
GNNIE: GNN Inference Engine with Load-balancing
and Graph-specific Caching

Sudipta Mondal, Susmita Dey Manasi, Kishor Kunal, Ramprasath S and Sachin S. Sapatnekar
University of Minnesota, Minneapolis, MN 55455, USA

ABSTRACT
Graph neural networks (GNN) inferencing involves weighting ver-
tex feature vectors, followed by aggregating weighted vectors over
a vertex neighborhood. High and variable sparsity in the input
vertex feature vectors, and high sparsity and power-law degree
distributions in the adjacency matrix, can lead to (a) unbalanced
loads and (b) inefficient random memory accesses. GNNIE ensures
load-balancing by splitting features into blocks, proposing a flexible
MAC architecture, and employing load (re)distribution. GNNIE’s
novel caching scheme bypasses the high costs of random DRAM
accesses. GNNIE shows high speedups over CPUs/GPUs; it is faster
and runs a broader range of GNNs than existing accelerators.

KEYWORDS
GNN, hardware accelerator, graph-specific caching, load balancing
ACM Reference Format:
Sudipta Mondal, Susmita Dey Manasi, Kishor Kunal, Ramprasath S and
Sachin S. Sapatnekar . 2022. GNNIE: GNN Inference Engine with Load-
balancing and Graph-specific Caching. In Proceedings of the 59th ACM/IEEE
Design Automation Conference (DAC) (DAC ’22), July 10–14, 2022, San Fran-
cisco, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3489517.3530503

1 INTRODUCTION
Deep learning accelerators have largely focused on data with Eu-
clidean embeddings, e.g., audio/video/images/speech. Many real-
world problems use graphs to model relationships. Inferencing on
large, unstructured, and sparse graphs requires specialized graph
neural networks (GNNs) [1–6]. GNNs perform two operations per
layer: (a) Weighting multiplies vertex feature vectors by a weight
matrix. (b) Aggregation consolidates information from neighbors
to compute vertex feature vectors for the next layer.

GNN accelerator efficiency is affected by data sparsity. During
Weighting, the input node feature vectors can have high and variable
levels of sparsity, leading to unbalanced computations. In Aggre-
gation, computations over vertex neighborhoods are defined by
the graph adjacency matrix, which has high sparsity (> 99.8% for
datasets in this paper, vs. 10%–50% sparsity for DNN data). Vertex
degrees show a power-law distribution: most vertices have very low
degree, but a small number of vertices have extremely high degree
(in the Reddit dataset, 11% of vertices cover 88% of all edges). This
leads to random memory access patterns and poor data locality.

This work was supported in part by the Semiconductor Research Corporation (SRC).

DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
59th ACM/IEEE Design Automation Conference (DAC) (DAC ’22), July 10–14, 2022, San
Francisco, CA, USA, https://doi.org/10.1145/3489517.3530503.

Key desirable attributes of a GNN accelerator are the ability to:
(1) handle a diverse set of GNNs, from high-accuracy GATs to
faster but less accurate GNNs (GCN, GraphSAGE). (2) efficiently
access data from DRAM, hiding overheads of random access pat-
terns. (3) load-balance tasks during both Weighting (due to high
input node feature vector sparsity) and Aggregation (due to high
adjacency matrix sparsity and power-law distribution).

Weighting performs matrix-vector multiplication similar to con-
volutional neural network (CNN) computations, but CNN accelera-
tors [7–10] are inefficient for graph data. Aggregation operates on
graph neighborhoods and resembles graph analytics, but graph pro-
cessing accelerators [11–13] are designed to perform lightweight
computations, significantly lower than the needs of a GNN. Exten-
sions of CNN/graph processing engines are inadequate.

BlockGNN [14] optimizes Weighting by applying an FFT and
block-circulant constraint on the weight matrix. HyGCN [15], GN-
Nerator [16], and DyGNN [17] pipeline separate engines for Ag-
gregation and Weighting; DyGNN also employs pruning to reduce
vertex/edge redundancy. Such architectures are susceptible to stalls
due to (i) unbalanced loads between engines (ii) workload varia-
tions in each engine due to variable input feature vector sparsity
and power-law degree distributions. HyGCN performs Aggregation
before Combination, but the opposite order is cheaper [18, 19]. To
reduce random memory access, these approaches use sharding. In
HyGCN, this has limited parallelism as the sliding window of the
current shard depends on the shrinking of the previous shard. None
of these methods accounts for power-law behavior. AWB-GCN [18],
limited only to GCNs, views the computations as sparse-dense ma-
trix multiplications, but their graph-agnostic view of Aggregation
leads to numerous costly off-chip accesses due to cache misses.

In prior work, (1) load balancing schemes incur high communi-
cation/control overheads [18, 19]; (2) GAT computations are unop-
timized (GNNIE reorders them for efficiency); (3) graph structure is
not exploited to manage adjacency matrix sparsity effects.

The GNNIE inference engine handles sparsity in both the input
feature vectors and adjacency matrix. Our contributions are:
• Hardware efficiency, using a single engine for regular-structured
Weighting and irregular-structured Aggregation computations.
• Versatility in efficiently executing of a range of GNNs, from lower
accuracy/lower computation (GCN, GraphSAGE) to higher accu-
racy/higher computation (GATs).
• Load-balanced Weighting for high PE utilization by (i) splitting
vertex features into blocks, (ii) reordering computations on a flexible
MAC (FM) architecture, and (iii) static load redistribution.
• Load-balanced Aggregation through a mapping scheme to maxi-
mize PE utilization. A novel decomposition for GAT computation
results in linear-complexity attention vector multiplication.
• Lightweight dynamic caching, with random memory accesses
only to on-chip cache, avoiding costly random DRAM accesses.

https://doi.org/10.1145/3489517.3530503
https://doi.org/10.1145/3489517.3530503
https://doi.org/10.1145/3489517.3530503

2 BACKGROUND
In layer 𝑙 of a GNN (layer 0 is the input), the vertex feature vector
for vertex 𝑖 is an 𝐹 𝑙 -dimensional row vector, h𝑙

𝑖
. Over neighboring

vertices 𝑗 , vectors h𝑙−1
𝑗

of layer 𝑙 − 1 are aggregated to create h𝑙
𝑖
.

Table 1 lists the operations for various GNNs. Specifically:
Weighting multiplies the vertex feature vector, h𝑙−1

𝑖
of each vertex

by a weight matrix,𝑊 𝑙 , of dimension 𝐹 𝑙−1 × 𝐹 𝑙 .
Aggregation combines the weighted vertex feature vectors over
N𝑖 for vertex 𝑖 . For GCN/GATs/GINConv, N (𝑖) = {𝑖} ∪ 𝑁 (𝑖), where
𝑁 (𝑖) is the one-hop neighborhood of 𝑖 . For GraphSAGE, N (𝑖) =
{𝑖} ∪ 𝑆𝑁 (𝑖), where 𝑆𝑁 (𝑖) is a random sample of 𝑁 (𝑖). At vertex 𝑖:
GCNs [2]: Each product h𝑙−1

𝑗
𝑊 𝑙 , 𝑗 ∈ N (𝑖), is multiplied by 1/

√︁
𝑑𝑖𝑑 𝑗

(𝑑∗ is the vertex degree). The result is summed.
GraphSAGE [3]: The products h𝑙−1

𝑗
𝑊 𝑙 are combined over 𝑗 ∈ N (𝑖)

using aggregator 𝑎𝑘 (typically, mean, max, or pooling).
GATs [4]: For each edge (𝑖, 𝑗), an inner product with a learned
attention vector a𝑙 finds the normalized attention coefficient

𝛼𝑖 𝑗 = softmax(LeakyReLU(a𝑙𝑇 · [h𝑙−1𝑖 𝑊 𝑙]| |[h𝑙−1𝑗 𝑊 𝑙]))
followed by ∑

𝑗 ∈{𝑖 }∪N(𝑖) 𝛼𝑖 𝑗h𝑙−1𝑗
𝑊 𝑙 , a weighted aggregation.

GINConv [5]: Feature vectors in N𝑖 are summed and added to 𝜖𝑙
times the feature vector of 𝑖 , where 𝜖𝑙 is a learned parameter, using
a multilayer perceptron (MLP) with weights𝑊 𝑙 and b𝑙 :

h𝑙𝑖 = MLP𝑙
(
(1 + 𝜖𝑙)h𝑙−1𝑖 +∑

𝑗 ∈N(𝑖) h𝑙−1𝑗
,𝑊 𝑙 , b𝑙

)
(1)

The activation operator 𝜎 (softmax or ReLU), is applied to the
aggregated weighted vertex feature vector, yielding the updated h𝑙

𝑖
.

For GINConv, activation is built into the MLP.
DiffPool [20] can be combined with any GNN to reduce data

volume. It uses two GNNs: one extracts vertex embeddings for
classification, and one extracts embeddings for hierarchical pooling.

GCN computation can be written as h𝑙
𝑖
= 𝜎(𝐴h𝑙−1

𝑖
𝑊 𝑙), where

𝐴 = 𝐷−1/2(𝐴 + 𝐼)𝐷−1/2 is the normalized adjacency matrix, 𝐼 is the
identity matrix, and 𝐷𝑖𝑖 =

∑
𝐴𝑖 𝑗 . This can be computed either as

(𝐴×h𝑙−1
𝑖

)×𝑊 𝑙 or𝐴× (h𝑙−1
𝑖

×𝑊 𝑙). We use the latter, which requires
an order of magnitude fewer computations [18, 19].

3 ACCELERATOR ARCHITECTURE
The block diagram of the proposed accelerator is illustrated in Fig. 1,
and it consists of the following key components:
(1) HBM DRAM: The high-bandwidth memory (HBM) DRAM stores
information about the graph. The adjacency matrix is stored in
sparse compressed sparse row (CSR) format and run-length com-
pression (RLC) is used for encoding sparse input feature vectors.
(2) Memory interface: The input buffer stores vertex features for
the current layer 𝑙 , i.e., h𝑙−1

𝑖
, and the edge connectivity information

of the subgraph. Double-buffering is used to reduce DRAM latency:
off-chip data is fetched while the PE array computes. The output
buffer caches intermediate results, including the result of multipli-
cation by𝑊 𝑙 after Weighting, and the result after Aggregation. The
Table 1: Summary of operations in layer 𝑙 of various GNNs.
GCN h𝑙

𝑖
= 𝜎

(∑
𝑗 ∈{𝑖 }∪𝑁 (𝑖)

1√
𝑑𝑖𝑑 𝑗

h𝑙−1
𝑗

𝑊 𝑙

)
GraphSAGE h𝑙

𝑖
= 𝜎

(
𝑎𝑘

(
h𝑙−1
𝑗

𝑊 𝑙∀ 𝑗 ∈ {𝑖} ∪ 𝑆𝑁 (𝑖)
))

GAT h𝑙
𝑖
= 𝜎

(∑
𝑗∈{𝑖}∪𝑁 (𝑖) exp(𝑒𝑖 𝑗)h𝑙−1𝑗

𝑊 𝑙∑
𝑗∈{𝑖}∪𝑁 (𝑖) exp(𝑒𝑖 𝑗)

)
; 𝑒𝑖 𝑗 = LeakyReLU(a𝑇 · [h𝑙−1

𝑖
𝑊 𝑙 | |h𝑙−1

𝑗
𝑊 𝑙])

GINConv h𝑙
𝑖
= MLP𝑙

(
(1 + 𝜖𝑙)h𝑙−1

𝑖
+∑

𝑗 ∈N(𝑖) h𝑙−1𝑗
,𝑊 𝑙 , b𝑙

)

Fig. 1. Block diagram of the proposed architecture.

weight buffer holds the values of𝑊 𝑙 during Weighting, and, for
GAT computations, the attention vector during Aggregation. The
memory access scheduler coordinates off-chip memory requests.
(3) An array of processing elements (PEs): The array consists of an
𝑀×𝑁 array of computation PEs (CPEs). Each CPE has two scratch
pads (spads) and MACs. Within the array of CPEs, we merge multi-
ple columns of Special Function Units (SFUs) (exp, LeakyReLU,
division) [grey blocks], and a row of merge PEs (MPEs) [one for each
CPE column; shown in red blocks in (Fig. 1)]. Interleaved placement
allows low latency and communication overhead with CPEs. For
exponentiation, we use an accurate, low-area lookup-table-based
implementation. Merge PEs (MPEs) aggregate partial results of
vertex features sent from its designated CPE column duringWeight-
ing. A bank of partial sum (psum) spads holds intermediate results
from the MPE until they are sent to the output buffer.
(4) The controller coordinates operations: assigning vertex features
to CPEs; workload reordering among CPEs; sending CPE results to
MPEs; sending MPE data to the output buffer; writing to DRAM.

4 MAPPINGWEIGHTING TO CPES
4.1 Scheduling Operations in the CPEs
The Weighting step multiplies the sparse feature row vector h𝑙−1

𝑖

with the dense weight matrix𝑊 𝑙 . The feature vectors are fetched
from DRAM, core computations are performed in the CPEs, and
the results from the CPEs are assimilated in the MPEs. Our novel
scheduling methodology keeps the CPEs busy during the computa-
tion, so that Weighting is not memory-bounded. We partition data
in two ways:
(1) Across the vertex feature vector: At a time, we multiply a
block of 𝑘 elements of h𝑙−1

𝑖
with 𝑁 columns of𝑊 𝑙 (Fig. 2). To

process the entire feature vector in the CPE array, 𝑘 = ⌈𝐹 𝑙−1/𝑀⌉.
(2) Across vertices: A set of 𝑠 feature vectors is processed in the
CPE array (Fig. 2), where 𝑠 is constrained by the input buffer size.
Our weight-stationary scheme processes one feature vector of a set
at a time (Fig. 3), until all ⌈|𝑉 |/𝑠⌉ sets are processed.

In this scheme, we fetch 𝑁 columns of the weight matrix,𝑊 𝑙 ,
from the DRAM to the weight buffer and load the CPEs as:
• Each column of𝑊 𝑙 is loaded to a CPE column in chunks of 𝑘
rows, i.e.,𝑊(𝑖𝑘 :(𝑖+1)𝑘−1, 𝑗) is loaded into CPE (𝑖, 𝑗).
• For each feature vector in a set, each 𝑖th subvector, of size 𝑘 , is
broadcast to the entire CPE row 𝑖 . This is indicated by h(𝑖𝑘 :(𝑖+1)𝑘−1)
in Fig. 3.

2

Fig. 2. Mapping Weighting operations to the CPE array.
After loading CPEs the multiplication between a feature vector and
the 𝑁 columns of𝑊 𝑙 is carried out. If a block of feature vector is
all-zeros, the CPE skips this computation. The sparsity of input
vectors allows skipping, but if the entire vector is processed at a
time (as in prior work), it is nonzero and skipping is not possible.

A pass (Fig. 2) is completed when all vertex feature vectors
across all sets have finished multiplication with the 𝑁 columns of
𝑊 𝑙 . Thus h𝑙−1

𝑖
𝑊 𝑙 for a pass is carried out as follows:

h𝑙−1𝑖 𝑊 𝑙 =
[
𝑁−1∑︁
𝑖=0

h𝑙−1(0:𝑘−1)𝑊
𝑙
(0:𝑘−1,𝑖), · · · ,

𝑁−1∑︁
𝑖=0

h𝑙−1
((𝑀−1)𝑘 :𝐹𝑙−1)

𝑊 𝑙

((𝑀−1)𝑘 :𝐹𝑙−1,𝑖)

]
(2)

At the end of a pass, the next set of 𝑁 columns of𝑊 𝑙 is loaded.
Double-buffering is used so that fetching the next blocks of weights
overlaps computation. To leverage input data sparsity, a zero detec-
tion buffer is used to skip CPE computations involving zeros.

The partial results for an element of the transformed feature
vectors are sent from CPEs in each column to its designated MPE
for accumulation, along with a tag which denotes their vertex id.
As stated earlier, psum spads hold the partially accumulated results.
The final result, i.e., one element of h𝑙−1

𝑗
𝑊 𝑙 , is written to the output

with its vertex id, and eventually written back to DRAM.

4.2 Load Balancing for Weighting
High and variable input feature vector sparsity results in nonuni-
form distribution of non-zeros among 𝑘-subvector blocks: sparse
blocks compute rapidly (“rabbits”) while dense blocks take longer
(“turtles”), causing workload imbalance. Since MPEs have a limited
number of psum slots, this imbalance requires stalls, contributing
to inefficiency. We combat this by proposing two mechanisms:
(1) Flexible MAC (FM) Architecture: To avoid stalls and speed
up computation the number of MACs per CPE can be increased
uniformly; this helps “turtles” but is overkill for “rabbits.” We divide

Fig. 3. Weight-stationary linear transform of vertex features.

the CPE array into 𝑔 row groups, each with an equal number of
rows. The number of MACs per CPE, |𝑀𝐴𝐶 |𝑖 , is monotonically
nondecreasing along the rows: |𝑀𝐴𝐶 |1≤ |𝑀𝐴𝐶 |2≤ · · · ≤ |𝑀𝐴𝐶 |𝑔 .

The input buffer statically assigns vertex feature blocks to CPE
rows based on their nonzero count. In a linear-time preprocessing
step, the 𝑘-element blocks are binned based on the number of nonze-
ros, where the number of bins equals the number of CPE groups.
The bins map to CPE groups: blocks with the fewest nonzeros are
statically scheduled to go to the first (low-MAC) rows, those with
the next most nonzeros go to the next CPE row group, and so on.
(2) Load Redistribution (LR): The static FM-based workload dis-
tribution does not achieve full balance. We pair CPE rows to redis-
tribute loads, offloading a portion of workload from heavily loaded
to lightly loaded CPE rows. To perform computation on the of-
floaded workloads, the weights must be transferred with the data.
To minimize communication overhead, we first finish the computa-
tion in FM, to the point where the current weights are no longer
needed, before applying LR. The spads for weights in these CPE
rows are loaded with weights for the offloaded workloads.

5 AGGREGATION COMPUTATIONS
For most GNNs, Aggregation sums over the neighbors of a vertex,
but GATs must also compute attention coefficients. We first address
this and then consider Aggregation operations for all GNNs.

5.1 Optimizing GAT Computations
Reordering GAT Computations: Our method reorders GAT com-
putations for efficiency. The first step in finding attention coefficient
𝛼𝑖 𝑗 for vertices 𝑖, 𝑗 is to multiply the 2𝐹 𝑙 -dimensional attention vec-
tor, a𝑙 = [a𝑙1 a

𝑙
2], by (𝜼𝒘𝑙

𝑖
, 𝜼𝒘𝑙

𝑗
), two concatenated 𝐹 𝑙 -dimensional

weighted vertex feature vectors (here, 𝜼𝒘𝑙 = h𝑙−1𝑊 𝑙). Then
𝑒𝑖 𝑗 = a𝑙 𝑇1 · 𝜼𝒘𝑙

𝑖 + a𝑙 𝑇2 · 𝜼𝒘𝑙
𝑗 = 𝑒𝑖,1 + 𝑒 𝑗,2 (3)

where 𝑒𝑖,1 = a𝑙 𝑇1 · 𝜼𝒘𝑙
𝑖
, 𝑒 𝑗,2 = a𝑙 𝑇2 · 𝜼𝒘𝑙

𝑗
. The normalized attention

coefficient takes this through a LeakyReLU and softmax over 𝑁 (𝑖)
𝛼𝑖 𝑗 = softmax

(
LeakyReLU(𝑒𝑖 𝑗)

)
(4)

A naïvemethodwould fetch𝜼𝒘𝑙
𝑗
from each neighbor 𝑗 of 𝑖 , compute

𝑒𝑖 𝑗 using (3), and perform softmax to find 𝛼𝑖 𝑗 . However, since 𝑒 𝑗,2
is required by every vertex for which 𝑗 is a neighbor (not just 𝑖),
this would needlessly recompute its value at each neighbor of 𝑗 .
Reordering to avoid redundancy, for each vertex 𝑖 , we compute
(a) 𝑒𝑖,1 = a𝑙 𝑇1 𝜼𝒘𝑙

𝑖
, used to compute 𝛼𝑖∗ at vertex 𝑖 .

(b) 𝑒𝑖,2 = a𝑙 𝑇2 𝜼𝒘𝑙
𝑖
, used to compute 𝛼 𝑗∗ at vertex 𝑗 ∈ 𝑁 (𝑖).

Since a𝑙 = [a𝑙1 a
𝑙
2] is identical for each vertex, we calculate 𝑒𝑖,2 just

once at vertex 𝑖 , and transmit it to vertices 𝑗 ∈ 𝑁 (𝑖).
For |𝑉 | vertices and |𝐸 | edges, the naïve computation performs

𝑂(|𝐸 |) multiplications per vertex, for a cost of 𝑂(|𝑉 | |𝐸 |). Our re-
ordering has 𝑂(|𝐸 |) operations over all vertices for 𝑂(|𝑉 |+|𝐸 |) com-
putation, i.e., latency/power are linear in graph size.
Mapping Attention Vector Multiplication: As in Weighting, we
use a block strategy to distribute computation in the CPE array.
Vector 𝜼𝒘𝑖 is distributed across all 𝑁 columns of a row, so that the
size of each block allocated to a CPE for vertex 𝑖 is 𝐺 = ⌈𝐹 𝑙/𝑁 ⌉.
Each CPE column processes 𝑉𝑎 vertices, where 𝑉𝑎 depends on the
number of columns 𝑁 in the CPE array, and also depends on the
size of the output buffer |𝑂𝐵 |, i.e., 𝑉𝑎 = |𝑂𝐵 |/𝑁 .

3

Fig. 4. Data flow corresponding to computation for an edge.

This dot product computation is similar to the weight-stationary
scheme in Weighting. Attention vectors remain stationary until a
pass through all vertices. Unlike Weighting, 𝜼𝒘𝑙

𝑗
and a𝑙 are dense,

and CPE load balancing is unnecessary. After all 𝑉𝑎 vertices in
the row are processed, the spad that contains a𝑙1 is loaded with a𝑙2,
and the second inner product computation for the 𝑉𝑎 vertices is
performed, reusing 𝜼𝒘 . The computed 𝑒𝑖,1 and 𝑒𝑖,2 are appended to
the feature vector of vertex 𝑖 and written back to the output buffer.

5.2 Mapping Edge-based Computations
The last step requires aggregation from each neighbor of a vertex.
We process edges in parallel in the CPE array. All GNNs perform
edge-based summations followed by an activation function; for
GATs, the weights for summation are computed as described above.
Load Distribution: During Aggregation, for the subgraph of ver-
tices in the input buffer, edge data is accumulated by pairwise
assignment to CPE spads. Due to power-law behavior, vertex de-
grees in the subgraph may have a large range. To distribute the load,
aggregation summations over all vertices are divided into pairwise
summations assigned to CPEs, with results accumulated in MPEs.
GATs: The final step in computing the attention coefficient 𝛼𝑖 𝑗
involves edge-based computations (Equation (4)):
• the addition, 𝑒𝑖 𝑗 = 𝑒𝑖,1 + 𝑒 𝑗,2 (Equation (3)
• a LeakyReLU step, LeakyReLU(𝑒𝑖 𝑗)
• a softmax step, exp(𝑒𝑖 𝑗)𝜼𝒘 𝑗/

∑
𝑘∈{𝑖 }∪𝑁 (𝑖) exp(𝑒𝑖𝑘)

Each edge between vertices 𝑖, 𝑗 contributes one 𝑒𝑖 𝑗 to the numerator
and denominator of softmax. These computations are parallelized
in the CPEs over all vertex neighbors using pull-based aggregation.

The computation of numerator in the softmax step is shown
in Fig. 4. For a target vertex 𝑖 connected to a neighbor 𝑗 by edge
(𝑖, 𝑗), 𝜼𝒘𝑖 , 𝑒𝑖,1, and 𝑒𝑖,2, are loaded into one spad of a CPE, and the
corresponding data for 𝑗 into the other spad. For vertex 𝑖 , the result
𝑒𝑖,1 + 𝑒 𝑗,2 is sent to the SFU to perform LeakyReLU followed by
exponentiation. The output returns to the CPE and is multiplied
with 𝜼𝒘𝑙

𝑗
. A similar operation is performed for vertex 𝑗 .

Other GNNs: For GCN, GraphSAGE, and GINConv, Aggregation
sumsweighted vertex feature vectors over all neighbors (or a sample
of neighbors for GraphSAGE) of each vertex. This is similar to but
simpler than the computation in Fig. 4: just addition is performed.
The partial results for a vertex (partial sum for a general GNN, or
the summed numerator and softmax denominator for a GAT) are
written to the output buffer after each edge computation. For a GAT,
the values of exp(𝑒𝑖𝑘) are also added over the neighborhood to create
the softmax denominator. Finally, the accumulation over neighbors
is divided by the denominator, in the SFU to obtain the result. When
all components of the sum for vertex 𝑖 are accumulated, the result
is sent through activation in the SFU and written to DRAM.

Fig. 5. Example illustrating the subgraph in the input buffer
(left) and its evolution after cache replacement (right).

6 GRAPH-SPECIFIC CACHING
Aggregation intensively accesses the adjacency matrix. Computa-
tional efficiency requires graph-specific caching to maximize the
reuse of the cached data in the input buffer and minimize off-chip
random memory accesses. We propose a novel frequency-based
caching policy that tracks the number of unprocessed neighbors
of each vertex. The scheme ensures that all random-access patterns
are confined to on-chip buffers and off-chip fetches are sequential.

Frequency-based caching for graphs has been used in Cagra [21],
a software framework, using a programming interface. In contrast,
GNNIE uses a hardware-centric dynamic scheme that tracks fre-
quencies with minimal hardware overhead. Another cache man-
agement scheme for graph analytics, GRASP [22], employs a most-
recently-used (MRU) approach, but this is based on past history,
while GNNIE’s approach measures future potential for a vertex.
Subgraph in the Input Buffer: Edge-mapped computations in-
volve a graph traversal to aggregate information from neighbors. At
any time, a set of vertices resides in the input buffer: these vertices,
and the edges between them, form a subgraph of the original graph.
In each iteration, we process edges in the subgraph to perform
partial Aggregation (Section 5.2) for the vertices in the subgraph.
Under our proposed caching strategy, ultimately all edges in the
graph will be processed, completing Aggregation for all vertices.

Consider the example graph, with vertices 𝑉1 through 𝑉16, in
Fig. 5. The highest degree vertices are first cached into the input
buffer: vertices 𝑉1, 𝑉2, and 𝑉3 of degree 5, vertices 𝑉5 and 𝑉6 of
degree 2, and 𝑉4 and 𝑉7 with degree 1. The subgraph, Subgraph 1,
consists of these vertices and edges 𝐸1 to 𝐸6 which connect them.
After edges 𝐸1 through 𝐸6 are processed, vertices 𝑉4 through 𝑉7
have no unprocessed edges and may be replaced in the cache by𝑉8
through 𝑉11 in Iteration 2. This creates Subgraph 2, the subgraph
with edges 𝐸7 through 𝐸10), which is processed next, and so on.
Cache Replacement Policy: Vertices are replaced after computa-
tion of each subgraph using a replacement policy that prioritizes
retention of vertices with the most unprocessed edges (denoted by
𝛼𝑖 for vertex 𝑖). Such vertices appear more frequently in the list of
neighbors for other vertices, this increases the likelihood of finding
both the source and destination of edges in the cache.

The policy requires inexpensive preprocessing that bins vertices
in order of their degrees, differentiating high-degree vertices from
medium-/low-degree vertices to prioritize higher-degree vertices.
After preprocessing, vertices of the graph are stored contiguously
in DRAM in descending degree order of the bins. Ties are broken

4

Fig. 6. Input buffer replacement policy during Aggregation.

in dictionary order of vertex IDs. This preprocessing step and the
replacement policy enable GNNIE to avoid random DRAM accesses.

Fig. 6 illustrates our policy, managed by a cache controller using
a 4-way set associative cache. Vertices are stored contiguously in
DRAM in descending degree order. If the input buffer capacity is 𝑛
vertices, data for vertices 1 to 𝑛 are initially loaded from DRAM.

The algorithm processes each such set of vertices in the input
buffer in an iteration. We track 𝛼𝑖 for vertex 𝑖 , decrementing it as
each neighbor is processed. Tracking 𝛼𝑖 requires minimal hardware
overhead (a decrementer and one word of storage per vertex). Ini-
tially 𝛼𝑖 is the vertex degree. At the end of iteration 1, i.e., after
finishing computation of the subgraph corresponding to the first 𝑛
vertices, if 𝛼𝑖 < 𝛾 for any vertex, where 𝛾 is a predefined threshold,
it is replaced from the cache. We replace 𝑟 vertices in each iteration
using dictionary order if fewer (or more) than 𝑟 candidates are
available. These vertices are replaced in the input buffer by vertices
(𝑛 + 1) to (𝑛 + 1 + 𝑟) from DRAM: these have the next highest vertex
degrees. For each such vertex 𝑖 , we write back the vertex data with
𝛼𝑖 value into DRAM. When all vertices are processed once, we have
completed a Round. This continues until for all vertices 𝛼𝑖 = 0.

Similarly, the partial sums for the vertex feature vector in the
output buffer are updated after each iteration and eventually written
back to DRAM if all accumulations are complete for any h𝑙

𝑖
. Due to

limited output buffer capacity, we use degree-based criterion for
prioritizing writes to the output buffer vs. DRAM.
How our policy avoids random-access DRAM fetches: Our
policy makes random accesses only to the input buffer; all DRAM
fetches are sequential. In the first Round, data is fetched from con-
secutive DRAM locations. While performing aggregation for each
vertex of the current subgraph the feature data of its neighbors are
fetched from the cache into the CPE array. Consequently, a vertex
feature maybe fetched multiple times. Though this process may
incur random accesses, they are limited to the cache, which has far
better random-access bandwidth than DRAM.

Fig. 7. Histogram of 𝛼 through various Rounds (Pubmed).
The inset shows a magnified view.

Vertices evicted from the cache, with 𝛼𝑖 < 𝛾 , may be fetched
again in a subsequent Round. Even in these Rounds, data blocks
are brought into cache in serial order from DRAM: there are no
random accesses from DRAM. During DRAM fetches, a cache block
is skipped if all of its vertices are fully processed. Tracking of un-
processed edges in a cache block is similar to tracking 𝛼𝑖 .

The effectiveness of the approach is illustrated in Fig. 7, which
shows the histogram of𝛼𝑖 distributions in the input buffer after each
Round. The initial distribution corresponds to the power-law degree
distribution, and in each successive Round, the histogram grows
flatter – with both the peak frequency and maximum 𝛼 becoming
lower, thus mitigating the problems of power-law distribution.

7 EVALUATION
Experimental Setup: We develop a simulator to measure the
number of GNNIE execution cycles.We use Ramulator [23] tomodel
off-chip access to HBM (256 GB/s, 3.97pJ/bit [24]), and CACTI 6.5 for
the area, energy consumption, and access latency of on-chip buffers.
A Verilog description of GNNIE is synthesized using Synopsys
Design Compiler with a 32nm standard VT cell library, resulting in
a chip area of 15.6mm2 and frequency of 1.3GHz.

GNNIE is evaluated on the graph datasets in Table 2, whose size
is representative of edge applications, using five GNNs (GAT, GCN,
GraphSAGE, GINConv, DiffPool). All GNNs have one hidden layer,
except GINConv which has two; each hidden layer has 128 channels.
The GAT hidden layer uses eight 16-dimensional attention heads.
GNNIE Configuration:We configure GNNIE as follows:
Buffers: Output buffer: 1MB; Weight buffer: 128KB; Input buffer:
256KB for smaller datasets (CR, CS), 512KB for larger datasets (PB,
RD); reported area/power correspond to the larger input buffer.
CPE array with flexible MACs: 16 × 16 array; 4 MACs (rows 1–8), 5
MACs (rows 9–12), 6 MACs (rows 13–16). The number of MACs
per CPE was chosen through design space exploration.
Performance comparisons with CPU and GPU:We compare
all GNNs against PyTorch Geometric (PyG) [25], implemented as:
(a) PyG-CPU: Intel Xeon Gold 6132@2.60GHz CPU, 768GB DDR4.
(b) PyG-GPU: V100 Tesla GPU, V100S-PCI@1.25GHz, 32GB HBM2.

As shown in Fig. 8, the average speedup of GNNIE over the PyG-
CPU and PyG-GPU are 7202.80× and 17.76×, respectively. Speedup
calculations include the total preprocessing times, which are inex-
pensive. The speedup comes from several GNNIE optimizations:
(i) The segmentation of vertex feature vectors and their assign-
ment in our FM architecture tackles the feature vector sparsity
challenge. (ii) Our degree-aware cache replacement policy avoids
random memory accesses to DRAM (iii) During Weighting, dis-
tributing the computation across multiple batches enables weight
reuse, increasing efficiency. The speedup of GNNIE on GINConv is
further enhanced because of PyTorch Geometric executes Aggrega-
tion before Weighting: as described in Section 2, this requires more
computation than the reverse order of computation used in GNNIE.

For GraphSAGE speedup calculations, the neighborhood sam-
pling time on PyG-CPU/PyG-GPU is excessive and is excluded (for
RD it is 13s whereas the execution time is 0.35s for PyG-CPU and

Table 2: Dataset information
Dataset Vertices Edges Feature Length Labels Feature Vector Sparsity
Cora (CR) 2708 10556 1433 7 98.73%

Citeseer (CS) 3327 9104 3703 6 99.15%
Pubmed (PB) 19717 88648 500 3 90%
Reddit (RD) 232965 114.6M 602 41 48.4%

5

Fig. 8. Performance: GNNIE vs. PyG-CPU, PyG-GPU, HyGCN

0.003s for PyG-GPU), but GNNIE runtimes include neighborhood
sampling times. This results in lower speedup compared to PyG-
GPU for RD. However, the GPU is much more power-hungry than
GNNIE, e.g., it requires 98.5× more energy for GraphSAGE/RD
than GNNIE. GNNIE is scalable on PyG-CPU: for GCN, GAT, and
GINConv, the speedups generally increase with benchmark size.
GraphSAGE bucks this trend for the above reasons, but while its
sampling scheme improves scalability, it reduces accuracy [4, 26].

On PyG-GPU, the speedups do not monotonically improve with
the number of nodes. This is because larger datasets (e.g., PB) reap
greater benefit from GPU parallelization: for these datasets, GNNIE
vs. PyG-GPU speedup decreases whereas GNNIE vs. PyG-CPU
speedup increases. It is important to note that the GPU comparison
is not entirely fair to GNNIE’s lightweight accelerator with low on-
chip memory, targeted to edge applications. In contrast, this GPU
has a ∼10× larger on-chip memory than GNNIE and its power-
hungry nature makes it impractical for the edge. Nevertheless,
GNNIE shows speedups over even this powerful GPU.
HyGCN comparison: The HyGCN configuration, like ours, uses
128 channels for the hidden layers of all GNNmodels. Since HyGCN
reports results using a baseline CPU with similar performance to
our baseline CPU, we take the ratio of the relative speedup com-
pared to the baseline CPU to compute speedup over HyGCN. Fig. 8
shows an average GNNIE speedup of 5.07× over HyGCN, even
though on-chip HyGCN buffers (>24MB) are much larger than GN-
NIE (<1.7MB). The improvements are attributable to differences
between GNNIE and HyGCN described in Section 1. As HyGCN
does not implement GAT and does not report results on the widely
used datasets that we evaluate for DiffPool, GAT/DiffPool compar-
isons cannot be shown.
Throughput/Energy Comparisons: Table 3 shows the GNNIE
throughput for 3 datasets: it degrades only slightly with graph size.

The power dissipation of GNNIE is 3.9W in 32nm, lower than
HyGCN (6.7W in 12nm). Fig. 9(a) shows the energy breakdown for

Table 3: Throughput for various datasets for GNNIE.
Peak Cora (CR) Citeseer (CS) Pubmed (PB)
3.16 TOPS 2.88 TOPS 2.69 TOPS 2.57 TOPS

(a) (b)
Fig. 9. (a) Energy breakdown for GCN and GAT. (b)
Cost/benefit ratio for adding MACs in Designs B–E.

GNNIE for GAT and GCN across three datasets, including DRAM
energy required to transfer data to the output, input, and weight
buffers. On-chip weight buffer energy is negligible and not shown.
Optimization Analysis: We study key GNNIE optimizations, rel-
ative to a baseline Design A (4 MACs/CPE, 1024 total MAC units).
Cost/benefit analysis for FM We consider: Design B (5 MACs/CPE,
1280 total MAC units), Design C (6 MACs/CPE, 1536 total MACs),
Design D (7 MACs/CPE, 1792 total MACs), and the GNNIE FM
architecture, Design E (4/5/6 MACs/CPE as described earlier, 1216
total MACs). The cost/benefit ratio, 𝛽 , relative to Design A is:

𝛽 = (% reduction in Cycles)/(% increase in MACs) (5)
Fig. 9(b) shows that 𝛽 drops from Design B–Dwhich add MAC units
uniformly to all CPEs, because the added MACs are underutilized.
By selectively adding MACs, Design E with FM achieves high 𝛽 .
GNNIE Optimizations for WeightingWe analyze the improvement
from flexible MACs (FM) over Design A for PB. Fig. 10 shows the
imbalanced workload distribution among the CPE rows for the
baseline design, caused by variations in vertex feature sparsity.
This is mitigated by the FM design, which reduces the number of
Weighting cycles by 24.0%. Next, we add the load redistribution
(LR), moving computations from the heavily-loaded CPE rows to
lightly-loaded rows: this brings the reduction to 28.3%.

Fig. 10. CPE row workload in Weighting for Pubmed.

8 CONCLUSION
GNNIE’s edge inference accelerator covers a variety of GNNs, in-
cluding GATs. Its novel methods mitigate random memory access
and load imbalance: 𝑘-blocking during Weighting, FM/LR schemes,
computation reordering (for GATs), and graph-specific caching.
REFERENCES
[1] S. Han et al. EIE: Efficient Inference Engine on Compressed Deep Neural Network. In ISCA, June 2016.
[2] T. Kipf et al. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR, 2017.
[3] W. Hamilton et al. Inductive Representation Learning on Large Graphs. In NeurIPS, 2017.
[4] P. Veličković et al. Graph Attention Networks. In ICLR, 2018.
[5] K. Xu et al. How Powerful are Graph Neural Networks? In ICLR, 2019.
[6] H. Sharma et al. Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Network.

In ISCA, 2018.
[7] H. Genc et al. Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-stack Integration. In

DAC, 2021.
[8] Y. Chen et al. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks.

JSSC, 52(1), 2017.
[9] N. P. Jouppi et al. In-datacenter Performance Analysis of a Tensor Processing Unit. In ISCA, June 2017.
[10] A. Parashar et al. SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks. In Proc. ISCA,

pages 27–40, 2017.
[11] Tae Jun Ham et al. Graphicionado: A High-Performance and Energy-Efficient Accelerator for Graph Analytics. In

MICRO, 2016.
[12] G. Dai et al. FPGP: Graph Processing Framework on FPGA A Case Study of Breadth-First Search. In FPGA, 2016.
[13] Sang-Woo Jun et al. GraFBoost: Using accelerated flash storage for external graph analytics. In ISCA, 2018.
[14] Z. Zhou et al. BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant Weight Matrices. In DAC,

2021.
[15] M. Yan et al. HyGCN: A GCN Accelerator with Hybrid Architecture. In HPCA, 2020.
[16] J.R. Stevens et al. GNNerator: A Hardware/Software Framework for Accelerating Graph Neural Networks. In DAC,

2021.
[17] C. Chen et al. DyGNN: Algorithm and Architecture Support of Dynamic Pruning for Graph Neural Networks. In

DAC, 2021.
[18] T. Geng et al. AWB-GCN: A Graph Convolutional Network Accelerator with Runtime Workload Rebalancing. In

MICRO, 2020.
[19] S. Liang et al. EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks.

IEEE Transactions on Computers, 2020.
[20] R. Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling. In NeurIPS, 2018.
[21] Y. Zhang et al. Making Caches Work for Graph Analytics. In IEEE BigData, 2017.
[22] P. Faldu et al. Domain-Specialized Cache Management for Graph Analytics. In HPCA, 2020.
[23] Y. Kim et al. Ramulator: A Fast and Extensible DRAM Simulator. IEEE Comp. Arch. Letters, 15(1), 2015.
[24] M. O’Connor et al. Fine-Grained DRAM: Energy-Efficient DRAM for Extreme Bandwidth Systems. In ISCA, 2017.
[25] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop on

Representation Learning on Graphs and Manifolds, 2019. https://github.com/pyg-team/pytorch_geometric.
[26] V. P. Dwivedi et al. Benchmarking Graph Neural Networks. arXiv preprint arXiv:2003.00982, 2020.

6

https://github.com/pyg-team/pytorch_geometric

	Abstract
	1 Introduction
	2 Background
	3 Accelerator Architecture
	4 Mapping Weighting to CPEs
	4.1 Scheduling Operations in the CPEs
	4.2 Load Balancing for Weighting

	5 Aggregation Computations
	5.1 Optimizing GAT Computations
	5.2 Mapping Edge-based Computations

	6 Graph-Specific Caching
	7 Evaluation
	8 Conclusion
	References

