
GLARE: Global and Local Wiring Aware
Routability Evaluation

Yaoguang Wei1, Cliff Sze2, Natarajan Viswanathan3, Zhuo Li2, Charles J. Alpert2, Lakshmi Reddy4,
Andrew D. Huber4, Gustavo E. Tellez5, Douglas Keller4, Sachin S. Sapatnekar1

1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
2IBM Austin Research Lab, Austin, TX, USA

3IBM Systems and Technology Group, Austin, TX, USA
4IBM Systems and Technology Group, Hopewell Junction, NY, USA

5IBM Systems and Technology Group, Burlington, VT, USA
Email: weiyg@umn.edu; {csze,nviswan,lizhuo,alpert,reddyl,adhuber,tellez,kellerd}@us.ibm.com; sachin@umn.edu

ABSTRACT
Industry routers are very complex and time consuming, and are
becoming more so with the explosion in design rules and design for
manufacturability requirements that multiply with each technology
node. Global routing is just the first phase of a router and serves
the dual purpose of (i) seeding the following phases of a router and
(ii) evaluating whether the current design point is routable. Lately,
it has become common to use a “light mode” version of the global
router, similar to today’s academic routers, to quickly evaluate the
routability of a given placement. This use model suffers from two
primary weaknesses: (i) it does not adequately model the local
routing resources, while the model is important to remove opens
and shorts and eliminate DRC violations, (ii) the metrics used to
represent congestion are non-intuitive and often fail to pinpoint the
key issues that need to be addressed. This paper presents solutions
to both issues, and empirically demonstrates that incorporating the
proposed solutions within a global routing based congestion analyzer
yields a more accurate view of design routability.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuit—Design Aids - Routing

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
Physical design, Routing, Routability evaluation, Local wiring mod-
eling, Congestion metric

1. INTRODUCTION
Routability has become an increasingly important and difficult

issue in nanometer-scale VLSI designs, and must be addressed across
the entire physical synthesis tool stack. This in turn requires fast,
yet reasonably accurate techniques to identify routing-challenged
regions (hot spots), for routability optimization. This work focuses
on the two key components of routability evaluation: (a) the method
used to analyze the congestion of a given placement or design point,
and (b) the metric(s) used to score or represent the congestion.

1.1 Congestion analysis techniques
Proposed methods to perform congestion analysis include:
1. Take a design through detailed routing to determine if it is

routable or not.
2. Use a probabilistic congestion estimation procedure, without

performing any routing [6, 13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

3. Perform fast global routing and use its solution to perform
congestion analysis [10–12].

In principle, detailed routing estimates are the most accurate, but this
approach is very time-consuming and impractical during the early
stages of design closure. Probabilistic methods are highly inaccurate
and fail to capture the behavior of global routing, especially in
modern designs with numerous IP blockages, and a large number
of metal layers with varying width and spacing. Lately, the third
method has become more attractive and mainstream due to the advent
of fast, high-quality global routers [3, 4, 7, 14, 15].

Although global routing based congestion analysis provides a
happy medium between probabilistic analysis and detailed routing,
it suffers from a key drawback: local congestion, or local routing
resource usage is not accounted for during global routing. Local
congestion clearly consumes varying amounts of routing resources
depending on factors such as design rules, size of the global routing
cell and pin density. As shown in Section 5, ignoring these effects
can greatly mispredict design routability. Hence, local congestion
needs to be modeled; and the method should be flexible, for it to
be adjusted in a straightforward manner from one technology to the
next (as design rules are different for each technology).

1.2 Metrics to score or represent congestion
Visual inspection of congestion plots (a region-wise color-coded

map marking out the hot spots with the greatest contention for
wiring resources) often serves as a first order method to compare the
routability of different design points. However, optimization tools
and designers also require a single metric that can accurately score
or represent the design congestion.

Commonly used metrics in academia and industry are:
Overflow based metrics include total overflow (TOF) and maximal
overflow (MOF) that measure the excess of the routing demand over
routing capacity on the edges in a global routing graph (defined in
Section 2). These metrics often fail to provide a clear picture of the
design routability. For example, a global routing solution with an
overflow of 700 might still be routable, as the overflow could be
absorbed by neighboring regions or resolved during the subsequent
routing phases. Further, their lack of intuition (e.g., how good/bad
is an overflow of 14, 253?) makes it difficult to quantify how much
better one design point is versus another.
Net congestion based metrics [2] include1: (a) ACN(x), the av-
erage net congestion, defined as the average congestion of the top
x% congested nets, where the congestion of a net is the maximum
congestion among all the global routing edges traversed by the net.
(b) WCI(y), the worst congestion index, defined as the number
of nets with congestion greater than or equal to y%. In practice,
ACN(20), WCI(90) and WCI(100) are employed. The main
issue with these metrics is that they fail to differentiate between a
net spanning a single congested global routing edge and one that
spans multiple congested edges.

In this paper, we propose to enhance the accuracy and effective-
ness of routability evaluation. Our key contributions include:
1We name the metrics differently from [2] to facilitate later references.

• A study of the inaccuracies in existing global routing based con-
gestion analyzers, specifically due to the lack of local routing
resource modeling.
• An analysis of the weaknesses in existing metrics to score or

represent design congestion.
• Methods to model and incorporate the effects of local routing

resource usage during global routing, the impact of which
is two-fold: (a) significant improvement in the accuracy of
congestion analysis, (b) better prediction of detailed routing
issues such as opens and shorts.
• A new congestion metric that is more intuitive and represents

the design congestion with high fidelity.
• Detailed empirical validation of our proposed techniques on

advanced industrial designs.
The rest of this paper is organized as follows. Background and

definitions are presented in Section 2. Section 3 presents our meth-
ods for modeling local routing congestion. Section 4 describes
our new metric for routability evaluation. Empirical validation and
concluding remarks are provided in Sections 5 and 6, respectively.

2. PRELIMINARIES
Typically, during global routing, the chip is tessellated into nr×nc

grids (or g-cells), and the global routing graph (GRG), G = (V,E),
is constructed. A node in V represents a g-cell in the layout, and
an edge (called a g-edge) in E denotes the boundary between two
adjacent g-cells. An example of the GRG is shown in Figure 1.

Figure 1: Global routing graph (GRG).

We now introduce some notation and terms that will be used in
the remainder of this paper. For each edge e in the GRG, we define
ce as edge capacity – the total or maximal capacity of the edge, be
as edge blockage, that needs to be discounted from ce, and we as
the routing demand on the edge. In global routing, ce, be and we are
generally expressed in the number of routing tracks, where a routing
track is the routing resource taken by a single wire passing through
an edge in the GRG. Let oe = max(we+be−ce, 0) be the overflow
of an edge e. The total overflow of the layout is given by

∑
e∈E oe,

and the maximal overflow is given by maxe∈E oe. The congestion
of edge e, denoted as ge, is given by ge = (we + be)/ce.

3. MODELING OF LOCAL ROUTES
In this section, we first analyze the problems associated with

existing congestion analysis methods, and then propose our model
that captures the congestion due to local routes.

3.1 Limitations of existing global routing based
methods

As mentioned in Section 1, global-routing based congestion analy-
sis is now mainstream. Examples include, FastRoute [9] and NTHU-
Route 2.0 [3], used as congestion analyzers within routability-driven
placers IPR [10] and CRISP [11], respectively.

Global routers generally abstract the routing problem and only fo-
cus on g-cell-to-g-cell routes. In this case, they ignore the congestion
due to local routes connecting the pins inside a g-cell. The problem
is shown in Figure 2. The net (S, T) is a local net with two pins
in a g-cell that are to the left of g-cell center b, and will definitely
occupy some routing resources. However, due to the abstraction
in global routers, the routing resources occupied or blocked by the
local route connecting S to T are usually not modeled in congestion
calculation.

Figure 2: Local routes ignored by some global routers.

On the other hand, one of the major objectives of commercial
global routers is to correlate with detailed routing. Designers ex-
pect global routers to report routing errors (usually in the form of
congestion hot spots) without running detailed routing for hours or
days. Therefore, industrial global routers have methods of varied so-
phistication to consider local routes. A simple approach is to reduce
the g-cell size. Alternatively, some global routers include some form
of detailed routing. However, these approaches to consider local
routes greatly increase routing runtime and memory. When using
global routers as congestion analyzers during physical synthesis,
such routers are computationally expensive for tens or hundreds of
invocations.

Our analysis in Section 5 shows that without considering local
routes, a congestion analyzer significantly underestimates the con-
gestion, and is unable to predict the problematic regions with opens
and shorts in detailed routing. This motivates our work to introduce a
simple and fast method to consider local routes when using a global
router for congestion analysis.

3.2 Fast methods for modeling local routes
In this section, we present two methods to quickly model local

routes: the first method estimates the local routes by the Steiner tree
wirelength inside each g-cell, and the second method estimates the
local routes based on the pin density of each g-cell.

3.2.1 Method 1: Estimation of local routes based on
Steiner tree wirelength

In Figure 2, we observed that the longer the local route is, the
more it would block the global routing track on that g-edge. This
observation can be formulated by the following equation:

tb = lr/se, (1)

where tb is the number of routing tracks blocked by local route
(S, T), lr is the length of the local route, and se is the length of
the g-edge. Note that this equation just serves as the basis for our
method and will be extended in later use.

One may argue that if the detailed router somehow does not route
net (S, T) along g-edge (a, b) (which is possible if the router uses a
detour), blocking g-edge (a, b) leads to pessimistic congestion maps.
However, we usually have no way to determine how a router would
connect a pin until the routing is completed. In order to perform
fast congestion analysis, it is critical to model local routes in a
manner that is independent of the process of routing. Moreover, it is
generally a good practice for congestion analysis to be pessimistic
for the sake of routing closure.

We adopt equation (1) to calculate blocked tracks on a g-edge
because we can easily extend it to include local routes when there are
multiple pins covered by a g-cell. Consider the case when all the pins
of a net are within a g-cell. To estimate local routing, we first build
a Steiner tree (alternatively, one can use minimum spanning tree)
for the pins. In our experiments, we use Flute [5]. We then break
each horizontal tree segment into two based on the x-coordinate of
the g-cell center and apply equation (1) to calculate blocked global
routing tracks for the g-edges on each side of the g-cell boundaries.
Similarly each vertical Steiner tree segment can be broken using the
y-coordinate of the g-cell center.

An example is shown in Figure 3, where net (A,B) is a two-pin
net while (A, J) and (B, J) are the two segments of a Steiner tree.
The global routing tracks blocked by net (A,B) in the horizontal
direction can be calculated based on segment (A, J). Since the
g-cell center b is between A and J , segment (A, J) blocks global
routing tracks on g-edges (a, b) and (b, c). The blocked tracks on
g-edge (a, b) can be calculated as (xb − xA)/(xb − xa), where xb

denotes the x-coordinate of g-cell center b, and other notations are

defined similarly. Accordingly, the blocked global routing tracks on
g-edge (b, c) is (xJ −xb)/(xc−xb). The vertical tracks blocked by
net (A,B) can be calculated similarly, based on segment (J,B). As
another example, when a segment is completely on the left of (above)
or right of (below) the g-cell center, such as the net (C,D) in Fig-
ure 3, the blocked tracks can be calculated as (xD − xC)/(xc − xb).
In this case, only the tracks on g-edge (b, c) are blocked.

Figure 3: Local routing resource estimation for two-pin nets.

The proposed method can be easily applied to more complex
Steiner trees, for example A,B,C in Figure 4. However, when a
net has pins that reside in different g-cells, we must account for the
synergy between global and local routes. An example is the net
D,E, F,G in Figure 4. As mentioned previously, it is impractical
for congestion evaluation to wait until the completion of global
routing in order to consider local routes. To simplify our algorithm,
we assume that all global routes connect to the center of a g-cell.
In this case, we can include the g-cell center as a dummy pin when
constructing the Steiner tree to model the local routes. For example,
the Steiner tree connecting b, E, F,G is used to calculate the blocked
global routing tracks on the four boundaries of g-cell with center b.
Similarly, the Steiner tree connecting a,D is used to calculate the
blocked tracks corresponding to g-cell with center a. Note that this
may cause over-estimation in some cases when connection from D
to E,F,G takes fewer tracks than that from a to E,F,G, e.g., D
is at the bottom-left corner of the g-cell. To account for this factor,
we introduce a parameter p to scale the estimated local resources,
where p will be tuned empirically for each technology.

Figure 4: Local routing resources consumed by two nets.

In summary, to consider the effects of local routes in global rout-
ing, we add a pre-processing (or pre-routing) step. Specifically, we
traverse all the nets, identify the pins inside each g-cell, estimate the
local routes using the method presented in this section, and block the
global routing tracks from the related g-edges. Local wires inside a
g-cell are usually short and for pin accessibility they are typically
routed in the second (M2) and third (M3) metal layers during detail
routing. Hence, we only block the global routing tracks on g-edges
in the M2 and M3 layers during congestion evaluation.

3.2.2 Method 2: Estimation of local routes based on
pin density

Based on our experiments, Method 1 is reasonably fast and very
effective in modeling congestion due to local routes. However, calcu-
lating Steiner trees for all the pins of each net in every g-cell can be-
come a productivity bottleneck when congestion analysis is invoked
hundreds of times (for example, during physical synthesis). We now
propose an alternative method that is simpler and much faster than
Method 1, yet equally effective. This method is based on pin density,
and does not involve constructing Steiner trees to estimate the local
routes. It is based on the following observations:
• Each pin is associated with a set of local wires connected to it.
• The number of pins in a g-cell is a good indicator of the number

of local routes, and is a first-order estimate for routing tracks
blocked by local routes within the g-cell.

Based on the above observations, we model the local routes in a
g-cell by (k · n), where k is a technology-dependent parameter, and
n is the number of pins in the g-cell. For each technology node, we

empirically determine k by comparing the congestion statistics from
our analyzer to those obtained from a reference industrial router.
During our experiments on industry netlists, we observed that for a
given technology node, k is usually similar across different designs
and floorplans. This justifies the effectiveness of Method 2 while
using a single k value that is technology and not design dependent.

A key benefit of using this method is that one can easily tune k for
more complicated design rules at a given technology. Some design
rules (such as lithography constraints) in advanced technologies, or a
specific design library (smaller track), may be complicated to model
through global routing. These factors may also result in significant
detailed routing runtime. Tuning k to address the impacts of these
issues can serve as a better guide to routability optimization during
a physical synthesis flow.

As before, we use a pre-processing step to use Method 2 in a
global routing based congestion evaluation tool. Specifically, we
traverse all the g-cells and nets, and count the number of pins (n),
inside each g-cell. Following this, we block kn global routing tracks,
due to the local routes in each g-cell, on the four g-edges related to
the g-cell. Similar to Method 1, we only block the global routing
tracks on g-edges in the M2 and M3 layers.

Although Method 2 is empirical and much simpler than Method 1,
it yields surprisingly good results. In our experiments, described in
Section 5.1, Method 2 achieves a 3.6 times speedup over Method 1
with comparable accuracy.

4. METRICS FOR DESIGN CONGESTION
4.1 Limitations of current metrics
Total overflow (TOF) and maximal overflow (MOF): Naïve im-
plementations of these metrics treat the overflow in each layer as
identical; however, this is inaccurate as each layer has a different
capacity. Normalizing the overflow to the layer capacity can over-
come this issue, but other problems remain. The TOF metric does
not capture the hot spots in the congestion map, i.e., the severity of
congestion in the worst regions of the chip. MOF fares only slightly
better, capturing only the maximum overflow value among all the
g-edges in the routing graph. This presents a fairly incomplete pic-
ture of the congested regions in the design. Moreover, as pointed
out in [2], overflow metrics fluctuate greatly, depending on design
size, number of g-edges, number of routing layers, etc.
ACN(20), WCI(100) and WCI(90): These metrics fail to
differentiate between a net spanning a single congested g-edge and
one that spans multiple congested g-edges.
Example: Consider two nets in the GRG: net-A traverses g-edges
with congestion 0.50, 0.70, 0.80, 0.90 and 1.10, while net-B tra-
verses g-edges with congestion 0.60, 0.80, 0.95, 1.05 and 1.10.
When calculating ACN(20), WCI(100) and WCI(90), both nets
will be counted with the same congestion. However, their routability
is different: clearly, net-B is harder to route compared to net-A, as it
traverses more number of g-edges with higher congestion. This fact
is not captured by these net congestion based metrics.

Additionally, minor design changes can cause large fluctuations
in the WCI(100) and WCI(90) metrics.
Example: Assume a design has a g-edge e, with ce = 40, be = 0
and we = 39. Assume, that we reroute a net to pass through this
g-edge (say, to improve timing). Then the congestion of e becomes
100%, implying that all 40 nets crossing e now have a congestion
of 100%. As a result, WCI(100) will now report 40 additional
congested nets, when in reality we only rerouted a single net. A
similar example applies to the WCI(90) metric. Such instability
renders these metrics unsuitable for guiding routability optimization.

Although, ACN(20) avoids large swings due to minor design
changes, it suffers from the limitation of not accurately capturing
design congestion (demonstrated in Section 5.5).

In addition, existing metrics improperly model the congestion
along macro boundaries [1,2], leading to an artificially high reported
congestion. Referring to Figure 5, net N routes to a pin on macro
block B. Due to the blockage, the congestion of edge e would
be rated as being above 90%, but in practice, we find that such
nets are easily routable. Including these g-edges with artificially

high congestion when calculating the metric introduces unnecessary
noise leading to improper estimation of the routability. Note that
we only suggest to exclude the edges along macro boundaries when
calculating the metric after global routing to evaluate the routability,
but the high congestion of these edges should not be ignored during
the global routing process.

Figure 5: An example showing a net N traversing g-cells that are 90%
blocked due to a routing blockage. This leads to artificially high reported
congestion for edge e.

4.2 New metric for design congestion
To address the issues with existing metrics, we propose a new

metric that is based on the histogram of g-edge congestion.
Our metric has two features:
• It downplays the effects of g-edges with artificially high con-

gestion due to the presence of routing blockages.
• It presents congestion as a histogram, instead of a single num-

ber.
To accurately capture the congestion, our metric, denoted as

ACE(x, y), computes the average congestion of the top x% con-
gested g-edges, while ignoring g-edges that are ≥ y% blocked. The
role of the parameter y is to void counting the effects of g-edges with
artificially high congestion. A typical value for y is 50, implying
that all g-edges with ≥ 50% routing blockage are ignored when
computing the metric. For convenience, we use ACE(x) to denote
ACE(x, 50) in this paper.

In practice, the new metric is most useful when expressed as a
vector, for different values of x, e.g., for x ∈ {0.5, 1, 2, 5, 10, 20}.
ACE(x), for a small value of x, (e.g., 0.5, 1), provides a highly
local view, representing congestion in the regions with the highest
contention for wiring resources (hot spots). For larger values of x,
(e.g., 10, 20), it gives a broader picture of the design congestion.

5. VALIDATION AND ANALYSIS
Our proposed techniques, hereafter GLARE, are implemented

within a congestion analyzer2 that performs global routing in the
spirit of MaizeRouter [8]. This section provides a detailed analysis
of GLARE on advanced industrial designs listed in Table 1. Columns
two and three in Table 1 give the design information and columns
four and five list the technology specific pin blockage multiplier (k)
and Steiner method parameter (p), respectively. These parameters
are empirically tuned for each technology. Note that both k and
p increase almost twice from 65nm and 45nm to 32nm. This is
probably because the design rules in 32nm node become much more
complex than previous technologies, and local routing takes more
resources than before. All experiments were run on a 64-bit Linux
server with 32 CPUs (Xeon R© X7560 2.27GHz) and the common
color map used for all the congestion plots in this paper is shown in
Figure 6.
Table 1: Benchmark designs and the parameters used in the two methods for
local routing modeling.

Technology Pin blockage Steiner methodDesigns #Nets node multiplier (k) parameter (p)
ckt_12 1660259 65nm 0.050 0.453
ckt_18 528500 65nm 0.050 0.453
ckt_i 350749 45nm 0.050 0.470
ckt_y 321939 45nm 0.050 0.470
ckt_s 1006029 45nm 0.050 0.470
ckt_fb 318116 32nm 0.114 1.000

Sections 5.1 through 5.4 show the impact of modeling local rout-
ing resources on routability evaluation and Section 5.5 shows the
2Our proposed techniques can also be used in global routers.

Figure 6: Common color map used for all the congestion plots in this paper.

impact of the proposed congestion metric. For the analyses pre-
sented in Sections 5.2 through 5.4, we use the following engines to
evaluate the impact of our proposed techniques:
• Reference Analyzer: A full-blown industrial router that has a

mode for performing congestion analysis with complex model-
ing of local wires. The reference analyzer is used to judge the
quality of all results, and typically runs about 10 times slower
than the GLARE based congestion analyzer.
• Analyzer A: A fast congestion analyzer that is based on Maize-

Router [8], with the ability to perform global routing on mil-
lions of nets in less than 10 minutes.
• GLARE: Modification of Analyzer A, incorporating the local

routing resources modeling of GLARE.

5.1 Steiner wirelength vs. pin density based mod-
eling of local routing resources

This section compares the runtime and accuracy of the two meth-
ods to model local routing resources: Steiner tree wirelength based
modeling (Method 1) and pin density based modeling (Method 2).

First, Table 2 compares the runtime of the two methods. In Ta-
ble 2, “Pre-routing” gives the CPU time for modeling local routing
resources, “Total” the total CPU time for congestion analysis, and
“Average” the average runtime normalized to Method 2. From Ta-
ble 2, Method 2 is 3.6 times faster than Method 1 when estimating
local routing resources.

Table 2: Runtime comparison of Method 1 and Method 2.

Designs
Method 1 (sec) Method 2 (sec)

Pre-routing Total Pre-routing Total
ckt_12 28.03 401.99 9.00 384.59
ckt_18 8.72 139.50 2.17 133.12
ckt_i 5.24 46.20 1.45 39.73
ckt_y 5.64 48.63 1.93 41.65
ckt_fb 5.12 44.42 1.15 41.36
Average 3.62 1.10 1.00 1.00

Next, Figure 7 shows linear fitting results between local routing
resources estimation using Method 1 and Method 2 for design ckt_fb
on layer M2. The case for layer M3 is similar and omitted here.
Figure 7 shows that with the right values of k and p, we can obtain
very good correlation between the two methods.

Figure 7: Linear fitting results between local routing resources estimation
using Method 1 and Method 2 for design ckt_fb on layer M2.

Based on the results above and in light of its simplicity, we use
Method 2 within GLARE to model and account for local routing
resources for all subsequent analyses.

5.2 Improving congestion analysis accuracy
This section presents the impact of modeling local routing re-

sources on the overall accuracy of congestion analysis.

Figure 8 shows the results of running the three analyzers on the
same placement instance for design ckt_12. From Figure 8(b) we see
that using a congestion analyzer with no modeling of local routing
resources significantly underestimates the actual congestion. Al-
ternatively, the plot from the GLARE based congestion analyzer
(Figure 8(c)) is much closer to the one obtained from the reference
analyzer3, both in terms of the congested regions and their intensity.
This result assumes significance in the context of using analyzers
within congestion mitigation tools like CRISP [11], where the effec-
tiveness of the tool is highly dependent on accurately identifying the
regions of high congestion as well as their relative intensity.

(a) Reference Analyzer (b) Analyzer A (c) GLARE

Figure 8: Congestion plots for ckt_12 using a g-cell size of 20 tracks (for
GLARE, we set k = 0.05).

5.3 Better prediction of detailed routing issues
Often a design that seems routable after global routing can end

up with multiple opens/shorts at the end of detailed routing. Early
prediction of such issues without performing the time consuming
step of detailed routing is highly beneficial as it enables designers to
take appropriate measures, thereby improving overall turn-around
time for design closure. This section demonstrates that our proposed
techniques are able to predict detailed routing opens/shorts with
higher fidelity as compared to existing methods.

As an example, we next compare the opens/shorts plots with the
congestion plots from Analyzer A and GLARE for circuit ck_fb.
Figure 9 shows a plot of the opens/shorts for design ckt_fb during
an intermediate stage of an industrial strength detailed router. These
opens/shorts indicate the problematic locations in detailed routing,
which, in our experience, are usually due to high local congestion
at these locations. Figure 10 shows the congestion plots generated
by Analyzer A (Figure 10(a)) and the GLARE based analyzer (Fig-
ure 10(b)). Comparing Figure 9 with Figure 10(b), we see that the
GLARE based analyzer clearly indicates congested hot spots, which
translate to the problematic regions for detailed routing – a fact not
captured by Analyzer A.

Figure 9: Opens and shorts for ckt_fb during detailed routing.

To quantitatively measure the predictability of the analyzers, we
determine the ratio of the number of opens/shorts present in g-cells
with global congestion greater than 85% to the total number of
opens/shorts in the design. We call this as match ratio, and by
3It is expected that errors remain in the results generated by the GLARE-
based congestion analyzer compared to the reference analyzer, since it runs
much faster, and does not work as hard as the reference analyzer. However,
GLARE-based congestion analyzer can generally predict the hot spots well.

(a) Analyzer A (b) GLARE

Figure 10: Congestion plots for ckt_fb. The GLARE based congestion
analyzer predicts the problematic regions for detailed routing with higher
fidelity (for GLARE, we set k = 0.114).

definition it measures the percentage of opens/shorts in the most
congested regions of the design. We use a threshold of 85% based on
prior experience that regions with high global congestion are usually
problematic for detailed routing. Using this method, the match
ratios for Analyzer A and the GLARE based analyzer are 0.20 and
0.87, respectively. Coupled with the congestion plot in Figure 10(b),
this further demonstrates the effectiveness of the GLARE based
congestion analyzer in predicting detailed routing opens/shorts.

5.4 Accelerating congestion analysis by using a
larger g-cell

Since our method can accurately incorporate the effects of local
wiring within a g-cell, it provides the freedom to increase the size of
the g-cell, thereby accelerating congestion analysis. We demonstrate
this by way of running the different analyzers with varying g-cell
sizes as outlined below:
• Reference.20: Reference Analyzer, g-cell size = 20 tracks.
• Analyzer A.20: Analyzer A, g-cell size = 20 tracks.
• Analyzer A.80: Analyzer A, g-cell size = 80 tracks.
• GLARE.20: GLARE based analyzer, g-cell size = 20 tracks.
• GLARE.80: GLARE based analyzer, g-cell size = 80 tracks.
Figure 11 shows the results of running the different analyzers on

identical placements for design ckt_12. As before, the congestion
plot from the Reference Analyzer (Figure 11(a)) is considered most
accurate, and used to judge the quality of all results. From Fig-
ures 11(b) and 11(c), it is apparent that the quality of the congestion
analysis using Analyzer A deteriorates significantly with an increase
in the g-cell size. Alternatively, Figures 11(d) and 11(e) demonstrate
that the GLARE based analyzer with local routing resources mod-
eling is still able to predict the congested hot spots with reasonable
accuracy with an increase in the g-cell size. In addition, the runtime
is reduced from 620 sec to 248 sec – a 60% speedup.

5.5 Comparison of routability metrics
Visual inspection of a congestion plot is widely used to quickly

evaluate the routability of a design point. We now demonstrate
that our new metric can capture a congestion plot with higher fi-
delity compared to prior metrics for routability evaluation. Consider
Figure 12 displaying the congestion plots from two global routing
solutions on identical placements for the design ckt_s. The cor-
responding values for the different congestion metrics are given
in Table 3. For the new metric, the congestion is expressed as an
ordered pair representing (Horizontal, Vertical) layer congestion.

(a) Solution 1 (b) Solution 2

Figure 12: Congestion plots for two routing solutions on design ckt_s.

From Table 3, the overflow-based metrics4 indicate that Solution 1
has better congestion, while the net congestion based metrics indi-
4To counteract the drawbacks of overflow metrics discussed earlier, when

(a) Reference.20 (11287 sec) (b) Analyzer A.20 (557 sec) (c) Analyzer A.80 (207 sec) (d) GLARE.20 (620 sec) (e) GLARE.80 (248 sec)

Figure 11: Congestion plots and runtime for different analyzers with varying g-cell sizes for the design ckt_12.

cate that Solution 2 is better, as ACN(20) of Solution 2 is better
than that of Solution 1, even though WCI(90) and WCI(100) are
worse.

However, a visual examination of the congestion plots indicates
that they are quite similar, demonstrating the deficiencies in the
existing metrics. Alternatively, our new metric correctly identifies
the congestion of these two routing solutions to be similar.

Table 3: Congestion metrics for two routing solutions on design ckt_s.

Metrics Solution 1 Solution 2
Overflow based TOF 194373 217499

metrics MOF 10 11
ACN(20) 84.41 77.97Net congestion WCI(90) 39494 40548based metrics WCI(100) 274 276
ACE(0.5) (90.47, 90.54) (90.27, 90.46)
ACE(1) (89.23, 89.12) (89.13, 89.10)

New metric ACE(5) (85.93, 85.45) (86.14, 85.49)
ACE(10) (84.16, 83.39) (84.59, 83.51)
ACE(20) (82.48, 81.58) (82.57, 81.53)

The significant difference in the ACN(20) values for the two
comparable routing solutions can be explained by Figure 13(a)
which plots the distribution of the worst congestion on the nets.
From Figure 13(a), Solution 1 has a considerably higher number of
nets in the [78.09%, 84.41%] congestion range compared to Solu-
tion 2, leading to the difference in the ACN(20) values. In practice,
our experience on industry designs is that nets with congestion less
than 85% are often easy to route, and considering them within the
congestion metric introduces unnecessary noise during routability
evaluation. In contrast, looking at Figure 13(b) which plots the distri-
bution of the congestion on the g-edges, we observe the distributions
for the two routing solutions to be quite similar above 80%. This
explains why the new metric (correctly) rates the two solutions to
have similar congestion.

6. CONCLUSION
Fast and accurate routability evaluation techniques are critical

to address the increasingly important and difficult issue of routing
closure in nanometer-scale physical synthesis. In this work, we
have addressed two important aspects of routability evaluation: the
accuracy of congestion estimation and a metric for evaluating the
routability of a design. We have shown that ignoring the effects of
local congestion can result in large errors during congestion analysis.
This observation motivates our models for local congestion based
on (a) the Steiner tree wirelength of the local routes and (b) the
pin density. Experimental results show that the proposed modeling
can improve the accuracy and fidelity of congestion analysis, and
better predict detailed routing issues such as opens and shorts. It also
enables designers to use larger g-cells to accelerate the process of
congestion analysis, thereby speeding design closure. Furthermore,
we have analyzed the limitations of existing congestion metrics
including overflow, etc., and proposed a new metric based on g-edge

calculating overflow, the capacity is scaled down to 80% of the original,
and the overflow is in unit of number of minimum-width tracks, e.g., one
overflowed track on a 4X layer would be counted as four in the overflow
number.

(a) Distribution of net congestion.

(b) Distribution of g-edge congestion.

Figure 13: Distribution of congestion for two routing solutions of ckt_s.

congestion. We have demonstrated that our new metric can represent
a congestion plot with higher fidelity.

7. REFERENCES
[1] C. Alpert et al. What makes a design difficult to route. In Proc. ISPD, pages

7–12, 2010.
[2] C. Alpert and G. Tellez. The importance of routing congestion analysis. DAC

Knowledge Center Online Article, 2010. http:
//www.dac.com/back_end+topics.aspx?article=47&topic=2.

[3] Y.-J. Chang et al. NTHU-Route 2.0: A fast and stable global router. In Proc.
ICCAD, pages 338–343, 2008.

[4] H.-Y. Chen et al. High-performance global routing with fast overflow reduction.
In Proc. ASPDAC, pages 582–587, 2009.

[5] C. Chu and Y.-C. Wong. Flute: Fast lookup table based rectilinear Steiner
minimal tree algorithm for VLSI design. IEEE Trans. on CAD, 27(1):70–83,
2008.

[6] J. Lou et al. Estimating routing congestion using probabilistic analysis. IEEE
Trans. on CAD, 21(1):32–41, 2002.

[7] C. Minsik et al. BoxRouter 2.0: Architecture and implementation of a hybrid
and robust global router. In Proc. ICCAD, pages 503–508, 2007.

[8] M. D. Moffitt. MaizeRouter: Engineering an effective global router. IEEE Trans.
on CAD, 27(11):2017–2026, 2008.

[9] M. Pan and C. Chu. FastRoute: A step to integrate global routing into placement.
In Proc. ICCAD, pages 464–471, 2006.

[10] M. Pan and C. Chu. IPR: An integrated placement and routing algorithm. In
Proc. DAC, pages 59–62, 2007.

[11] J. Roy et al. CRISP: Congestion reduction by iterated spreading during
placement. In Proc. ICCAD, pages 357–362, 2009.

[12] H. Shojaei et al. Congestion analysis for global routing via integer
programming. In Proc. ICCAD, pages 256–262, 2011.

[13] J. Westra et al. Probabilistic congestion prediction. In Proc. ISPD, pages
204–209, 2004.

[14] T.-H. Wu et al. A parallel integer programming approach to global routing. In
Proc. DAC, pages 194–199, 2010.

[15] Y. Xu et al. FastRoute 4.0: Global router with efficient via minimization. In
Proc. ASPDAC, pages 576–581, 2009.

