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Abstract—Conventional hard real-time scheduling is often
overly pessimistic due to the worst case execution time estimation.
The pessimism can be mitigated by exploiting imprecise comput-
ing in applications where occasional small errors are acceptable.
This leverage was previously investigated for preemptive schedul-
ing. We study how to make use of imprecise computing in unipro-
cessor non-preemptive real-time scheduling, which is known to be
more difficult than its preemptive counterpart. Several heuristic
algorithms are developed for periodic tasks with independent
or cumulative errors due to imprecision. Simulation results
show that the proposed techniques can significantly improve
task schedulability and achieve desired accuracy–schedulability
tradeoff. The benefit is further confirmed by a prototyping
implementation in Linux system.

I. INTRODUCTION

Imprecise computing, which is sometimes called approx-
imate computing [1], is an unconventional approach to low
power systems and is recently being actively studied. It is
based on the observation that occasional small computing
errors are acceptable for applications like video/audio process-
ing, recognition and mining, which are of growing interest.
By intentionally allowing such errors in design, a computing
system can operate with reduced power or improved speed.

Imprecise computing can benefit real-time systems as well.
In a virtual reality tracking system, for instance, deadline vio-
lations cause video discontinuity, which may hamper mission
success. By contrast, errors at a few pixels of a small number
of frames are usually indiscernible to human eyes and have
much less serious consequence than deadline violations. As
imprecise computing permits relatively short execution time,
it can be adopted to avoid deadline violations when computing
resource is under stress. In general, it offers an opportunity for
improving schedulability and reducing the pessimism in real-
time scheduling. Indeed, the benefit of imprecise computing for
real-time scheduling was noticed a long time ago [2]. The early
works [2]–[4] are restricted to preemptive cases. Meanwhile,
imprecision must be applied prudently so that errors are well
controlled in all conditions. In fact, our techniques can achieve
such control for realistic computing cases such as IDCT and
Newton-Raphson method.
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In this work, we investigate how to use imprecise com-
puting for improving non-preemptive real-time scheduling of
independent tasks on uniprocessor. Compared to preemptive
cases, non-preemptive scheduling implies less context switch-
ing overhead and has more predictable characteristics [5], [6].
In some scenarios, task preemption is even impossible or
formidably expensive [5]. On the other hand, it is proved [5]
that non-preemptive scheduling for periodic tasks with specific
release times is NP-hard and its schedulability test is also
NP-hard. Considering imprecise computing greatly escalates
scheduling complexity and makes some preemptive problems
NP-hard [2].

We propose several heuristic algorithms for scheduling
periodic tasks and considering imprecision with independent
or cumulative errors. To the best of our knowledge, this
is the first work on using imprecise computing for non-
preemptive real-time scheduling. Moreover, it is not trivial to
extend preemptive techniques [2], [3] to our case. For tasks
satisfying schedulability conditions in imprecise mode, our
heuristics can guarantee that there is no deadline violation.
In these algorithms, errors due to imprecision are controlled
either offline with guarantee or online in the best effort.
Simulation results from random and realistic cases indicate
that our scheduling methods can indeed improve schedulability
and significantly mitigate the pessimism of the worst case
execution time model. The advantage is further demonstrated
by a prototyping implementation in Linux system.

II. PRELIMINARIES

A. Non-preemptive Real-Time Scheduling

We consider to schedule a set of independent tasks
T = {τ1, τ2, ..., τn} onto a single processor. Each task
τi, i = 1, 2, ..., n, is a 3-tuple (ri, ci, di) representing task
release time, execution time and deadline. A periodic task
τi is composed by multiple jobs {τi,1, τi,2, ...}, where τi,j
is the jth occurrence of task τi. The jobs of τi are released
with period pi, i.e., their release times and deadlines satisfy
di,j = ri,j + pi = ri,j+1, j = 1, 2, .... In a hard real-time
system, the execution of every task must be completed before
its deadline. In practice, an execution time ci may vary in a
wide range. In order to ensure that no deadline violation is
incurred by this uncertainty, the Worst Case Execution Time
(WCET) wi > ci is conventionally used in scheduling. We
focus on non-preemptive systems, where once a job starts, it
must execute continuously on the processor till its completion.

B. Schedulability of Non-Preemptive Real-Time Scheduling

The schedulability conditions for non-preemptive schedul-
ing on uniprocessor are derived in [5] and shown as follows.



Theorem 1. Let T = {τ1, τ2, ..., τn}, where τi = (pi, wi), be a
set of periodic tasks sorted in non-decreasing order of period,
i.e., if i < j, then pi ≤ pj . If the following two conditions are
satisfied, then T is schedulable.

n∑
i=1

wi
pi
≤ 1 (1)

wi+

i−1∑
j=1

⌊
L− 1

pj

⌋
·wj ≤ L, ∀i, 1 < i ≤ n, ∀L, p1 < L < pi. (2)

For jobs of a periodic task τi, their release time ri,j
and deadline di,j can be uniquely decided by the initial job
release time ri,1 and period pi. Theorem 1 is necessary and
sufficient for arbitrary initial release time, and thus only pi
needs to be considered here. The WCET wi is employed to
estimate ci. Hence, a task is characterized by (pi, wi) instead
of (ri, ci, di). In the sequel, release time ri is still needed for
considering specific tasks. For a specific set of release times,
the theorem is sufficient but no longer necessary. Moreover,
finding necessary and sufficient conditions for specific release
times is an NP-hard problem. It is proved in [5] that if a set
of tasks are schedulable according to Theorem 1, then non-
preemptive Earliest Deadline First (EDF) scheduling [7] can
always find a feasible schedule.

Condition (1) is to ensure the overall processor utilization
does not exceed 1. This condition alone is the necessary and
sufficient condition for a preemptive system to be schedulable,
and the complexity of verifying this condition is constant.
Condition (2) is to ensure that the workload for any time
interval of any task period is no greater than the length of
the interval. The complexity of evaluating this condition is
O(pn), where pn is the largest task period, and therefore is
pseudo-polynomial.

C. Imprecise Computing in Non-Preemptive Scheduling

Imprecise computing can be realized by either accuracy
configurable circuits [8], [9] or algorithmic imprecision. Please
note the imprecise computing is for only datapath or nu-
merical computations, and not applicable to control flow or
state computations. In a non-preemptive system, different task
executions can be performed with different accuracy levels
but the accuracy of one execution cannot be changed in the
middle. We consider only one imprecision level in this work.
Since our approaches are fundamentally enumerating discrete
solution options, additional imprecision levels would not entail
significant algorithm change.

The WCET xi of task τi in imprecision mode must
satisfy xi < wi, where wi is the WCET for accurate mode.
Meanwhile, an execution of job τi,j in imprecision mode
produces a computing error εi,j . Please note the error is
single valued and would require composition of multiple errors
from a multi-output system. By statistical analysis and pre-
characterization, the mean error ei for task τi can be obtained
prior to scheduling. In independent error model, an error of
job τi,j does not carry over to its subsequent job τi,j+1 even if
τi,j+1 is in imprecision mode. In video rendering, for example,
image processing error of one non-reference frame does not
affect the next frame. In this scenario, one wishes to minimize
the average error of a task. In the cumulative error model, an
error of job τi,j propagates to its subsequent job. For example,
in a target tracking computation, an error at one moment j is
inherited in the computation of the next moment j+1 and can
be eliminated only when the computation at moment j+1 is in
accurate mode. To restrain such cumulative error, the number
of consecutive jobs in imprecision mode must be limited.

III. ONLINE SCHEDULING OF TASKS WITH INDEPENDENT
ERRORS

In this section, an online algorithm is introduced for solving
periodic tasks where imprecision errors are independent. The
problem formulation is given below.

Problem 1. Given a set of periodic tasks T = {τ1, τ2, ..., τn},
decide if each job τi,j is executed in accurate or imprecise
mode, and its start time si,j such that ri,j ≤ si,j , si,j + ci,j ≤
ri,j + pi and the total error among all jobs in a hyper-period∑
∀i,j∈P εi,j is minimized.

Please note hyper-period P is the least common multiple
of all task periods. ci,j is the actual execution time regardless
the accuracy level of job τi,j execution, and εi,j is the actual
error when τi,j is executed in imprecision mode. If a given set
of tasks passes its schedulability check using Theorem 1 based
on imprecision mode WCET, our algorithm can guarantee that
there is no deadline violation. A main effort of the algorithm
is to increase the use of accurate mode in order to minimize
imprecision errors. Our algorithm is EDF with Explicit Slack
Reclamation, where the accuracy selection is based on explicit
slack reclamation with constant complexity. When a job is to
start, the algorithm checks if there is enough slack available
for this job to be executed in accurate mode. There are three
kinds of slacks: (1) individual slack; (2) idle-time slack; and
(3) inter-job slack.

An individual slack ψi,j is intrinsically available to every
job τi,j and is estimated with the initial schedulability check
before any job is started. A scaling factor γ is associated with
every condition in Theorem 1 and their values can be found
by solving the following equations:

γ

n∑
i=1

xi
pi

= 1

γLi ·(xi+
i−1∑
j=1

⌊L− 1

pj

⌋
·xj) = L,∀i, 1 < i ≤ n, ∀L, p1 < L < pi.

We define γmin to be the minimum γ value, i.e., γmin =
min∀i,∀L(γ, γ

L
i , ...). If the set of tasks are schedulable when all

of their jobs are in imprecision mode, then γmin ≥ 1. Hence,
the individual slack ψi,j = (γmin−1)·xi. The individual slacks
are computed only once at the beginning and their values can
be used repeatedly throughout the online scheduling.

When a job τi,j is being scheduled online, and its nominal
finish time fi,j is less than the minimum between its deadline
di,j and the release time rnext of its next job, then the idle
time slack is ψidlei,j = min(di,j , rnext) − fi,j . The nominal
finish time fi,j for a job τi,j is the finish time assuming
no slack reclamation is conducted and can be estimated as
current time + xi + ψk,li,j , where ψk,li,j is inter-job slack
introduced as follows.

times1 f1

r2

f1’

job 1

job 2

Fig. 1. If job 1 actually finishes at f ′1, which is earlier than its nominal finish
time f1, and job 2 is to be executed next, job 1 provides inter-job slack to
job 2 as in the green region. The release times for job 2 is r2.



An inter-job slack ψk,li,j is the slack generated by job τk,l
due to its early completion and passed to its next job τi,j . This
concept is elaborated through the example in Figure 1, where
job 1 finishes at f ′1 which is earlier than its nominal finish time
f1 and the next job according to EDF (job 2 here) has release
time earlier than f1. Then, the processor time from f ′1 to f1 is
a slack time that can be applied to job 2, which is the green
region in Figure 1. In general, the inter-job slack produced by
τk,l and passed to τi,j is defined by

ψk,li,j = max(fk,l −max(ri,j , f
′
k,l), 0) (3)

Every job intrinsically has individual slack, which can be
zero. It can be consumed by choosing accurate mode for
this job. Even if a job is executed in imprecision mode, its
individual slack expires when the job is completed. However,
an individual slack can be recycled as inter-job slack. An
idle-time slack generates opportunistically, and expires if it
is not consumed. An inter-job slack ψk,li,j can be consumed by
executing job τi,j in accurate mode. If it is not consumed, it
can assist τi,j to generate new inter-job slack or expires.

In the EDF with explicit slack reclamation algorithm, we
use the following slack based check. When a job τi,j is being
scheduled, its total slack is evaluated by

ψtotali,j = ψi,j + ψidlei,j + ψk,li,j .

If ψtotali,j ≥ wi−xi, this job is executed in accurate mode and
otherwise in imprecision mode.

IV. COLLABORATIVE SCHEDULING OF PERIODIC TASKS
WITH INDEPENDENT ERRORS

This section introduces three collaborative methods for
solving Problem 1. Each of these methods is composed by
an offline scheduling part and an online adjustment part.

A. Offline ILP and Online Adjustment

The offline scheduling and accuracy selection is con-
ducted for one hyper-period using integer linear programming
(ILP). During task executions, some jobs are opportunistically
adjusted from imprecise to accurate mode. The adjustment
is performed with reference to the ILP result and thus no
schedulability check as Theorem 1 is needed. The ILP result
provides an upper bound guarantee to imprecision errors.

A decision variable yi,j is defined to be 1 if τi,j is executed
in imprecision mode and 0 otherwise. The offline scheduling
finish time for job τi,j is denoted as f̂i,j . An indicator function
ui,j(t) is equal to 1 if time t is in-between the start and
finish time of τi,j , and 0 otherwise. The ILP formulation is
as follows.
minimize

y

∑
∀τi,j |[ri,j ,di,j ]⊆[0,P ]

ei · yi,j

subject to si,j ≥ ri,j , ∀τi,j |[ri,j , di,j ] ⊆ [0, P ]

f̂i,j = si,j + wi + (xi − wi) · yi,j , ∀τi,j |[ri,j , di,j ] ⊆ [0, P ]

f̂i,j ≤ ri,j + pi, ∀τi,j |[ri,j , di,j ] ⊆ [0, P ]∑
∀τi,j |[ri,j ,di,j ]⊆[0,P ]

ui,j(t) ≤ 1 ∀t, 0 < t ≤ P

si,j ∈ Z≥0, yi,j ∈ {0, 1} ∀τi,j |[ri,j , di,j ] ⊆ [0, P ]

where si,j is the start time for job τi,j , xi is the constant WCET
for task τi in imprecision mode and P is the hyper-period.

In the online adjustment, if a job τi,j finishes earlier than
the offline finish time f̂i,j specified by ILP, the next job can
start immediately without waiting till its start time specified

by ILP. The order of job executions is fixed and conforms to
the ILP result. When a job τi,j is able to start at current time
tcur and yi,j = 1, it is executed in accurate mode if and only
if tcur +wi ≤ f̂i,j , which is the finish time by ILP. Thus, the
complexity of this online adjustment is constant.

B. ILP with Post-Processing and Online Adjustment

The ILP method described in Section IV-A can guarantee
the optimal solution according to the WCET estimation, but
the actual execution time is usually shorter than WCET.
We propose a post-processing to the ILP such that online
adjustment may have more opportunities to improve the result.
Meanwhile, the ILP constraints and optimality are not affected.
The offline post-processing is based on three observations.

• For a job τi,j , if the processor is idle after f̂i,j , which
is obtained from ILP, we postpone its si,j as much
as possible without missing its deadline or conflicting
with the execution of its next job. This is because the
online accuracy adjustment is based on the condition
of tcur + wi ≤ f̂i,j and increased si,j as well as
f̂i,j would improve the chance of changing a job
from imprecision to accurate mode. The increased
offline si,j does not affect the actual start time at
runtime, when a job always starts immediately upon
the availability of processor without waiting for si,j .

• If ILP schedules job τk,l to start immediately after
τi,j and assigns both the jobs with the same accuracy
level, we may swap their execution order such that
the job with earlier release time starts earlier. This is
based on the observation that a job with early release
time has relatively large chance to reclaim the slack
generated from prior job executions.

• If ILP schedules an accurate job to be executed right
after an imprecise job, we swap the order of the two
jobs subject to release time and deadline constraints.
If an imprecise job is scheduled to be executed later,
it may have more chance of reclaiming slacks from
prior job executions. For example, in Figure 2, the
imprecise job τ1,4 may reclaim slacks from τ3,2 after
the swapping.

0 30 38 52 66 80 94 104

w3,1 w1,1 w1,2 w2,2 w2,3
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(a)

(b)

Fig. 2. (a) ILP scheduling; (b) swapping imprecise job τ1,4 to be executed
later in post-processing.

Since all changes in the post processing are monotone
and cannot be reversed, convergence is guaranteed. After the
post-processing, the online adjustment part is the same as
Section IV-A.



C. Flipped EDF and Online Adjustment

We propose another offline scheduling algorithm with all
jobs being in imprecision mode. When it works together with
online adjustment, this offline scheduling achieves comparable
or even better results compared to the ILP-based collaborative
methods. For a hyper-period P , this algorithm schedules jobs
from the last moment of P and proceeds backward to time
0, the starting point of hyper-period. Among all unscheduled
jobs, it always chooses the job with the latest release time to
schedule first. It selects imprecision mode for every job and
schedules a job as late as possible without deadline violation
or conflicting with jobs that have already been scheduled. One
can think of this algorithm as EDF being performed in a flipped
manner, where time axis is reversed and the release time and
deadline of each job are exchanged. If the original EDF is
like as-soon-as-possible scheduling, our flipped EDF is like
as-late-as-possible scheduling.

According to [5], EDF can guarantee to find a feasible
solution if the schedulability test of Theorem 1 is passed.
Since the flipped EDF is fundamentally equivalent to EDF,
it enjoys the same guarantee of finding feasible solution. After
the offline flipped EDF, the online adjustment is performed in
the same way as Section IV-A.

V. SCHEDULING PERIODIC TASKS WITH CUMULATIVE
ERRORS IN IMPRECISION

When errors are cumulative, an error at one job τi,j can
carry over to its next job τi,j+1 and so on if the jobs of
task τi are in imprecision mode contiguously. The errors can
be cleared out only when at least one job execution is in
accurate mode. As such, users wish to avoid that the jobs of
a task continuously operate in imprecision mode. Hence, we
attempt to constrain the number of consecutive imprecise job
executions for each task like [2] and the problem formulation
is as follows.

Problem 2. Given a set of periodic tasks T = {τ1, τ2, ..., τn},
decide if each job τi,j is executed in accurate or imprecision
mode, and its start time si,j such that ri,j ≤ si,j , si,j + ci,j ≤
ri,j + pi and the number of consecutive jobs in imprecision
mode for each task τi is no greater than constraint Bi.

A. Online Heuristic

This online heuristic schedules jobs using EDF. In addition,
it decides if to execute a job in accurate or imprecision mode.
When a job τi,j is scheduled to start, there are four scenarios
for deciding its accuracy mode. In the first scenario, there
is error constraint violation if τi,j is executed in imprecision
mode while schedulability check passes for accurate mode.
Then, accurate mode is selected for this scenario. The second
scenario is mirror case to the first one, where an imprecise
execution would not violate the error constraint but accurate
execution fails schedulability check. Imprecision mode is se-
lected for this scenario. The third scenario is a difficult one,
where both imprecision mode would violate error constraint
and accurate mode does not satisfy schedulability conditions.
In this scenario, we choose imprecision mode such that the
theoretical guarantee of no deadline violation is still fulfilled.

The fourth scenario seems easy but actually can affect
subsequent selections. This is when imprecision mode would
not violate the error constraint and accurate mode passes
schedulability check. We define and compare error slack and
latency slack to tell if choose accurate mode for less error or

imprecision mode for less risk of deadline violation, which can
eventually become error constraint violation according to the
third scenario. The error slack is defined as ErrorSlacki =
(Bi−φi)/Bi, where φi is the number of consecutive imprecise
executions of jobs of task τi immediately before τi,j . The
latency slack is defined as LatencySlacki,j = (di,j − si,j −
wi)/pi. Please note the error slack is normalized within (0, 1]
while the latency slack is normalized within [0, 1]. Then,
we check the ratio ρ = LatencySlacki,j/ErrorSlacki. If
ρ < θ, where θ is a user specified threshold, job τi,j is
executed in imprecision mode as the latency slack is tighter.
The schedulability check here can be realized using the explicit
slack reclamation as in Section III.

B. Offline Dynamic Programming

The offline dynamic programming is a traversal of all jobs
in a super period following the EDF principle. A super period
is the minimum consecutive set of hyper-periods that can cover
all scenarios of errors satisfying constraint Bi for all tasks.
When a job is encountered in the traversal, both its accurate
and imprecise executions are considered as two candidate
solutions. Thus, the dynamic programming is an enumeration
of different precision options in a decision tree. However, we
do not need to examine the entire tree (or solution space).
If a candidate solution has either deadline or error constraint
violation, it is pruned without being propagated to consider
with the next job. Please note that different precision choices
may lead to different job execution orders, although all of them
follow the principle of EDF. To further improve the computing
efficiency, we propose two other solution pruning techniques.

The first pruning technique is based on solution dominance.
Consider a set of candidate solutions Sk = {Sk1 , Sk2 , ...} for
the same k jobs that have been processed in the traversal
so far. A solution Ski ∈ Sk is characterized by n + 1 tuple
(fki , λ

k
i,1, λ

k
i,2, ..., λ

k
i,n), where fki is the finish time of all the

k jobs and λki,l is the cumulative error for task τl. If fki = fkj
and λki,l ≥ λkj,l, 1 ≤ l ≤ n, then solution Ski is dominated by
Skj and can be pruned without being further propagated.

The second pruning technique is based on processor uti-
lization. For a solution Ski , we estimate the best case processor
utilization for the unprocessed jobs in the remaining time of
the super period. By “best case”, we mean the allowable error
budget is maximally used by the unprocessed jobs. If this
utilization exceeds 1, the corresponding solution is pruned
without further propagation.

Proposition 1. The dynamic programming algorithm guaran-
tees to find a precision assignment for EDF to satisfy both the
deadline and error constraints if such assignment exists.

Proof: Omitted due to space limit.

VI. EXPERIMENT RESULTS

In our experiment, we compare the following methods:

• EDF-Accurate: EDF scheduling with all jobs in accu-
rate mode.

• EDF-Imprecise: EDF scheduling with all jobs in im-
precision mode.

• EDF+ESR: our EDF scheduling with explicit slack
reclamation for periodic tasks with independent errors
(Section III).

• ILP+OA: our ILP scheduling with online adjust-
ment for periodic tasks with independent errors (Sec-
tion IV-A).



TABLE I. TESTCASE CHARACTERISTICS AND SCHEDULABILITY.

Utilization Schedulability
Tesecases #tasks Accurate #jobs/P Accurate Imprecise

Rnd1 3 1.13 9 No Yes
Rnd2 3 1.88 9 No No
Rnd3 5 1.93 15 No Yes
Rnd4 3 1.6 9 No Yes
Rnd5 3 0.45 17 No Yes
Rnd6 7 3.8 22 No Yes
Rnd7 10 4.43 38 No Yes
Rnd8 12 2.91 60 No Yes
Rnd9 15 1.93 24 No Yes
Rnd10 17 4.99 126 No Yes
Rnd11 20 3.57 105 No Yes
Rnd12 22 5.47 130 No Yes
Rnd13 25 7.12 163 No Yes
IDCT 5 1.02 35 No No

• ILP+Post+OA: our ILP and post-processing schedul-
ing with online adjustment for periodic tasks with
independent errors (Section IV-B).

• Flipped EDF: our flipped EDF scheduling with online
adjustment for periodic tasks with independent errors
(Section IV-C).

• EDF+ESR(C): our EDF scheduling with explicit slack
reclamation for periodic tasks with cumulative errors
(Section V-A).

• DP(C): our dynamic programming based offline
scheduling with accuracy selection for periodic tasks
with cumulative errors (Section V-B).

A. Simulation Results

Simulations are performed on 13 random testcases and
1 realistic case. In the random cases, actual job execution
times are modeled as random variables following Gaussian
distribution. The WCET is obtained by the mean value plus
6σ of the distribution, which is further augmented by a
margin. The WCET to the best case execution time ratio
is around 10. Errors from imprecision executions are also
simulated as random variables satisfying Gaussian distribution.
The error statistics are derived based on accuracy configurable
circuit design [9]. The realistic case is IDCT computation
on grayscale and RGB images of various resolution, which
form 5 different tasks. The WCET and imprecise errors of
IDCT computation are obtained from actual measurement. The
testcase characteristics are summarized in column 2, 3 and 4 of
Table I. The third column is processor utilization when every
job is executed in accurate mode and the fourth column is the
number of jobs in hyper-period. Experimental results are based
on simulating 10K hyper-periods for each task. Schedulability
check according to Theorem 1 is performed on these testcases
for two scenarios: (1) all jobs in accurate mode and (2) all
jobs in imprecise mode. The results are listed in the rightmost
two columns of Table I. None of these cases is schedulable in
accurate mode according to Theorem 1. When all the jobs are
in imprecision mode, every testcase except Rnd2 and IDCT is
schedulable based on Theorem 1.

The main results are shown in Table II. The EDF-accurate
results do not have errors but have many deadline violations.
Please note EDF-accurate can successfully schedule Rnd1 and
Rnd5, although the cases fail the schedulability check. This
discrepancy is largely due to the difference between actual
execution time and WCET. All the other methods can always
satisfy deadline constraints, but usually result in errors caused
by imprecise computing. Our post-processing can reduce the
normalized average error from 0.63 of the ILP to 0.55. The best
result comes from Flipped EDF, which finds all accurate exe-
cutions without deadline violation for Case 1 and 5. However,

the Flipped EDF is restricted to cases with prior knowledge on
task release time compared to online approaches. Moreover, its
offline computation does not provide guarantee on errors like
the ILP-based approach.
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Fig. 3. Mean error versus utilization.

We study the error versus processor utilization tradeoff
and the result is depicted in Figure 3. The utilization is∑n
i=1 wi/pi based on the WCET of accurate executions.

Please note utilization is greater than 1 for all the cases and this
means these tasks are not schedulable according to Theorem 1
using the accurate execution WCET. However, all of these
cases are successfully scheduled without deadline violation
by using imprecise computing. Except EDF-imprecise, which
always uses imprecision mode, all methods can reduce errors
when utilization decreases. Among the methods, ILP+Post+OA
and Flipped EDF produce the best result. We evaluated the
computation runtime of these methods. Online computing
usually takes a few µs and the ILP runtimes range from
seconds to minutes.
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The simulation results for periodic tasks with cumulative
errors are shown in Table III. EDF+ESR(C) can guarantee
to satisfy all deadline constraints. We intentionally make the
cases very tight such that error constraint violations occur. The
error constraint Bi for a task τi ranges from 1 to 6 in these
cases. The results of EDF-Accurate and EDF-Imprecise are
not shown here as the former one never causes errors and the
later one has 100% error constraint violations. For cases Rnd1,
Rnd4, Rnd5, Rnd9 and IDCT, the DP(C) can find feasible
solutions satisfying both deadline and error constraints while
EDF+ESR(C) results in violations of error constraints. Figure 4
shows the effectiveness of solution pruning in the dynamic



TABLE II. SIMULATION RESULTS FOR PERIODIC TASKS WITH INDEPENDENT ERRORS. ERROR STANDARD DEVIATION IS σ.

Test cases EDF-Accurate EDF-Imprecise EDF+ESR(I) ILP+OA ILP+post+OA Flipped EDF
Deadline violations Mean error σ Mean error σ Mean error σ Mean error σ Mean error σ

Rnd1 0 2.59 1.82 1.15 1.21 0.40 0.72 0.22 0.56 0 0
Rnd2 55% 2.16 1.64 1.51 1.39 1.19 1.19 0.67 0.86 0.72 0.93
Rnd3 29% 51.85 39.64 27.65 34.55 32.03 35.65 23.79 33.61 19.86 32.42
Rnd4 38% 3.60 3.44 2.77 3.35 1.10 1.08 0.94 0.99 2.06 3.07
Rnd5 0 0.62 0.31 0.22 0.19 0.29 0.22 0 0 0 0
Rnd6 27% 2.58 1.17 2.25 1.07 2.39 1.11 2.10 1.05 2.04 1.04
Rnd7 29% 82.03 27.25 68.87 25.01 65.26 24.25 62.78 23.49 55.83 22.13
Rnd8 43% 82.14 21.79 58.67 18.21 52.67 17.37 43.25 15.56 41.53 14.96
Rnd9 4% 2.59 1.12 1.23 0.77 0.44 0.46 0.32 0.39 0.32 0.39

Rnd10 28% 20.08 3.74 15.24 3.26 13.60 3.07 11.99 2.85 12.36 2.93
Rnd11 31% 5.09 1.03 3.93 0.90 3.09 0.83 2.51 0.74 2.40 0.71
Rnd12 24% 10.09 1.81 8.03 1.62 6.84 1.51 6.79 1.50 6.85 1.52
Rnd13 18% 87.25 27.24 70.10 24.78 42.95 19.30 41.17 18.85 44.90 19.89
IDCT 1% 2.71 1.52 0.81 0.66 0.17 0.12 0.03 0.02 0.02 0.02

Average 23% 25.38 - 18.74 - 15.89 - 14.04 - 13.49 -
Normalized - 1 - 0.74 - 0.63 - 0.55 - 0.53 -

TABLE III. STRESS TEST RESULTS FOR PERIODIC TASKS WITH
CUMULATIVE ERRORS.

Testcases Rnd1 Rnd2 Rnd3 Rnd4 Rnd5 Rnd6 Rnd7
Error Violations
(EDF+ESR(C)) 20% 26% 28% 21% 6% 53% 50%

Feasible?(DP(C)) Yes No No Yes Yes No No
Testcases Rnd8 Rnd9 Rnd10 Rnd11 Rnd12 Rnd13 IDCT

Error Violations
(EDF+ESR(C)) 40% 12% 39% 46% 58% 49% 13%

Feasible?(DP(C)) No Yes No No No No Yes

programming for case Rnd7. We observe that the pruning can
greatly reduce runtime as well.

B. Linux Prototyping Results

TABLE IV. TASKS IN LINUX SYSTEM PROTOTYPING.

Task Accurate WCET(s) ε̂accurate Imprecise WCET(s) ε̂imprecise

τ1 0.96 0.00001 0.55 20
τ2 1.21 0.00001 0.27 0.5
τ3 2.01 0.00001 1.18 5

We implemented EDF-Imprecise, EDF+ESR, Flipped EDF,
ILP+Post+OA in Linux 4.6 on a 1200MHz ARM Cortex-A53
processor. The testcase is Newton-Raphson method for solving
nonlinear equations numerically. The convergence criterion is
ε̂accurate (ε̂imprecise), which is tight (loose) for accurate (im-
precision) mode. The WCETs are obtained by measuring the
longest runtime among multiple random tests and augmenting
with additional margin. There are three periodic tasks for
solving three different kinds of equations. The statistics of this
testcase are summarized in Table IV. Please note the equation
for task 2 is relatively well behaved such that its execution
time can reduce quickly when the convergence criterion is
relaxed. The mean error results are depicted in Figure 5. Our
ILP+Post+OA and Flipped EDF lead to much smaller errors
than EDF-Imprecise. And the relative overhead ratio of these
methods is at the level of 0.0001%.

VII. CONCLUSIONS

This paper reports the first study result on using imprecise
computing for non-preemptive real-time scheduling, to the best
of our knowledge. Several heuristic algorithms are developed
for periodic tasks with independent or cumulative errors. If
a set of tasks pass an initial schedulability check where all
jobs are assumed to be executed in imprecision mode, all of
our algorithms can guarantee to find solution without deadline
violation. At the same time, our algorithms either guarantee
certain imprecision error bound or minimize errors in the best
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Fig. 5. Mean error versus utilization from Linux prototyping.

effort. Experimental results from both simulation and Linux
system prototyping implementation show that using impreci-
sion can greatly improve schedulability while our techniques
provide desired error and deadline tightness tradeoff.
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