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ABSTRACT
We describe the planned Alpha release of OpenROAD, an open-
source end-to-end silicon compiler. OpenROAD will help realize
the goal of “democratization of hardware design”, by reducing cost,
expertise, schedule and risk barriers that confront system designers
today. The development of open-source, self-driving design tools
is in and of itself a “moon shot” with numerous technical and
cultural challenges. The open-source flow incorporates a compatible
open-source set of tools that span logic synthesis, floorplanning,
placement, clock tree synthesis, global routing and detailed routing.
The flow also incorporates analysis and support tools for static
timing analysis, parasitic extraction, power integrity analysis, and
cloud deployment. We also note several observed challenges, or
“lessons learned”, with respect to development of open-source EDA
tools and flows.
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1 INTRODUCTION
Even as hardware design tools and methodologies have advanced
over the past decades, the semiconductor industry has failed to
control product design costs. Today, barriers of cost, expertise and
unpredictability (risk) block designers’ access to hardware imple-
mentation in advanced technologies. Put another way: hardware
system innovation is stuck in a local minimum of (i) complex and
expensive tools, (ii) a shortage of expert users capable of using
these tools in advanced technologies, and (iii) enormous cost and
risk barriers to even attempting hardware design.
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Particularly in the digital integrated-circuit (IC) domain, lay-
out automation has been integral to the design of huge, extremely
complex products in advanced technology nodes. However, a short-
fall of design capability – i.e., the ability to scale product quality
concomitant with the scaling of underlying device and patterning
technologies – has been apparent for over a decade in even the
most advanced companies [4]. Thus, to meet product and schedule
requirements, today’s leading-edge system-on-chip (SoC) product
companies must leverage specialization and divide-and-conquer
across large teams of designers: each individual block of the design
is handled by a separate subteam, and each designer has expertise
in a specific facet of the design flow. Many development teams do
not have resources to execute such a strategy, and hence see typical
hardware design cycles of 12-36 months.

To overcome the above limitations and keep pace with the ex-
ponential increases in SoC complexity associated with Moore’s
Law, the DARPA IDEA program aims to develop a fully automated
“no human in the loop” circuit layout generator that enables users
with no electronic design expertise to complete physical design
of electronic hardware. The OpenROAD (“Foundations and Re-
alization of Open, Accessible Design”) project [19] was launched
in June 2018 as part of the DARPA IDEA program. OpenROAD’s
overarching goal is to bring down the barriers of cost, expertise
and unpredictability that currently block system creators’ access to
hardware implementation in advanced technologies. OpenROAD
seeks to develop a fully autonomous, open-source tool chain
for silicon compilation across die, package and board, with initial
focus on the RTL-to-GDSII phase of system-on-chip design. More
specifically, we aim to deliver tapeout-capable tools in source code
form, with permissive licensing, so as to seed a future “Linux of
EDA” (i.e., electronic design automation).

The contributions and approach of OpenROAD seek to establish
a new paradigm for EDA tools, academic-industry collaboration,
and academic research itself. OpenROAD aims to finally surmount
ingrained, “cultural” and “critical mass / critical quality” barriers to
establishing an open-source ethos in the EDA field. The remainder
of this paper will describe briefly the main tools in the OpenROAD’s
Alpha flow release as well as lessons learned from our endeavors.
2 MAIN TOOLS FOR LAYOUT GENERATION
OpenROAD’s silicon compilation tool chain consists of a set of open-
source tools that takes RTL Verilog, constraints (.sdc), liberty (.lib)
and technology (.lef) files as input, and aims to generate a tapeout-
ready GDSII file. Figure 1 illustrates the flow of tools corresponding
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Figure 1: The OpenROAD flow.

to individual OpenROAD tasks. These include logic synthesis (LS),
floorplan (FP) and power delivery network (PDN), placement, clock
tree synthesis (CTS), routing and layout finishing.
A. Logic Synthesis: The major gap in open-source LS is tim-
ing awareness and optimization. Our Alpha release brings three
improvements to the open-source YOSYS/ABC synthesis tools
[15]. First, we use reinforcement learning techniques to enable
autonomous design space explorations for timing-driven logic opti-
mization. To produce best synthesis scripts that are tuned to indi-
vidual circuits, we develop a reinforcement learning agent that au-
tomatically generates step-by-step synthesis scripts to meet target
timing constraints while minimizing total area. Second, we improve
the basic buffering algorithm in ABC and enable physical-aware
buffering and gate sizing by integrating the RePlAce [5] placement
tool into the logic synthesis flow, whereby global placement-based
wire capacitance estimates are used within gate sizing and buffer-
ing to improve timing results. Third, we incorporate the ability to
handle a subset of commonly-used SDC commands in the synthesis
flow.
B. Floorplan and PDN: Floorplanning and early power delivery
network (PDN) synthesis are performed by TritonFPlan, which
has two major components. The first component is macro-packing
seeded by a mixed-size (macros and standard cells) global place-
ment from RePlAce and an input IO placement. The macro-packing
uses simulated annealing (SA) based on Parquet [1] [21]. The SA
uses a B*-tree representation of the macro placement and has the
bicriteria objective of maximizing standard-cell placement area
while minimizing wirelength. The SA solution is snapped to legal
locations with respect to top-level PDN, while comprehending con-
straints such as macro-specific halo and vertical/horizontal channel

widths. Multiple floorplan solutions are created from the original
mixed-size global placement. The second component of TritonF-
Plan creates a DRC-correct PDN for each macro-packing solution,
following a safe-by-construction approach. The rules for metal and
via geometries are extracted from user specified config files. Re-
PlAce is used to determine the best of these floorplan (with PDN)
solutions according to estimated total wirelength including placed
standard cells. Only rectangular floorplans are currently supported.
Realization of endcap, tapcell, and IO-pin methodologies is ongo-
ing.1

C. Placement and PDN refinement: RePlAce [5] is a BSD-
licensed open-source analytical placer based on the electrostatics
analogy. In OpenROAD, RePlAce is used for (i) physical synthesis,
(ii) mixed-size (macros and cells) placement during floorplanning,
(iii) standard-cell placement within a given floorplan, and (iv) clock
buffer legalization during clock tree synthesis (CTS) [22]. RePlAce
is timing-driven, taking industry-standard LEF/DEF, Verilog, SDC
and Liberty formats. RePlAce incorporates (i) FLUTE [8] to estimate
Steiner wirelength; (ii) a fast RC estimator for parasitics estimation;
and (iii) OpenSTA [20] for static timing analysis during placement.
RePlAce applies a signal net reweighting iteration [9] based on
OpenSTA’s analysis to improve timing. Note that RePlAce does
not currently change (i.e., buffer or size) the netlist provided by
physical-aware synthesis (LS).

After placement, the PDN is further refined based on improved
estimates of spatial current distribution. The key goal is to en-
able single-pass, correct-and-safe-by-construction refinement of
the PDN. The floorplan-stage PDN is based on using a single pitch
throughout the chip; after placement, this PDN is selectively de-
populated. The chip area is tiled into regions, and for each region,
one of a set of depopulated PDN wiring templates (cf. the “config”
files noted above) is chosen. These templates are stitchable so that
they obey design rules when abutted. The PDN tool takes as input
a set of predefined templates, an early (floorplanning-stage) placed
DEF for a design, and available power analysis information (e.g.,
our OpenSTA tool can provide instance-based power reporting).
A trained convolutional neural network (CNN) then selects a safe
template for each region.
D. Clock Tree Synthesis: TritonCTS [10, 22] performs clock tree
synthesis (CTS) for low-power, low-skew and low-latency clock
distribution, based on the GH-Tree (generalized H-Tree) paradigm
of Han et al. [10]. A dynamic programming algorithm finds a clock
tree topology with minimum estimated power, consistent with
given latency and skew targets. The capacitated k-means algorithm
from [13] is adapted to perform sink clustering. TritonCTS has
interfaces with the placer (RePlAce) for legalization of inserted
clock buffers.
E. Global Routing: UTD-BoxRouter is a modified version of
BoxRouter 2.0 [6]. The tool reads LEF and placed DEF. It defines
global routing cells known as gcells and performs global routing
minimizing the congestion and overflow within the cells while min-
imizing wire length and vias. The tool generates the route guides
1Note that TritonFPlan requires the user to specify several config files, e.g., IP*.cfg
to capture macro packing rules, and PDN.cfg to capture safe-by-construction metal
and via geometry information using a regular grid. These files are part of one-time
tool enablement that circumvents the inability of academic open-source tools and
developers to see unencrypted foundry enablements.
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necessary for subsequent detailed router execution. This global
router first solves the 2D routing routing problem through the use
of prerouting, integer linear programming and negotiation-based
A* search for routing stability. This global router performs a 2D-
to-3D mapping using a layer assignment using an integer linear
programming algorithm that is aware of vias and blockages.
F. Detailed Routing: TritonRoute [14] takes as input LEF and
placed DEF, then performs detailed routing for both signal nets and
clock nets given a global routing solution in route guide format [17].
Prior to the detailed routing, (i) TritonRoute preprocesses the global
routing solution using breadth-first search to reduce the probability
of loops generated in later stage while net connectivity is preserved;
and (ii) TritonRoute identifies unique instances considering orien-
tation and routing track offsets, and generates pin access patterns
to aid connections to pins.

The flow proceeds sequentially through track assignment and
detailed routing stages. First, track assignment uses a fast greedy
heuristic to determine tracks for each global routing segment. Sec-
ond, clip-based initial detailed routing solves a multi-terminal,
multi-net switchbox routing problem. Clips can be routed in paral-
lel. In each clip, nets are routed sequentially using a multi-terminal
A* algorithm. Third, multiple iterations of search and repair are
performed to reduce wirelength and via count, as well as to help
DRC convergence.

3 ANALYSIS AND SUPPORT TOOLS
OpenROAD uses a number of analysis and infrastructure tools that
are used throughout the flow.
A. Static TimingAnalysis:OpenSTA [20] is a GPL3 open-sourced
version of the commercial Parallax timer. The Parallax timing en-
gine has been offered commercially for nearly two decades, and
has been incorporated into over a dozen EDA and IC companies’
timing analysis tools. OpenSTA is publicly available on GitHub [20].
It supports multiple advanced foundry nodes and standard timing
report styles.
B. Parasitic Extraction: The parasitic extraction (PEX) tool pro-
cesses a foundry process design kit (PDK) to build linear regression
models for wire resistance, ground capacitance, and coupling ca-
pacitances to wires on the same layer, or in the adjacent layers
above and below. A basic use case is for a tool in the OpenROAD
flow (e.g., CTS, global routing, static timing analysis) to call PEX,
providing an input DEF file that consists of the wire of interest and
its neighbors. The output is provided as a SPEF file that contains
the extracted parasitics. Anticipated evolutions include interfacing
the PEX functions to a possible future IDEA-wide physical design
database, and extending the model-fitting approach to achieve low-
overhead parasitic estimators for use in timing-driven placement
and crosstalk estimation during global routing.
C. Cloud Infrastructure: For users to take advantage of Open-
ROAD tools, a cloud infrastructure effort aims to provide an end-
to-end user experience. In our cloud deployment, users subscribe
their Git repo to our cloud system. Once a design change is pushed
to the Git repo, the design is automatically compiled by the current
version of the OpenROAD flow and the user receives a notification
by email when the flow is complete. The user can then download
the outcome files through a web browser. If needed, the user can

also monitor the progress of the flow on our web-based front end.
Our cloud deployment is elastic as it leverages more computing
resources when more users log into the service.
D. Integration and Testing: The individual tools described above
comprise a tool chain that produces an implemented design ready
for final verification and fabrication. Initial platform support is
targeted for CentOS 6, with tool- and flow-specific support. Here,
we leverage a testcase suite based around existing designs that have
previously been taped out; these designs range across complexity
and process. Our suite of testcases also includes a number of SoCs
that are currently in development. A continuous integration test
suite validates the tools individually during development and tracks
regression metrics and feature impact.

4 MAJOR FUTURE EXTENSIONS
Other elements of the OpenROAD project under development in-
clude pervasive machine learning optimizations across the flow,
early SoC planning, and chip-package-PCB co-design.
A. METRICS 2.0: To enable large-scale application of machine
learning and ultimately a self-driving OpenROAD flow, we are
developing METRICS 2.0 [11], which can serve as a unified, com-
prehensive design data collection and storage infrastructure (see
[18]). A METRICS 2.0 dictionary provides a standardized list of
metrics suitable for collection during tool/flow execution that cap-
ture key design parameters as well as outcomes from various tools
in the design flow. Examples of these metrics include “number of
instances", “number of congested global cells" and “total runtime".
We also propose a system architecture based on JavaScript Object
Notation (JSON) for data logging, and MongoDB database [7] for
data storage and retrieval of the metrics. METRICS 2.0 will leverage
machine-learning frameworks such as TensorFlow, which provides
interfaces to read and write into MongoDB, and enables fast de-
ployment of machine learning algorithms. The outcomes from the
machine-learning algorithms will be used to tune the operation of
the tools in the OpenROAD flow.
B. Early SoC Planning: To improve turnaround time, we plan
to initiate the OpenROAD tool chain with reliable tentative floor-
plans as flow starting points, to minimize the likelihood of run
failures. Early floorplan estimates for the SoC can be enhanced by
embedding physical implementation information in each IP (e.g.,
using the vendor extension mechanism within industry-standard
IP-XACT descriptions), and by making use of technology- and tool
chain- specific parameters and statistical models. Combining and
elaborating such information enables early area and performance
estimates.
C. SoC-PCB-PKG co-design:We plan to develop layout genera-
tion flows that can co-optimize across the SoC, package (PKG) and
PCB domains. Today, SoC, PKG and PCB tools and flows are largely
disjoint; large time is required to converge across the three designs
with manual iterations. To deliver fast turnaround time in the PKG
and PCB domains, a Unified Planning Tool (UPT) that seamlessly co-
ordinates among the three databases and enables quick iterations is
essential. The UPT would include optimization engines to evaluate
the complex tradeoffs across the three design spaces. Nearer-term
efforts pursue development of open-source PKG routing and PCB
place-and-route tools.
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5 LESSONS LEARNED
At this writing, OpenROAD is nine months in from contract signing.
The Alpha release of OpenROAD’s RTL-to-GDSII (netlist to routed
DEF) flowwill be in July 2019, and the v1.0, 16/14nm-capable release
will be a year later. Several lessons learned make it likely that we
will reallocate resources to solve critical gaps (open-source back-
end database, program management, software engineering quality,
etc.). A partial list follows.
The right mindsets are needed. The need for the EDA and IC
design ecosystem to embrace open-source as long-overdue culture
change is described in [3, 12]. From the proposal stage on, all PIs in
the DARPA IDEA program (and, especially, all PIs in OpenROAD)
signed up to a “this is not business as usual” compact, with a clear un-
derstanding that “the metric is (tapeout-capable, liberally-licensed)
working code, not papers”.
Project expectations must be consistent. GitHub issues filed
(and numerous other communications) indicate that the expecta-
tions of “users” of our free, open-source tools are heavily informed
by previous experience with commercial EDA offerings (which em-
body billions of dollars of R&D investment). Our research and devel-
opment trajectory aims at a required deliverable of “no human in the
loop”, “self-driving tools and flows” with “24-hour turnaround time”.
This is at odds with requests for “poor man’s Innovus” functionality,
or better PPA calibrations against the outputs of commercial SP&R
flows. Managing this contradiction, e.g., with stronger “product
management”, will be necessary.
Basic, structural impediments to a FOSS EDA ecosystem
must be recognized and solved. Several obstacles to efficient
progress were identified early in the project. (i) Since universities
are not foundry-qualified, there are aspects of (encrypted) design
enablement that our tools simply cannot read. Until such qualifi-
cation exists, workarounds consist of one-time “calibrations” or
“characterizations” that require qualified commercial tools to be run
by licensed mutual customers of tool vendors and foundry. (ii) Since
IDEA does not develop “golden” signoff tools (physical verification,
extraction, STA, etc.), our tools must guardband heavily to remain
“correct and safe by construction”. Eventual program PPA goals are
challenging in this light. (iii) Since universities are not commercial
entities, typically bug reports are received without testcases (due
to lack of common NDAs in place). Normal commercial NDAs are
blocked at universities by mutual exclusions, export control-related
policies, “non-trusted” nature of universities and students, and any
number of other factors. There are no public enablements that
(i) have complexity commensurate with tool development for ad-
vanced production nodes, or (ii) are accessible to both commercial
and non-commercial entities.

6 CONCLUSION
We have reviewed scope and status of OpenROAD, a DARPA IDEA
project that aims to develop a self-driving, open-source digital
layout implementation tool chain. We plan to make source code
available at http://github.com/The-OpenROAD-Project, and a
cloud deployment is available at http://flow.theopenroadproject.
org. Separately, outreachwill be an important element, e.g., contests
[16], workshops [24], and soliciting global collaborations [12]. We
welcome all feedback, participation and contributions.
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