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ABSTRACT

We present an efficient optimization scheme for gate sizintpé
presence of process variations. Using a posynomial delalemo
the delay constraints are modified to incorporate unceaytainthe
transistor widths and effective channel lengths due to thegss
variations. Anuncertainty ellipsoid method is used to model the
random parameter variations. Spatial correlations ohidie width
and channel length variations are incorporated in the épétion
procedure. The resulting optimization problem is relaxede
a Geometric Program and is efficiently solved using convek op
mization tools. The effectiveness of our robust gate sizicigeme
is demonstrated by applying the optimization on the ISCAS '8
benchmark circuits and testing the optimized circuits bsfqren-
ing Monte Carlo simulations to model the process variatidBg
varying the size of the uncertainty ellipsoids, a tradebaffween
area and robustness is explored. Experimental results ttadvhe
timing yield of the robustly optimized circuits improves nifld
over the traditional deterministically sized circuits. Aempared
to the worst-case design, the robust gate sizing solutigimbahe
same area, has fewer timing violations.

Categories and Subject Descriptors

B.7.2 [Hardware]: Integrated Circuits—Besign Aids
General Terms

Optimization, gate sizing
Keywords
Geometric Program, posynomial, uncertainty ellipsoid

1. INTRODUCTION

Due to shrinking of process geometries, it is becoming msre
ingly difficult to control the fabrication of critical devicparame-
ters. The limitations of the manufacturing process in theent
technologies leads to random variations in various cineaiame-
ters. These random perturbations from the nominal valu¢ésof
sistor width, channel length, oxide thickness, etc., mayseaa
large spread in the circuit performance measures such adethe
lay, power, etc. Since it is impossible to control the preegsven
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variations, it is essential for the design tools to accoonttfiese
uncertainties and design robust circuits that are inseediv the
device parameter variations as much as possible.

The traditional gate sizing methodologies [1], [2] use Eleno
delay based posynomial delay constraints to formulate ttbiel@m
as a Geometric Program (GP). The use of posynomial delay mod-
els for the gate sizing problem enables the use of efficiem¢ao
optimization tools to solve the problem [3]. These convaml
gate sizing tools employ a static timing analysis (STA) imaito
generate the delay constraints,and then solve the GP aptiom
problem to determine the widths of the devices in the circTiite
minimum length is chosen for all the devices. However, duta¢o
fact that the nominal designs are perturbed by the randocepso
variations, a large number of chips may fail to meet the ogbi
delay specifications. This leads to a reduction inttheéng yield of
the circuit defined as the fraction of total chips whose delags
not exceed the original specified value. An obvious way tosiase
the timing yield of the circuit is to design for the worst-easce-
nario, e.g., choose a delay specification of the circuit ntigitter
than the required delay. This could lead to a large overhesatins
of the circuit area and the power as the optimizer may havg+to a
gressively size the critical as well as the non-criticahgatHence,
it is necessary to develop smart worst-casing methoddpgig¢he
presence of process uncertainties, that keep the area@apdwrer
budgets within reasonable bounds.

There have been several recent attempts to perform untgrtai
aware gate sizing to reduce the timing violations or inceethe
timing yield. In [4], the gate sizing problem is formulated a
non-linear optimization problem with a penalty functiordad to
improve the distribution of timing slacks. In other works ratust
gate sizing [5, 6, 7], the central idea is to capture the ddisfyi-
butions by performing a statistical static timing analy{§iSTA), as
opposed to the traditional STA, and then use a general meauli
programming technique to size the gates. To simplify the/ SST
procedure, it is required to make assumptions such as thalsig
arrival time and the slope have normal distributions, arulax-
mations such as the maximum of two or more normal distrilmstio
is also a normal distribution, which may be inaccurate. Sofme
these works [6],[7] ignore the significant spatial corrielatcom-
ponent of the intra-chip parameter variations.

In this paper, we propose a novel gate sizing technique based
robust optimization theory [8]. For simplicity, we use thkngre
delay based model, but our approach is applicable to anynpesy
mial delay model, such as the rich class of generalized mosiai
delay models proposed in [3]. In our method, we first generate
posynomial constraints by performing a STA. We then eatulist
constraintsto the original constraints set by modeling the intra-chip
random process variations in the transistor widih$) @nd effec-



tive channel lengthsI{) as anuncertainty €ellipsoid [9] centered

at the nominal values. Under the ellipsoid uncertainty nhaithe
resulting optimization formulation is relaxed to be a GP andf-
ficiently solved using the convex optimization tools.Ferthore,
using a GP to perform robust gate sizing ensures that thenzeti
finds a global minimum which is not guaranteed in the case of a
general non-linear program. The relaxation of the robuathtar-
part of the conventional GP sizing solution as another GRrigjar
contribution of this work because, in general, it is not tiloat the
robust versions of convex programs are also convex progibdhs
Our work is related to the conventional design centering@gghes

of [11] and [12]. However, unlike these methods which assthme
design parameters to be normally distributed, the propgatasiz-

ing scheme does not require any assumptions to be made albout t
distributions of the parameter variations. Only the cauace ma-
trix of the random perturbation vector is required as antinpthe
optimization problem. Our robust gate sizing scheme is a tyfp
worst-case design method, but by incorporating spatiaetations

in the design procedure, we reduce some pessimism in thgndesi
Spatial intra-die correlations between the parametentiaris are
incorporated in the optimization scheme by using a gricetapa-
tial correlation model used in [13] and [14]. We focus on thied-

die variations inL andW parameters; however, the method can be
easily modified to include inter-die variations. Procegseth vari-
ations in the interconnect widths and thickness can alsndeded

in our method.

2. PRELIMINARIES

2.1 Conventional Gate Sizing as a GP
The conventional gate sizing problem is formulated as:

Minimize Area =" aiWiL;
Subject to Delay < Tspec

and Winin < Wi, Lomin < L; Vi=1.n (l)

where,W; andLL; are respectively, the width and the effective chan-
nel length of gate, anda; is some weight factor.Using the Elmore
delay modé, each gate in the circuit can be replaced by an equiv-
alentR,,,C; element, whereR,,,, represents the effective on re-
sistance of the pull-up or the pull-down network, and thentér;
subsumes the source, drain and gate capacitances of thstoas

in the gate. The expressions {8, andC; for a gate; are given

by:

OéLZ‘
Wi @

where, the constants, 3 and~ can be derived from [2]. Both the
capacitances and the on resistance of the transistors itesaga
posynomial functions of the vectof¥ and L. Consequently, the
term R, C; which is the equivalent delay contribution of gate
the circuit is also a posynomial function Bf and L. By breaking
the circuit into a series of RC trees, and applying the Elndelay
computations at each node of the the circuit graph, the d=ay
straint of (1) at the primary outputs of the circuit, can bplaeed
by m posynomial delay constraints of the form:

SaIIwes < w
l J

where,m is the number of nodes in the circuit gragh, is a con-
stant coefficient of thé’” monomial term, which can be derived

Roni =

Ci =BLW; +~

®)

The Elmore delay model is used for simplicity. Alternatiyejen-
eralized posynomial delay models [3], which have a higheuac
racy, can be used for the GP formulation.

from (2), t; is the arrival time at gaté anda;, b;, the exponents

of the j** components of th&/ and L vectors,e {—1,0,1}. By
substituting (3) in (1), for all gates in the circuit, the gentional
transistor sizing is formulated as a GP optimization problbav-

ing a posynomial objective function and posynomial coristsa
which can be solved using the GP techniques. In Section 32, w
show how the robust version of the standard GP formulatiorbea
converted to another GP.

2.2 The ellipsoid set

For any vectorX and X, € R", and a non-singular matrik €
R™*", an ellipsoid is defined as a set [9]:

{X:(X-Xo)"P (X -Xo) <1} (4)

If P is a symmetric and positive semidefinite matrix (PSD), an al-
ternative representation of (4) is realized by making tHesstu-
tion, P~1/2(X — Xo) = u as:

{X =Xo+P"?ul |uf <1} (5)

where||u|| = u”u is the 2-norm of vectou. For a symmet-
ric and PSD matrixP, the matrixP'/? can be computed by the
Cholesky factors ofP. The ellipsoid representsadimensional
region, where the vectof varies around the center poiff. The
vectoru characterizes the movementXfaroundX.

e
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Figure 1: An uncertainty ellipsoid in 2 dimensions

Figure 1 illustrates the ellipsoid iR?. The half-lengths of the
axis of the ellipsoid are the square roots of the eigenvalieand
A2, of the matrix P, and the direction of the axis is given by the
eigenvectors ofP, e; andes. In Section 3.1, we will introduce
the concept of an uncertainty ellipsoid, based on the elitpset
of (5), to model the process-driven variability and forntelaur
robust optimization problem.

3. GATE SIZING UNDER PROCESS
VARIATIONS

The posynomial constraints of (3) can be represented as:
fi(Xo) (6)

wheref;(Xo) = >, Ki [[; W3 L;’[j represents thé" constraint
function, X is the vector representing the nomif#l and L. The
conventional GP optimization assigns a set of optifigland Lo

to the vectoiX o so that each delay constraint is satisfied, ifex

t; for all constraintg, and the area objective is minimized.

Due to the process variations, the components of veXtathe
transistori¥ and L are no longer deterministic quantities, but be-
have as random perturbations around their nominal valugs r&-
sult, the constraint functiolf; (Xo) changes tgf; (Xo + 6X). For
the cases when the new value of the constraint funcfiop ¢;,

<



the effect of the random process variations leads to thanatig

constraints being violated and timing failure for the citcu
Assuming that the random parameter perturbations around th

nominal values are small, the new value of the constrainttfan

fi can be approximated by a first order Taylor series expansion a

FXo+6%) = fi(Xo)+ 3 FEENX; ~ Xo)

[i(Xo) + Vx,fi(Xo)0X
Z Ki H W;IojL?g +
! j

a; bs
Vxo O K J[W;7L7)sX (7)
l J

whereVx, represents the gradient calculated at the nominal values

of W andL, andé X represents the random variation in the widths
and channel lengths, around the nominal values.

In (7) the term ¥/ x, (>, K [, W;” Ll]’.j )6X is the variational
term representing the effect of process variations addttbtoom-
inal termy", K H]. W;j Li’é . To safeguard against the uncertainty
of process variations, it is necessary to meet the constyair: ¢;,
for the maximum value of the variational term. In other words

Z K H W;}jL?é +
l J

a; rbs
%%?(VXO(ZKzHWJ-]LjJ)(SX) < b

l J

®)

In the following sections, we show that by employing the @ptc
of an uncertainty ellipsoid, the constraint of (8) can berfolated

as a posynomial constraint, so that the robust optimizdtomu-

lation remains a GP, and can be efficiently solved. Our roGist
formulation is applicable for all cases where the origirmaistraints
are in the form of a generalized posynomial [3].

3.1 Uncertainty Ellipsoid

For a random vectoX of sizen, with a meanX, and the co-
variance matrixP, the uncertainty ellipsoid (also called the vari-
ance ellipsoid) is defined by the ellipsoid set of (5) [9]. Tmeer-
tainty ellipsoid represents region of variation of the ramdvector
X around the mean vectoX,. The variational vectou charac-
terizes the uncertain movement Xfaround X,. As seen from
Figure 1 and equation (5), the maximum variatiorkoéroundX
is bounded due to the fact that the veatdras a norm|u|| < 1.

We use the uncertainty ellipsoid to model the process vanist
that randomly perturb the transistdv’ and L around the nomi-
nal values for which they were designed. As the random vector
of W and L varies around the nominally designed veclqy, the
variations are considered to be bounded within the ellgbsagions
defined by (5). In other words, the variatiéiX from X is given
by 6X = P*?u with |Jul| < 1.

Alternatively, we could have chosen the variatiol in W and
L to be bounded in a-dimensional box given by ., < 60X <
Xmaz. However, using the box as model for bounded variation,
ignores any correlation information between the randonabtes
components oK, as each component can move independently in-

side a box, assuming any values between the minimum and max-

imum range. Thus, optimizing for a maximum variation in such
a box region would translates to an overly pessimistic desige
advantage of using the ellipsoid uncertainty model is thgicarre-
lations between the components of the random vettare directly
captured by appropriately populating the entries of theademnce
matrix P. As will be explained in Section 4, we use this fact to

incorporate the spatial correlations between the randaempeter
variations. To generate the uncertainty ellipsoid regibis,not re-
quired to make any assumptions about the distributionsefith
and L. The only inputs needed to generate fAanatrix are the
standard deviations of the componentsXofwhich can be empir-
ically calculated [15], and correlation factors betweea tbmpo-
nents ofX, which can be derived from a spatial correlation model
such as the ones used in [13] and [14].

In the next section, we show with the aid of a small exampke, th
use of the ellipsoid uncertainty model in converting thestmint
of (8) to a posynomial constraint and formulating the roliBtfor
gate sizing in the presence of process variations.

I[ ; I
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Figure 2: A simple example circuit

3.2 Robust GP formulation

We use a simple example to explain the procedure to incaigora
the process variation effects in the delay constraints ¥ég. use
the toy circuit of Figure 2, comprising of just one driver gand
one load gate, for this illustration, but the idea can be gdized
to arbitrarily large circuits.

Applying the EImore delay model to the gates of circuit of-Fig
ure 2, and for simplicity neglecting the interconnect dedag the
effect of drain and source capacitances of the driver gagedélay
constraint for the circuit can be written as:

K1L1L2W2 K2L2
9
Wh + Wa ©)
where K7 and K, are constants. As explained in Section 3, to
ensure that the delay constraint of (9) is met under the teffec

random process variations, the first order Taylor seriesugsipn
of the constraint function results in the following relatio

K1L10 LQO WQO K2L2o

< Tspee

+ +
W10 W20
KiLiyLoyoWs K1 LoyWa,0L1
e (P Wi,
K1L1,Way0Ly | KsdLy
Wlo W20
K1L10L20W205W1 K2L205W2
- < Tspec (10
Wz Wi < Tpee (10)

wherelW, andL, represent, respectively, the nominal values of the
transistorl?V and L, andéW andd L are, respectively, the random
variations inWW and L. Employing the ellipsoid uncertainty model
of (5) for the random parameter variations, leads to:

W1 (PY?u),
5W2 (P1/2u)2
5L1 - (1:;1/211)3 (11)
6 L2 (p1/2u)4

whereP is the covariance matrix of the random veckocompris-
ing of the transistoM and L of the driver and the load gate of
Figure 2, andi is the vector characterizing the variation within the
4-dimensional ellipsoid centered at the nominal valué§’adnd L,
with ||u]| < 1. We introduce two vectorg$; and¢, to collect the
positive and negative coefficients, respectively, of theav@nal



parameters of (10) as:

0 — KLy Loy Wag
KiLiyLa, wi
W1 *Kzgzo
¢1 = K1L20(h/20 , P2 = w3 (12)
Wl() 0
K1LyyWa, Ko
Wi, Wag 0

From the definitions in (11) and (12), (10) can be rewritten as

KiLig Loy Way | KoLy |
Wi, Wa,

max ((P'2g1,0) + (P?02,w)) < Tupec

+
(13)

where(a, b) represents the inner product of vectarandb. From
the well known result of the Cauchy Schwartz inequdlity:

<a,b> < af - ol

(14)
and the fact that in the ellipsoid uncertainty modgh|| < 1, a
sufficient condition for (13) is:

KiLiyLayWay  KaLi,
+ +
Wi, Wa,

IPY261]| + P2 ¢all - < Tupec

(15)

We then introduce two additionabbust variables r; andr; as:
ri= P2, e, rf=¢i P
ra=|P2gull, e, 13 =Py (16)

The inequality of (15) is then replaced by the following doamts:

K1L10L20W20 K2L10
< Tepec 17
W10 + W20 +7r1+re >~ p ( )
¢1 Porri? <1 (18)
¢3 Por;? < 1 (19)

The inequality of (17) is clearly a posynomial with the robwesri-
ablesr; andr. added to the original variable list of the transistor
W and L. By construction, all the elements ¢f are posynomi-
als, and all the non-zero elementsgefare negative of posynomi-
als. The covariance matri®R has all non-negative elements, be-
cause a negative correlation between random variablessepi-
ing the W and L variations would not have any physical mean-
ing. Thus, the quadratic terms! P¢; = Zi’j P;j¢1,¢1,, and
¢T Ppy = > i Pij¢2,¢2, are a summation of monomials with
positive coefficients. Consequently, the constraints 8§ éhd (19)
are also posynomials. Note that the inequality in (18) ar@) (1
would be forced to equality of (16) by the optimizer, as thieust
variablesr; andrz, which represent the maximum variation in the
uncertainty ellipsoid, are to be minimized. Hence, by feiltg the
procedure described in the above equations, we convertdhe n
robust posynomial constraint of (9) to a set of robust posyiab
constraints of (17-19) by introducing two additional vates.

For a general circuit, the procedure described for the elaoip
cuit of Figure 2 is repeated for each constraint. Thus, bytiadd
of at most two additional variables for each constrgimbbustness

2In our case, the equality in (14) also holds because thersoane
points in the ellipsoid set which hay@'/?¢,,u) = ||P/2¢]| -

[[ul].
3An equivalent condition for (13) i :K]Ll“jVL]%WQO + K@,g;” +

P2 (1 + ¢2)||) < Tispee. However, this does not lead to the
formulation of posynomial constraints of (18) and (19).

against the process uncertainties is added to originaki@nsset,
while still maintaining the desirable posynomial struetwf the
constraints. By this procedure, we convert the conventi@Gia
formulation of the gate sizing problem to a robust gate giprob-
lem, which is also a GP and hence, can be efficiently solvetusi
the convex optimization machinery.

4. INCORPORATING SPATIAL
CORRELATIONS

We use the grid based spatial correlation model of [13] addl [1
to incorporate the intra-die correlations between theatgldi and
L variations.

4{>073
3. D

[1>0—

Figure 3: Grid based spatial correlation model

Figure 3 refers to such a model, where the layout area is-parti
tioned intom = 9 grids. The widths (channel lengths) of the de-
vices located in the same grid are assigned perfect camesaide-
vice widths (channel lengths) in nearby grids are assigigudor-
relations and low or zero correlations in far away grids. srsin
Figure 3, gate§1,2} have perfect correlation between their widths
(channel lengths), gated,3} and {2,3} have high correlations,
where as gate§l,4} and{2,4} are uncorrelated.

For a random vectoK representing the variations W and
L and its corresponding covariance mat#x the entryP;; =
o:0;pi; denotes the covariance between compongatslj of X,
whereo is the standard deviation of each random variable @and
is the correlation factor between the random variablesd j. By
employing the spatial correlation model of Figure 3, theelation
factor between all elements &f is computed and stamped out in
matrix P. The ellipsoid uncertainty model described in Section 3.1
then automatically incorporates the impact of correlatiom the
robust optimization formulation.

The following simple example explains how the correlatiars
captured by the uncertainty ellipsoid. Consider a simplestraint
involving the transistor widths of two gates:

KW,
Wa -

For simplicity, we assume that the channel length is notingrsnd
is included in the constarit’;. Furthermore let's assume that the
gates are placed in the same grid of the spatial correlatimem
hence, the variations in the two gate widths are sameji&;, =
0Ws. Also if the nominal gate sizes are the identical, il&;, =
Wy,, the effect of process variation cancels out in the numerato
and denominator of (20) and no guard-banding is requiredefo
ify that the ellipsoid uncertainty correctly incorporatess perfect
correlation affect, we apply our robust optimization pree to
the constraint function of (20). A first order Taylor seriepan-
sion of the constraint around the nominal valudg, (, Ws,) and
applying the ellipsoid uncertainty yields:

1{11/‘/10 + Kl(Pl/Quﬁ _
Wa, Wa,

ti (20)

< t (21)



However, since we have perfect correlation betwd@énand 17>,

the correlation factorpi2 = p21 = 1. Furthermore, since the
variations inWW; and W> and the mean values are same, we must
haves: = o. It then follows that for all vector&s = [u1, u2],
which characterize the uncertainty ellipsoid, we haé/?u), =
(P'?4), and the variational term in (20):

Wa,

Thus, the ellipsoid uncertainty model easily captures ffexts of
correlations between random variables and incorporagesatime in
the optimization procedure. Incorporating the correlaii gate
sizing optimization procedure ensures that the circuitoisaver-
designed to achieve robustness against the process wasiati

5. THE GATE SIZING PROCEDURE

Figure 4 summarizes the overall flow for the robust gate gizin
procedure. We start by generating the non-robust delaytrzints

Generate the non-robust delay constraints by STA.

i

Use a first order Taylor series expansion for constrainttfans.

l

Employ the ellipsoid uncertainty region to model the vaoias.
Use the spatial correlation model to construct theatrix.

|

Using the procedure of 3.2, generate robust constraints.

l

Solve the robust GP by convex optimization tools.

Figure 4: Overall flow of the robust gate sizing procedure.

by performing a STA. The effect of process variations on e c
straints are considered by using a first order Taylor seffighen
posynomial constraints around their nominal values. Weleynp
the uncertainty ellipsoid to model the random process traria.
The P matrix characterizing the variance ellipsoid is consedct
by using the spatial correlation model. Following the pchge
described in Section 3.2, a set of robust constraints arergtd.
Finally, the resulting GP is solved to obtain an optimal gissient

of the transistoiV and L, which minimizes the area, and meets the
delay constraints in the presence of random process \ariati

6. EXPERIMENTAL RESULTS

The proposed robust gate sizing procedure was implemented i
a C program, and an optimization software [16] was used tzesol
the final GP. All experiments were performed on a 2.4 GHz Linux
machines having 2 GB of RAM. The robust gate sizing technique
was applied to the ISCAS 85 benchmark circuits. The celblijpr
selected comprised of inverters and two and three input NAN®
NOR gates. We use a TSMC 18@. technology parameter [17]
to estimate the constants for the on resistance and theesalrein
and gate capacitances. We assume capacitive loading fgatas.
The objective function chosen for the optimization is to imize
Area =Y, m;W;L;, wherem is the number of transistors in gate
?.

In our method, the amount of guard-banding required in the fa
of process variations, is controlled by the size of the uagety
ellipsoid, as determined by the entries of the covarianceixna.
Each element of thé> matrix is given byP;; = p;jo;0;, where
the correlation componeny; is obtained from the spatial correla-
tion model described in Section 4. To use the spatial cdroela
model, we first place the circuits using the placement togdcCa
[18], and then divide the chip area into different number i
depending on the circuit size, so that each grid size is obtter
of 60u x 60u. We defineser as the vector of maximum percent-
age deviations from the nominal valuesl&fand L. The elements
of orer predicted from [15], are 25% of nominal width value and
20% of nominal channel length value. To calculate the eleésnen
of P matrix, we choose the value of = Kover,, WhereK is a
constant< 1.

To verify the results of our method, we generate 10,000 rando
samples from a multivariate normal distributidh Xo, @), where,
the mean vector of the distributidX is the vector containing the
optimal set of transistoi” and L as determined by the the robust
GP solution, and the elements of covariance mafriare given by
Qij = pijOref;Orer;- We then perform Monte Carlo simulations
using these 10,000 random samples, to determine the fregoén
timing violations of the chip, i.e, the number of times théagieof
the circuit exceedds,... The timing yield of the robust design
is compared to that of the conventional gate sizing solutiothe
non-robust design. The Monte Carlo samples for the nonstobu
design are generated using a mean veXgr containingi’’ and
L, as determined by solving a standard GP optimization. Fcn ea
circuit, the value ofl’s,.. is chosen to be the point of 15% slack,
i.e., Tspec = D'min + 0-15(D7naw - D'min)y WhereD'min and
Dnax are, respectively, the minimum and the maximum possible
delays of the circuit. We found that for all the circuits, tiimizer
assigns a value of = L,,;, to all channel length variables. This
can be ascribed to the fact that increasing the channelHemgjt
only has an area penalty, it also increases the delay of theitci
and does not improve the robustness of the circuit in the édice
variations. However, the robust GP determines a width aesgit
such that the random variations for both the width and thgtlen
are accounted for.

Non Robust Design Robust Design
Run Run
0, 0,

#of | Area %Delay Time Area %Delay Time

Ckt Gates Violations (sec) Violations (sec)

C432 616 1.00 78.76% 3.45 1.17 0.00% 18.08

C499 | 1262 | 1.00 70.52% 7.49 1.23 0.01% 29.26

C880 854 1.00 72.36% 5.30 1.14 0.00% 22.17

C1355| 1202 | 1.00 68.76% 7.33 1.20 0.00% 36.42
C1908 | 1636 | 1.00 65.43% 14.40 | 1.19 0.00% 307.88
C2670| 2072 | 1.00 60.09% 2052 | 1.21 0.03% 310.34
C3540 | 2882 | 1.00 67.12% 31.70 | 1.11 0.02% 342.14
C5315 | 4514 | 1.00 62.25% 65.12 | 1.18 0.01% 817.89
C6288 | 5548 | 1.00 63.36% 98.27 | 1.18 0.02% 1042.44
C7552 | 6524 | 1.00 65.12% | 120.35| 1.22 0.03% 1245.34

Table 1: A comparison of robust and non-robust gate sizing
solutions

Table 1 shows a comparison of the robust designs (R) obtained
by the proposed optimization scheme and non-robust defitiR
obtained by the conventional GP solution. For the robustiis
shown in Table 1, the size of the variance ellipsoid is chasen
that the factot = o /0.y = 1. Inthis case, thé> matrix charac-
terizing the uncertainty ellipsoid around nominal valuester X,
is same as th€) matrix used to draw Monte Carlo samples from



the multivariate normal distributiolV (Xo, Q). This size of uncer-
tainty ellipsoid corresponds to the case of maximum unirgyta
awareness. The third column in Table 1 shows the normalizsal a
for the non-robust design, and the fourth column indicatesper-
centage of Monte Carlo chips that failed to meet fhg.. con-
straint for the conventional gate sizing solution. For thieust cir-
cuits, the area overhead to incorporate robustness is listeol-
umn six of Table 1, and the percentage of timing violationsdh

design having the same area. The better performance of bustro
sizing solution is not surprising because of the fact thatdpatial
correlation information, stored in the matrix, is used by the opti-
mization scheme. The worst-case circuit is expected to adame
overhead, since designing by setting tighter specs rasuksder-
ing critical some of the earlier non-critical paths. So tiptimizer
now has to aggressively size the gates on these paths, vésichs
in greater chip area than actually required. Since, themas for

umn seven. The run times for the NR and R designs are listed in our robust gate sizing solutions are reasonably small, $ke can

columns five and eight, respectively. As seen from Table &, th

circuits obtained by the robust gate sizing scheme are aldkm-
inate the effect of process variations and increase thegmield
by about 3-4 times, e.g., the timing yield for C6288 increasem
33.88% to 99.98%.
could be significant, e.g., 23% for C499.

The sensitivity of the delay of a circuit with respect to thep
cess variations depends on the amount of timing slack tloeitsr
have. Circuits with smaller slacks or tighter delay speatfans
would be more sensitive to the random process variationacéie
the area overhead to guard-band against the uncertairigsl e
greater for the robust designs. Figure 5(a) shows the affaun-
robust optimizing of the C499 circuit for different valueEB pe.
as given by the % slack points. As seen from the figure, the Bumb
of violations increase with tighter specs or smaller sladkgure
5(b) shows the corresponding robust designs for the C4@@itir
for each of the slack points. As seen from the figure, the area o
head for R designs to eliminate the timing violations, iases for
tighter specs.

Violations in NR design Area overhead in R design

90

35

% Violations
% Area overhead

10 20 30 40 50 10 20 30 40 50
% Slack % Slack
(a) (b)

Figure 5: The non-robust and robust designs for C499 circuit
for different values of Ti,e.. (@) Timing violations for non-
robust designs. (b) Area overhead for robust designs.

We perform another series of experiments to compare our ap-

proach with a gate sizing methodology employing a worsecies
sign approach. The worst-case designs are obtained biviedya
solving the standard GP, but for delay specs tighter thamtige
inal required specs, until the area of the worst-case dédsigime
same as that of the robust design. Furthermore, to explerarda-
robustness trade-off we vary the size of the uncertainigysaid, by
choosing different values of the factéf = o /o,.;. We found in
our experiments that the number of timing violations reduecéh
increase in area, for both the worst-case and the robustitsirc
However, in all cases, our robust design has fewer violatiban

the worst-case design having the same area. On an average, th

robust design has about 12% fewer violations that the wease

run the optimization for different values & = o /o,.y, to select
the amount of robustness required against the processtaimtiers,
at the cost of additional chip area.

7. CONCLUSION

In this paper, we solve the gate sizing problem in the presenc

of process-driven variations. The procedure employs pselid set

as a bounded variation model and considers the spatialatore

of the intra-die parameter variations. The original set afymo-
mial delay constraints are modified and converted to anather
of posynomial constraints and the resulting robust GP isiefitly
solved. Experimental results, on several benchmark ¢gcsinow
that the robust design significantly increases the timie¢pyof the
chip as compared to the conventional gate sizing solutiodshas

a better performance than the worst-case designing apgproac
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