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ABSTRACT
Placement algorithms for analog circuits explore numerous layout
configurations in their iterative search. To steer these engines to-
wards layouts that meet the electrical constraints on the design,
this work develops a fast feasibility predictor to guide the layout
engine. The flow first discerns rough bounds on layout parasitics
and prunes the feature space. Next, a Latin hypercube sampling
technique is used to sample the reduced search space, and the la-
beled samples are classified by a linear support vector machine
(SVM). If necessary, a denser sample set is used for the SVM, or if
the constraints are found to be nonlinear, a multilayer perceptron
(MLP) is employed. The resulting machine learning model demon-
strated to rapidly evaluate candidate placements in a placer, and is
used to build layouts for several analog blocks.

CCS CONCEPTS
• Hardware → Electronic design automation; Physical de-
sign (EDA); Analog and mixed-signal circuit optimization;
• Computing methodologies→Machine learning.
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1 INTRODUCTION
The performance of analog circuits is very susceptible to layout parasitics,
and a predictor that determines whether a particular layout configuration
during place-and-route meets constraints or not has great utility. Several no-
table efforts in this direction have been made in the past. In [1], performance
constraints are mapped to bounding constraints of parasitics using linear
approximation of sensitivities of each interconnect to the performance. The
work in [2] also leverages layout effect sensitivities which indirectly ac-
count for interconnect parasitics in layout placement. However, as these
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sensitivities of interconnect or layout effects are determined independently,
such incorporation may not reflect the correlation among the interconnect
parasitics. Moreover, the interconnect parasitic correlation may not be linear
over the search space, as presumed in these works.

Another widely-used class of methods for tackling the problem of in-
terconnect parasitics is to use a database of prior designs, collected from
human designers, directly or to train ML models. The work in [3] searches
through a design repository containing legacy designs and pulls out the
best match for a target design for layout generation. The work [4] uses
artificial neural networks trained on past designs to generate placements.
In [5], a variational autoencoder based ML scheme is utilized to extract
layout strategies from prior designs for use in routing. However, there are
two problems with such methods. First, a database with well-crafted analog
layouts by expert designers is hard to find. Second, layout styles change
substantially with technology nodes and knowledge across nodes is often
not transferrable, particularly for FinFET nodes with restricted design rules
and high via/wire resistances. Recent work [6] leverages netlists from an au-
tomatic layout generator to train a 3D-CNN model that predicts placement
quality. This also requires a large set of post-layout netlists as a training set.

In this paper, we propose a framework where, given a circuit, its perfor-
mance specifications, and testbenches that simulate the circuit to extract its
performance, we extract the correlation among all the sensitive interconnect
parasitics automatically using machine learning (ML), and use them to build
compact ML-based models for each constraint. The ML models that are
built by our approach can be easily trained and used for rapid inference in a
place and route engine. During the layout process, given the RC parasitics
for a candidate layout, our models can predict whether the layout will meet
specifications or not. Thus, our ML-based constraint modeling approach
can steer a layout engine away from the part of the design space where
constraints may not be met. Our ML models are simple to evaluate, and
impose negligible overhead on the layout engine.

The proposed framework can extract both linear and nonlinear corre-
lations among all the sensitive parasitics, over a multidimensional search
space of RC parasitics, and is not dependent on a design database. We use
as simple a model as possible: a fast evaluation determines whether a linear
model would work, and following that, the linear model is refined, or a
nonlinear model is employed only if needed. Separate models are built for
each performance constraint. This can be applied to any analog circuit.

We define the problem space and the framework in Section 2. The frame-
work is illustrated from Section 3–6. In Section 7 we demonstrate the ap-
proach on several operational transcondutance amplifier (OTA) circuits and
a voltage-controlled oscillator (VCO), and show layouts generated using
our approach. Finally, we conclude in Section 8.

2 PROBLEM FORMULATION
Consider a netlist C to be placed and routed, with a set of performance
specifications P = {pk | k ∈ N+ }. The netlist consists of:

• a set of nets N = {ni | i ∈ N+ },
• a set of modules M = {mj | j ∈ N+ }.

During place-and-route iterations, the movement of modules relative to
each other changes the RC parasitics of interconnects between modules.
We build ML models of electrical constraints on wires, which can be used
to incorporate performance constraints accurately and efficiently.
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Figure 1: Our ML-based constraint evaluation framework.
Nets that are connected to multiple devices are modeled by a star config-

uration, where a multipin net, ni , is represented by the star point, connected
to each terminal of modulemj on the net by a two-pin interconnect, ei j .
Two-terminal nets do not need an additional star node. The star model is
widely used and has been reported to be a good representation for parasitics
in analog circuits [7], and this is consistent with our findings.

We annotate a set E = ∪i, jei j that either includes all interconnects, or a
user-defined subset of all interconnects present in the circuit C. For each in-
terconnect, ei j , we annotate two variables, ri j and ci j , to represent its resis-
tance and capacitance, respectively. Finally, we define Z = ∪i, j∈E {ri j , ci j }
as the set of resistances and capacitances of all interconnects in E .

We use the most computationally simple model, the linear support vector
machine (SVM) with sparse sampling. If this is inaccurate, we use dense
sampling to obtain either a linear SVM with reduced false positives, or a
nonlinear multilayer perceptron (MLP) if the data are not linearly separable.

An overview of the approach is outlined using the flowchart in Figure 1.
The inputs to the method are the netlist C, with testbenches for evaluat-
ing its performance metrics, and circuit performance constraints P . The
elements of set Z constitute the dimensions of a feature space, S . Our ap-
proach determines constraints that demarcate the feasible region of S , where
performance constraints P are satisfied, and consists of the following steps:
(1) Feature space pruning: This step reduces the dimension of S by (a)
identifying variables that the performance constraints are insensitive to, and
(b) by range reduction, which determines upper bounds on the parasitics in
the network. Practically, this step shrinks the dimension of S by reducing
the dimension of Z , and by limiting the range of each variable so the feasible
region covers much of S , setting the stage for sampling to be successful.
(2) Sparse sampling and labeling: Next, a sparse sample set in the up-
dated feature space is generated using stratified sampling based on the
Latin hypercube method. These samples are labeled for each performance
constraint pk ∈ P . A sample is labeled as positive (+1) if it satisfies the
constraint pk and negative (−1) otherwise.
(3) Classification using a linear SVM: For each pk ∈ P , the approach
employs a support vector machine (SVM) with a linear kernel to extract
correlations among the features. To verify the accuracy of SVM, we check
if the classification error falls below a user-specified threshold, ϵ0: if so, the
sample is linearly separable, and the constraint for pk is modeled.
(4) Dense sampling and labeling: If the error exceeds ϵ0, we generate a
larger number of samples to drive higher accuracy.
(5) Model refinement: We use another user-specified threshold, ϵ1 > ϵ0,
to determine whether to persist with a linear SVM or to use a nonlinear

model. If the error of the linear SVM classifier is below ϵ1, the linear model
is considered redeemable by using dense sampling. In this case, we create
a new SVM model and reduce the number of false positives. We focus on
reducing false positives (rather than false negatives, though we report both):
in a place-and-route engine, it is essential for the model to reject layouts
that do not meet constraints. If the error of the linear SVM trained over the
sparse sample set exceeds ϵ1, an MLP is used on the dense sample set.

At the end of this process, each constraint pk ∈ P is described either
using a linear SVM or nonlinear MLP model, and this can be used by a
placer engine to rapidly evaluate layout feasibility.

3 FEATURE SPACE PRUNING
The efficiency and effectiveness of machine learning (ML) strongly depend
on the number of features and the size of feature space [8]. In this prob-
lem, the interconnect parasitics, ri j and ci j , are the features for the ML
based model. We initialize the feature space, S , by setting a worst case
bound for each feature of Z . The worst case bound for the resistive and
capacitive components in Z , rmax and cmax respectively, are based on:
Maximum net length bounds: A global pessimistic limit on a net length in
the circuit is based on an estimate of the layout semiperimeter. This estimate
is typically available for any analog design since standard circuit topologies
have been built either at the current technology node, or in a previous node
(from which the dimensions can be scaled). It is important to point out that
our algorithm can work with an approximate and pessimistic estimate: e.g.,
when no estimate is available, the chip area may be used, which only means
that the feature space pruning step may require more CPU time. However,
a typical analog block (OTA, VCO, etc.) will be much smaller than the chip
area, and in practice, it is easy to obtain a reasonable coarse area estimate.
Per unit wire resistances: If the maximum per-unit wire resistance, over all
metal layers, is rpumax , thewire resistance is upper-bounded by (r

pu
max · lCmax ).

Via resistances: The via resistance, rv iai , to the next higher layer on metal
layer Mi is particularly important in recent technologies, where via resis-
tances are large, this discourages the use of too many metal layers. Since
analog designs are very sensitive to interconnect resistances (e.g., because
they can degrade the effective дm of a transistor, or because the can cause
undue voltage degradation due to IR drop which may change the operating
region of a transistor), typically a small number (V=2–4) of bends with vias
may be used on any wire. Such a number is conservative because in practice,
it is common to use parallel wires with parallel vias (in FinFET technologies
with restricted design rules) or wider wires with larger/parallel vias (in bulk
technologies) to reduce the resistance. However, an upper bound, rv iamax ,
can be calculated using these guidelines by adding up via resistances up
and down the metal stack, and multiplying by V. To our knowledge, the via
resistance issue is not considered in prior works on constraint generation.

The sum of the maximum wire and via resistances yields a bound, rmax ,
for resistive components in Z . A worst-case bound for the capacitances in
Z , cmax , is also similarly computed, ignoring negligible via capacitance.

rmax = rv iamax + r
pu
max × lCmax (1)

cmax = cpumax × lCmax

Hence, the initial feature space is a |Z |-dimensional hypercube, extending
from 0 to rmax for resistive elements of Z , and 0 to cmax for capacitive
elements. It is important to note that loose upper bounds are adequate at
this stage. The feature space pruning step will then obtain tighter bounds.

This creates a large search space, S , and training a model over this entire
space may be both challenging and unnecessary. For example, an analog
circuit requires all transistors to be appropriately biased: if a large IR drop
along a wire knocks a transistor away from its operating region, the circuit
will not satisfy specifications, and it is possible to shrink S to eliminate this
region, and save the effort of training an ML model over a clearly redundant
subspace. We present two stages for pruning the feature space:
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Feature elimination: We compact the search space by eliminating vari-
ables in Z as follows: (1) When two wires must be symmetric, as is common
in analog layout, we use a single r and c variable for the wires. (2) The
r and c variables associated with wires that are insensitive to the perfor-
mance parameter pk are removed from consideration. This sensitivity can
be calculated through sensitivity analysis (e.g., using computationally cheap
adjoint sensitivities) about the operating point.
Range reduction: The choice of upper bounds in (1) is purely based on
layout considerations, but some parasitics may violate the performance
constraints P at values well below the bound. We seek a tighter bound for
these features by separately considering each feature in the reduced feature
space, using a binary search to find thresholds, r ti j and c

t
i j , for resistive

and capacitive components respectively, that maintain all performance
specifications in P . To maintain pessimism for the bound, we assume zero
parasitics for all other features, only during this computation.

At the range reduction step, we consider one variable at a time, without
the consideration of interactions between variables. The goal here is merely
to conservatively reduce the size of the space S . The next step of stratified
sampling and ML is the step that builds ML models for electrical constraints,
and it explicitly considers interactions between variables.

The outcome of the feature pruning step is a tighter set of bounds for
each feature in a reduced feature space, given by

S = {ri j , ci j ∈ Z | 0 ≤ ri j ≤ r ti j , 0 ≤ ci j ≤ c ti j } (2)

At the end of this step, the search space is reduced to a smaller hypercube.
From this point, we denote elements of Z as zι irrespective of the feature
type (resistance or capacitance), such that 1 ≤ ι ≤ |Z |.

As we describe the steps of the algorithm in detail in the next sections,
we use a simplified version of the feature space in two dimensions for
visualization. This is illustrated in Figure 2(a), with feature set Z = {z1, z2 },
and the critical bounds indicated by the box Z t = {zt1 , z

t
2 }. We will use this

figure as a running example through the paper as we explain our method.

4 STRATIFIED SAMPLING
4.1 Latin Hypercube Sampling
Our sparse and dense sampling methods in Steps (2) and (4) in Section 2, are
based on Latin hypercube sampling (LHS) [9], a robust stratified sampling
technique that generates quasi-random sampling distributions. The advan-
tage of LHS over random sampling is that LHS can representatively cover
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Figure 3: (a) Search space quantization, (b) LHS sampling.

a sampling space with a much smaller sample size than random sampling.
Hence, LHS is used to increase the efficiency of Monte Carlo analysis.

The principle of LHS is based on uniformly sampling from an underlying
probability distribution. If the probability distribution function of wire
parasitics is available, it could be used for this purpose. Digital circuits follow
a Rent’s rule distribution for wire lengths, which may be used to generate
distributions of RC parasitics, but for smaller analog circuits, a distribution
of wire lengths has not been studied and is unknown. Moreover, even
predicting wire lengths is insufficient: to estimate resistance distributions,
via counts must be predicted as well. In this work, in the absence of an
available distribution, we use a uniform distribution to model all variables.
Our experimental results show that this assumption yields good results.

To generate amatrix withd samples using LHS from the |Z |-dimensional
hyperspace, S , we work with uniform sampling along each dimension. We
illustrate LHS for this distribution. The cumulative distribution function of
variable xι , with a support of

[
0, ztι

]
, can be represented as follows:

Fι (xι ) =


0 for xι < 0
xι/ztι for 0 ≤ xι ≤ ztι
1 for xι > ztι

(3)

The LHS procedure has two primary steps:
(1) Divide and sample: The objective of this step is to generate d samples
along each dimension zι of |Z | so that they represent the entire distribution
along that dimension. To do so, the CDF curve of each dimension is parti-
tioned into d non-overlapping intervals with equal distribution (Figure 3(a)).
Next, for each of the d intervals, a probability hι,i within the interval can
be chosen randomly or deterministically (in our work, we deterministically
choose the center point of the interval). These d values of probability are
mapped to d samples along the dimension using the inverse transformation:

xι,i = F−1
ι

(
hι,i

)
(4)

The d sample values along dimension zι can be assembled as a vector:
xι =

[
xι,1 xι,2 ... xι,d

]
(5)

Sampling along each dimension results in |Z | such vectors.
(2) Permutation: In this step, d items of each vector xι are permuted ran-
domly over the d ! possible permutations. The permutation along a dimen-
sion is independent from the permutation along all other dimensions. The
permutation results in a mapping of vector xι to x′ι . Note that xι was built
to be in increasing order by design, and the random permutation to x′ι
ensures that each element of the vector appears in randomized order. Next,
all of the permuted vectors along each direction are merged into the matrix

X =
[
x′T1 x′T2 ... x′T

|Z |

]
∈ Rd×|Z | (6)

Each row of X is a sample, xd , in the |Z |-dimensional hypercube.
Figure 3(b) illustrates LHS in a spaceZ = {z1, z2 }with d = 5. Figure 3(b)

shows that along each dimension, the selected samples exhibit the classical
Latin hypercube pattern, with one sample in each row and each column.

4.2 Applying LHS to Sample the Feature Space
Using LHS, the flow generates a sample set, X , systematically sampled
from the |Z |-dimensional feature space, as described above. This sample



ASPDAC ’21, January 18–21, 2021, Tokyo, Japan T. Dhar, J. Poojary, Y. Li, K. Kunal, A. Sharma, M. Madhusudan, S. D. Manasi, J. Hu, R. Harjani, and S. S. Sapatnekar

set represents a set of RC values for the interconnects, and is used to train
and test a linear SVM. For each performance specification pk ∈ P , the
circuit is simulated at each sample point using a commercial SPICE-like
circuit simulator. Based on the results of simulation, the samples in X
are partitioned into binary classes: (a) those that satisfy the performance
requirement, pk , which are labeled as positive (+1) and (b) those that fail
the specification, which are labeled as negative (−1). This is graphically
illustrated in Figure 2(b) in a simplified 2D feature space for P = {p1, p2, p3 }.
The samples with positive labels, as well as the corresponding positive
sample subspace, are colored blue; the negatively labeled samples and their
sample subspace are shown in red. If yk denotes a vector that records the
binary class for each sample, for the performance specification pk , this
procedure yields a dataset {X , yk }.

As outlined in Step (2) in Section 2, an initial sparse sample set for a
small value of d is first generated and used to train a linear SVM. If the
accuracy of the linear SVM is unsatisfactory, Step (4) of the flow generates
another sample set, X ′ ∈ S , which is a denser sample set compared to X .
The sample set in Figure 2(c) represents X ′. This denser set is used either
to reduce false positives in the classification with linear SVM, or to train a
multilayer perceptron (MLP) in case the samples are not linearly separable.

5 LINEAR CONSTRAINTS USING SVM
An SVM [10] for classification is a supervised learning model that constructs
a separating hyperplane between positive and negative data in a feature
space X for each performance constraint. The SVM hyperplane maximizes
the distance among the nearest training samples of different classes.

As stated above, the dataset {X , yk } represents the labeled sample val-
ues, where the elements yk,i of vector yk are labeled as +1 or −1, depending
on whether the sample satisfies constraint pk or not. The SVM method
generates a hyperplane in the |Z |-dimensional feature space characterized
by weight vector wk and bias bk for each performance parameter pk that
builds the best linear separation between the positively and negatively la-
beled data. Together, the set {(wk, bk )∀k } represents the model parameters
of the linear SVM that defines a hyperplane for each pk ∈ P .

For each performance specification pk , SVM solves an optimization
problem, represented below in primal form [10]:

min
wk ,bk

1
2w

T
kwk +C

d∑
i=1

ξi (7)

subject to: yk,i × (wT
k .xi + bk ) ≥ (1 − ξi ); ξi ≥ 0; 1 ≤ i ≤ d

The objective function maximizes the separation between positive and
negative labels, with C being a penalty term for negatively labeled samples
that encroach on the positive side of the hyperplane, up to distance ξi ; the
extent of encroachment is defined by the constraints.

Our flow leverages a linear SVM to classify the sample space with dataset
{X , yk } corresponding to each performance specification pk , through gen-
erating a |Z |-dimensional hyperplane that separates positive and negative
samples. For P = {p1, p2, p3 } and the hypothetical 2D feature space in
Figure 2(b), q1, q2, and q3 represent separating hyperplanes generated by
the linear SVM for the sparse sample set.

The classification error of the linear SVM denotes whether the positive
and negative samples are linearly separable. As described in Figure 1, if
the classification error is below ϵ0, the flow considers the sample space
as linearly separable, and stores the model parameters of the linear SVM,
which now define the ML model for constraint pk . This is seen for the
constraint p1 using the parameters of q1 for the SVM model (Figure 2(b)).

If the classification error is above ϵ0 but below a tolerance ϵ1, the flow
still trains a linear SVM, prioritizing the reduction of misclassification of
negative samples using the denser sample set X ′ and stores the respective
model parameters. This event is illustrated with sample space of p2 in
Figure 2(b) and (c): q2 is the set of model parameters generated with linear
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Figure 4: (a) MLP network. (b) A neuron of an MLP.

SVM for sparse sample set, X , and q′

2 indicates the set of model parameters
of linear SVM that trains over dense sample set, X ′, to reduce false positives.

6 NONLINEAR CONSTRAINTS USING MLP
In our flow, if the classification error of the linear SVMwith sparse sampling
is high (≥ ϵ1), it is an indication that denser sampling cannot overcome the
limitations of a linear SVM, i.e., the constraint is inherently nonlinear. In
this case, our approach uses a multilayer perceptron to model the nonlinear
constraint. In Figure 2, the feature space for p3 represents such a case. In
this illustration, the line of separation for positive and negative samples
is visibly nonlinear for p3. As a result, a separating hyperplane generated
by linear SVM q3 cannot separate the sample space with satisfactory ac-
curacy (Figure 2(b)). Algorithmically, we detect this when the error of the
linear SVM exceeds threshold ϵ1. Figure 2(c) shows the MLP-generated line
of separation after training with the dense set, X ′.

Amultilayer perceptron (MLP) is a supervised learning algorithm, trained
using back-propagation, that can learn to model nonlinear functions, with
the help of an underlying neural network, for data classification. An MLP
consists of an input layer, an output layer, and at least one hidden layer in be-
tween the two (Figure 4(a)). Each layer consists a set of neurons (Figure 4(b)),
where each neuron in the input layer represents an input feature.

An MLP is fully connected: each node of a layer is connected to all
nodes of the following layer with a weight. Each neuron transforms values
of the previous layer in two steps. First, a weighted linear summation is
generated using all values of the previous layer. Next, the sum is transformed
again using a nonlinear activation function. The operation in a neuron is
illustrated in Figure 4(b) that includes three inputs a1, a2, a3 with the
weights ofw1,w2,w3 respectively. The symbol “

∑
" indicates calculation of

weighted sum of inputs and “φ" indicates the activation function. With these
transformations, an input feature sample xi propagates through hidden
layers (Figure 4(a)). For binary classification, output layer consists of a single
neuron and generates a value between 0 to 1 based on sample xi . If the
output for a sample is ≥ 0.5, it is labeled as positive; otherwise it is negative.

In Figure 2(c), the set of model parameters for MLP that includes number
of hidden layers and number of neurons per layer, is denoted with q′3. We
use a rectified linear unit (ReLU) for activation.

7 RESULTS
We have implemented the proposed framework within a Python/C++ en-
vironment. The core framework is implemented using Python and the
scikit-learn Python library for machine learning tasks. We use a simulated
annealing driven placer based on [11], programmed in C++, for placement
and routing, and Calibre PEX for parasitic extraction from the layouts. All
evaluations are carried out in a Linux server consisting of Intel Xeon(R)
2.20GHz Silver 4114 processors. All testcases of this section are designed
using a commercial 12nm PDK and simulated with Cadence Spectre.
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Figure 5: Comparison of the F1-score of binary classifiers for
(1) bandwidth of 5T OTA, (2) gain of two-stage OTA.

To illustrate the classification quality of the framework, we use three
metrics: precision, recall, and F1-score. For a set of test samples, these
metrics can be defined as follows:

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

; F1-score =
2.Precision.Recall
Precision + Recall

Here, TP, FP, and FN stand for the number of true positives, false positives,
and false negatives, respectively. In order to determine whether to use a
linear SVM with sparse/dense samples, or an MLP, the framework compares
(1 − F1-score) with the user-defined thresholds, (ϵ0, ϵ1) = (0.05, 0.1).

7.1 Constraint Modeling with Our Framework
OTA testcases:We first evaluate the proposed framework with three dif-
ferent OTA topologies: (1) A five-transistor (5T) OTA, (2) a single-ended
telescopic OTA, (3) a two-stage OTA. All OTAs contain transistors as well
as C passives. The specifications for each design in a 12nm technology are
listed in Table 1. The evaluation of these specifications involves multiple
simulation setups: here, five such testbenches, labeled AC1, AC2, AC3, DC,
and TRAN, are used. For each testcase, samples are generated after fea-
ture space pruning (Sec. 3), with LHS sampling (Sec. 4.1). The framework
randomly partitions 80% samples for training, and uses the rest for testing.

Recall that our philosophy is to go from the simplest to increasingly
complex constraint models. We justify the structure of our framework by an-
alyzing the sample spaces for two example performance constraints: (1) the
bandwidth (BW) of 5T OTA, and (2) the gain of two-stage OTA. We compare
the quality of results and runtimes using five binary classifiers: linear SVM,
naive Bayes (NB), MLP, random forest (RF), and logistic regression (LR) [12].

From our observation, the boundary between positive and negative sam-
ples for BW of 5T OTA is highly linear. Figure 5(a) compares mean F1-score
after k-fold cross validation (k=5), for the samples generated for 5T OTA
and labeled according to whether they satisfy the BW specification or not.
The sampling was carried out from the pruned feature space with LHS. For
this set of samples, we see that as we vary the number of samples, the linear
SVM consistently achieves the highest F1-score of all classifiers. The only
other competitive classifier is the MLP, which achieves comparable scores
at 5000 samples. In contrast, the linear SVM shows a high mean F1-score
of 97% with only 500 samples, while MLP requires 5000 samples to equal

Table 1: Performance specifications P for three OTA circuits.

Performance
specifications

Analysis
type

Critical values

5T OTA Telescopic OTA Two-stage OTA

Gain (dB) AC1 ≥ 19 ≥ 42 ≥ 25
BW (MHz) AC1 ≥ 100 ≥ 5 ≥ 40
UGF (GHz) AC1 ≥ 1 ≥ 0.7 ≥ 0.95
PM (o ) AC1 ≥ 60 ≥ 60 ≥ 60
CMRR (dB) AC2 ≥ 48 ≥ 64 ≥ 30
PSRR (dB) AC3 ≥ 19 ≥ 42 ≥ 25
SR (V/µS) TRAN ≥ 150 ≥ 400 ≥ 300
ICMR (V) DC 0.60 − 0.75 0.55 − 0.85 0.60 − 0.75

this. Thus, if the constraint boundary is linear, the use of SVM with a linear
kernel will result in a fast and efficient classification.

Next, we perform a similar comparison for the sample space of the gain
of two-stage OTA. This boundary is found to be nonlinear for this feature
space. Figure 5(b) compares the mean F1-score of the five binary classifiers,
and we see that MLP outperforms the competition with a F1-score of 98%
with 5000 samples and a score 96% at 1000 samples. This shows why we
choose MLP as the nonlinear classifier.

Having justified the choice of classifiers, Table 2 now compares the
training time and mean F1-score for three cases for the OTA testcases,
summed up over all eight performance parameters, using (1) the proposed
framework, (2) the linear SVM, trained on a sparse sample set, and (3) the
MLP trained with a dense sample set. As expected, the linear SVM is the
fastest for all three cases, but not as accurate as the MLP. Our framework
shares the benefit of both models, with an F1-score similar to the MLP, but
with much lower runtime as it uses the linear SVM when appropriate.

Table 3 summarizes the classification quality of the proposed framework
for eachpk ∈ P , presenting the Precision, Recall, and F1-score. The classifier
that is used for each circuit, for each performance metric, is also shown.
VCO testcase:We consider the testcase in Figure 7(a) of a voltage controlled
oscillator (VCO) with 24 transistors (12 inverters used as analog elements)
and 10 passives (resistors), again designed in a 12nm technology. The VCO
operates with the control voltage range of 0 − 0.5V in the frequency range
of 2GHz−56GHz. We consider the input voltage range as its performance
specification, and it is set to 0.2V–0.5V: a sample is positive if it can generate
oscillation for the given input voltage range and negative otherwise. We
achieve a classification F1-score of 91%, with a training time of 4.2s.
Importance of feature space pruning: Table 4 shows the contribution of
feature space pruning to dimension reduction. It is evident that substantial
reductions are achieved. In addition, within each dimension, range reduction
is used to reduce the upper bounds on parasitics. The high F1-scores for

Table 2: Training time and F1-score comparison

Criteria
Proposed
framework

Linear SVM
with sparse
sample set

MLP with
dense sample

set

5T OTA Training time 3.74s 0.18s 23.87s
F1-score (mean) 0.97 0.92 0.96

Telescopic
OTA

Training time 2.89s 0.27s 21.67s
F1-score (mean) 0.97 0.94 0.98

Two-stage
OTA

Training time 11.45s 0.25s 26.55s
F1-score (mean) 0.97 0.87 0.98

Table 3: Classification quality for the OTA testcases.
LSVM1 (LSVM2) = linear SVM with sparse (dense) sample set.
P = Precision, R = Recall, F1 = F1-score. We set C = 2 in Eq. (7).

P
5T OTA Telescopic OTA Two-stage OTA

P R F1 Classifier P R F1 Classifier P R F1 Classifier
Gain 0.95 0.84 0.90 LSVM2 0.95 0.91 0.93 LSVM2 0.99 0.99 0.99 MLP
BW 0.98 0.97 0.98 LSVM1 0.99 0.99 0.99 LSVM1 0.98 0.97 0.98 MLP
UGF 0.99 0.96 0.98 LSVM1 0.99 0.98 0.97 LSVM1 0.95 0.95 0.95 LSVM1
PM 0.99 0.99 0.99 LSVM1 0.99 0.99 0.99 LSVM1 0.99 0.98 0.99 LSVM1
CMRR 0.92 0.95 0.94 MLP 0.91 0.89 0.90 MLP 0.99 0.98 0.98 LSVM1
PSRR 0.99 0.99 0.99 LSVM1 0.98 0.99 0.99 LSVM1 0.95 0.91 0.93 LSVM2
SR 0.99 0.99 0.99 LSVM1 0.98 0.97 0.98 LSVM1 0.99 0.98 0.98 LSVM1
ICMR 0.99 0.99 0.99 LSVM1 0.99 0.99 0.99 LSVM1 0.89 0.93 0.91 MLP

Table 4: Dimension reduction using feature space pruning.
5T OTA Telescopic OTA Two-stage OTA VCO

|Z | before pruning 23 33 28 95
|Z | after pruning 15 19 18 50
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Table 5: Post-layout performance of the OTA testcases.
Performance 5T OTA Telescopic OTA Two-stage OTA
specifications With Without With Without With Without

P framework framework framework framework framework framework
Gain (dB) 20.57 19.09 42.13 38.12 ✗ 26.57 24.38 ✗

BW (MHz) 103.26 126.20 5.49 7.64 46.84 41.22
UGF (GHz) 1.17 1.14 0.70 0.61 ✗ 1.00 0.92 ✗

PM (o ) 110.33 116.77 133.41 106.50 94.43 82.05
CMRR (dB) 52.08 52.92 69.15 62.14 ✗ 32.71 38.27
PSRR (dB) 21.39 18.47 ✗ 42.45 53.52 26.94 24.37 ✗

SR (V/µS) 156.62 156.63 414.24 424.23 408.19 386.07
ICMR (V) 0.60-0.75 0.60-0.75 0.55-0.85 0.55-0.85 0.60-0.75 0.60-0.75

all performance specifications of all testcases are facilitated by the feature
space pruning in two ways: (1) In the absence of the feature space pruning
step, the SVM/MLP are forced to fit the constraint boundary over a larger
domain/more dimensions, resulting in larger runtimes and generally lower
quality, as a smaller fraction of samples lie near the constraint boundary.
(2) By reducing variable ranges for constraint pi when any constraint pj is
violated. Thus, limits from constraint pj help to clip out nonlinearities in
the constraint boundary for pi , making linear SVM modeling feasible over
a reduced domain. Thus, our approach incorporates mutual interactions
between both variables and constraints.

7.2 Application in an Analog Placement Engine
We apply the constraints generated by our framework to guide the place-
ment of the above OTA and VCO circuits within ALIGN [13]. The cost
function of the simulated annealing based placer, based on [11], originally
used a weighted sum of the normalized area, A, and normalized wirelength,
W . We alter it by adding a penalty for violating a performance constraint:

minα · A + β ·W + γ
∑|Q |

k=1 qk (xi ) (8)

where α , β , and γ are weighting coefficients. Here,Q is the set of the sets of
model parameters generated by the framework for all pk ∈ P . For a given
placement, xi represents the vector of RC parasitics in the hyperspace S ,
and qk (xi ) denotes the cost predicted by the framework for the sample xi
and performance pk . For a linear SVM, qk (xi ) evaluates (wT

k · xi +bk ) and
outputs 1 (−1) if the result is ≥ 0 (< 0). For MLP, the model that outputs
a value between zero to one. Thresholding this value with a user-tunable
parameter (e.g., 0.5 as default) assigns qk to 1 if the predicted probability
is greater than the threshold, and −1 otherwise. Hence, points that meet
the specification are rewarded, and those that do not are penalized. The ML
models are simple to evaluate and require only a few arithmetic operations,
and cause negligible overhead to the placement engine.

To illustrate the application of our flow, we incorporated the proposed
framework to a custom analog layout generator and synthesized the OTA

(a) (b)

(c)

Figure 6: Automated layouts of the (a) 5T OTA (9.63µm ×

9.60µm), (b) Telescopic OTA (6.85µm × 18.65µm), and (c) two-
stage OTA (7.42µm × 24.49µm)with constraints generated by
our framework. [Not drawn to scale]

designs (Figure 6). All layouts were verified to be LVS-correct. The perfor-
mances of the layouts, extracted from post-layout analyses, are summarized
in Table 5. All three of the automatically generated layouts maintain the
required design constraints, indicated by the “ " sign in the table. Con-
trarily, layouts generated without the framework fail to meet some of the
requirements, indicated by the “✗” sign. For the VCO, Figure 7(b) shows the
circuit layout, and it meets all specifications.

(a)

(b)
Figure 7: VCO (a) schematic, (b) layout (10.11µm × 72.78µm)
using our method.
8 CONCLUSION
This paper automatically generates ML-based performance models from
prelayout netlists, capturing correlations among wire parasitics. The feature
space initially includes all interconnect parasitics as independent entities,
and then this space is pruned. Linear SVM or MLP models are then trained
based on efficient LHS-based sampling. When integrated into a layout en-
gine, the models are effective in generating layouts that meet specifications.
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