASAP
location, FF1 must move across only gatea, therefore, the upper
bound on gatea is -1, while on gateb, gatec and gated it is 0 since
no FF’s moved across them. The ALAP location of FF1 is at the
output of gatec, to arrive at which FF1 has to move across gatea,
gateb and gatec. This gives us the following bounds

�1 � r(a) � �1) r(a) = �1

�1 � r(b) � 0

�1 � r(c) � 0

0 � r(d) � 0) r(d) = 0

These bounds may now be applied to eliminate all of the nonnega-
tivity and period constraints except

r(b) � r(c) � 0

Therefore, we have reduced the problem complexity from four vari-
ables and seven constraints to twovariables, each with fixed upper
and lower bounds onelinear constraint.

4 Experimental Results

We performed minarea retiming using Minaret on the complete IS-
CAS89 benchmark suite but present results only on the larger cir-
cuits. The results presented are for unit delay gates, although we
emphasize that the algorithm is applicable when gates have non-
unit delays. The target clock period is set to be the minimum
achievable clock period for the circuit. Thus we get the smallest
number of FFs for the best clock period. We artificially created
some large circuits (myex1,myex2 and myex3) which are derived
from the circuits in the ISCAS89 benchmark suite.

We present the results in two tables. Table 1 presents the qual-
ity of minimum area retiming in the circuits. For each circuit, the

Table 1: Minarea Retiming using Minaret
Circuit jGj P # FFs Texec

ASTRA Minaret
s3330 1,789 14.0 331 110 0.22s
s5378 2,779 21.0 555 173 1.28s
s6669 3,080 26.0 719 305 2.20s
s9234.1 3,270 38.0 205 134 6.18s
s13207.1 7,791 51.0 629 446 10.38s
s15850.1 9,617 63.0 571 525 38.81s
s35932 16,065 27.0 1,729 1,729 7.56s
s38584.1 19,253 48.0 1,428 1,427 65.07s
s38417 21,370 32.0 1,616 1,370 146.92s
myex1 28,946 45.0 5,655 2,022 160.47s
myex2 40,661 35.0 11,591 2,803 421.50s
myex3 56,751 47.0 11,488 3,378 799.64s

number of gatesjGj, the target clock periodP , the number of FF’s
from applying ASTRA for minperiod retiming, the number of final
FF’s provided by Minaret, and CPU timeTexec on a DEC AXP
system 3000/900 workstation are shown. The number of FFs both
for ASTRA and Minaret are obtained after taking into account the
maximum sharing of FFs at all nodes in the circuit.

The significant decrease in the number of FF’s obtained by
Minaret proves the importance of minarea retiming. The results
also show that Minaret can perform minarea retiming for large cir-
cuits in very reasonable time. About 75% of the total execution
time Texec was spent in computing the period constraints, and the
rest in solving the LP.

Table 2: Reduction of Variables and Constraints in Minaret
Circuit F0 Favg Reduction

N A

s3330 63.46% 0.39 61.21% 84.84%
s5378 36.12% 0.85 34.91% 88.63%
s6669 40.02% 0.76 38.07% 94.14%
s9234.1 14.62% 1.55 13.54% 60.42%
s13207.1 21.49% 2.96 20.45% 92.14%
s15850.1 24.15% 1.52 22.87% 96.34%
s35932 55.27% 0.54 52.54% 86.38%
s38584.1 14.22% 2.13 12.42% 99.18%
s38417 0.88% 4.35 0.74% 7.45%
myex1 8.73% 2.26 8.09% 97.68%
myex2 1.80% 4.12 1.62% 67.81%
myex3 4.95% 3.98 4.57% 85.20%

Table 2 presents the reduction in the number of variables (N)
and the number of constraints (A), obtained by Minaret. The ba-
sis of this percentage calculation is the LP obtained after applying
Equation (9) only. Also shown are two metrics on the circuits:F0,
the percentage of gates found to be fixed, andFavg, the average
flexibility, i.e., the average value of (by�ay). The metric (by�ay)
gives the possible range inr value of gatey and hence is a mea-
sure of its flexibility. The reduction in problem size was seen to be
closely related to the flexibility in the circuit, which is as expected
since Minaret uses restricted mobility to reduce the problem size.
As is clear from the table Minaret obtains significant reduction in
the number of constraints over the work in [8]. For example, for the
circuit s38584.1 the number of constraints. reduced from 11 mil-
lion to less than 0.1 million. Although not shown in the results, the
time spent in computing the bounds was found to be insignificant
at about 1% to 2% of the total execution time. Thus Minaret would
be useful even if a circuit has a unusually high flexibility.

We also note that in [8] the circuit s38584 needed 39 hours of

CPU time while Minaret could retime it in about one minute. We
point out, though, that such a comparison is not entirely fair since
(a) the results are generated on different platforms and (b) the cir-
cuits used in [8] are modified ISCAS89 benchmarks and have a
much smaller number of gates. (for example, s38584.1 has 7882
gates in [8] while the original benchmark used here has 19,253
gates).

Table 3: Area-Delay Tradeoff
Circuit P Favg F0 Reduction

N A

s1269 19.0 0.49 54.77% 51.50% 93.27%
s1269 22.0 0.69 36.52% 32.03% 79.36%
s1269 25.0 0.79 25.96% 22.88% 74.14%
s1269 28.0 0.87 18.43% 16.34% 72.36%
s1269 32.0 0.92 13.57% 11.50% 72.55%
s3330 14.0 0.39 63.46% 61.21% 84.89%
s3330 16.0 0.69 35.59% 33.36% 64.23%
s3330 18.0 0.87 22.40% 20.98% 53.10%
s3330 20.0 0.94 19.14% 17.86% 50.99%
s3330 22.0 0.99 15.98% 15.05% 52.84%
prolog 13.0 0.55 49.77% 47.84% 85.79%
prolog 15.0 0.82 27.37% 25.50% 73.63%
prolog 17.0 0.94 21.23% 19.73% 67.02%
prolog 19.0 1.00 17.72% 16.62% 64.09%
prolog 21.0 1.06 15.67% 14.86% 59.17%

Table 3 shows the variation in problem size reduction and cir-
cuit flexibility with respect to different clock periods. As expected
the circuit flexibility increases with the target clock period. Thus,
Minaret gives better problem size reduction on the more useful
problem of retiming circuits under tight clock periods.

5 Conclusion

An improved algorithm for minarea retiming has been presented.
The contributions of this work are twofold. Firstly, it reconciles the
Leiserson-Saxe algorithm with the ASTRA algorithm and shows
the relation between them. Secondly, it utilizes this relationship to
good purpose by modifying the ASTRA algorithm to make avail-
able information from the skew-retiming equivalence that is of great
benefit in solving the minarea retiming problem under the Leiserson-
Saxe framework. The bounds obtained by the ASTRA algorithm
provide a efficient way to significantly reduce the size of the linear
program in the Leiserson-Saxe framework.

Experimental results on benchmark circuits in the ISCAS89
benchmark suite have been presented, and the procedure is seen
to give good benefits.The number of variables and the number of
constraints were dramatically reduced. The entire ISCAS89 bench-
mark suite could be retimed for minarea in less than five minutes.
Minaret could also retime a circuit (myex3) with over 56,000 gates
in under 15 minutes.

Minaret also has a reduced memory requirement since a signif-
icant number of constraints are not stored. In our implementation
of [8] we found that large circuits can have constraints in millions,
which makes the memory requirement a bottleneck. To the best of
our knowledge, no other retiming algorithm incorporates pruning
methods to reduce the number of variables. This reduction in the
number of variables is important because (a) it significantly reduces
the problem solution time and (b) it helps in pruning the number of
constraints significantly.

We also attempted to reduce the problem size by other means
like use of transitivity to eliminate constraints. For example, given
the constraintsxk�xj � ckj,xj�xi � cji, andxk�xi � cki, if

ckj + cji � cki, then the last of the three constraints is redundant.
However the reduction in constraints by this method was much
less than that achieved by Minaret even for circuits like s38417
where Minaret did not perform well. Furthermore, the computa-
tional complexity of redundant constraint removal by transitivity is
orders of magnitude more than the one used in Minaret, and unlike
Minaret, transitivity can only reduce the number of constraints but
not the number of variables in the problem.

REFERENCES

[1] C. Leiserson, F. Rose, and J. B. Saxe, “Optimizing syn-
chronous circuitry by retiming,” inProceedings of the 3rd
Caltech Conference on VLSI, pp. 87–116, 1983.

[2] C. E. Leiserson and J. B. Saxe, “Retiming synchronous cir-
cuitry,” Algorithmica, vol. 6, pp. 5–35, 1991.

[3] A. Ishii, C. E. Leiserson, and M. C. Papaefthymiou, “Opti-
mizing two-phase, level-clocked circuitry,” inAdvanced Re-
search in VLSI and Parallel Systems: Proceedings of the 1992
Brown/MIT Conference, pp. 246–264, 1992.

[4] B. Lockyear and C. Ebeling, “Optimal retiming of level-
clocked circuits using symmetric clock schedules,”IEEE
Transactions on Computer-Aided Design, vol. 13, pp. 1097–
1109, Sept. 1994.

[5] K. N. Lalgudi and M. Papaefthymiou, “DeLaY: An effi-
cient tool for retiming with realistic delay modeling,” inPro-
ceedings of the ACM/IEEE Design Automation Conference,
pp. 304–309, 1995.

[6] G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited
and reversed,”IEEE Transactions on Computer-Aided De-
sign, vol. 15, pp. 348–357, Mar. 1996.

[7] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential
circuits for low power,” inProceedings of the IEEE/ACM In-
ternational Conference on Computer-Aided Design, pp. 398–
402, 1993.

[8] N. Shenoy and R. Rudell, “Efficient implementation of retim-
ing,” in Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design, pp. 226–233, 1994.

[9] R. B. Deokar and S. S. Sapatnekar, “A fresh look at re-
timing via clock skew optimization,” inProceedings of the
ACM/IEEE Design Automation Conference, pp. 310–315,
1995.

[10] S. S. Sapatnekar and R. B. Deokar, “Utilizing the retim-
ing skew equivalence in a practical algorithm for retiming
large circuits,” IEEE Transactions on Computer-Aided De-
sign, vol. 15, pp. 1237–1248, Oct. 1996.

[11] N. Maheshwari and S. S. Sapatnekar, “A practical algo-
rithm for retiming level-clocked circuits,” inProceedings
of the IEEE International Conference on Computer Design,
pp. 440–445, 1996.

[12] J. P. Fishburn, “Clock skew optimization,”IEEE Transactions
on Computers, vol. 39, pp. 945–951, July 1990.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction
to Algorithms. New York, NY: McGraw-Hill, 1990.

[14] G. D. Micheli,Synthesis and Optimization of Digital Circuits.
New York, NY: McGraw-Hill, 1994.

[15] M. S. Bazaraa, J. J. Javis, and H. Sherali,Linear Program-
ming and Network Flows. New York, NY: John Wiley, 1977.

