
DeepOpt: Optimized Scheduling of CNNWorkloads for
ASIC-based Systolic Deep Learning Accelerators

Susmita Dey Manasi
University of Minnesota, Minneapolis, MN, USA

Sachin S. Sapatnekar
University of Minnesota, Minneapolis, MN, USA

ABSTRACT
Scheduling computations in each layer of a convolutional neural
network on a deep learning (DL) accelerator involves a large num-
ber of choices, each of which involves a different set of memory
reuse and memory access patterns. Since memory transactions
are the primary bottleneck in DL acceleration, these choices can
strongly impact the energy and throughput of the accelerator. This
work proposes an optimization framework, DeepOpt, for general
ASIC-based systolic hardware accelerators for layer-specific and
hardware-specific scheduling strategy for each layer of a CNN
to optimize energy and latency. Optimal hardware allocation sig-
nificantly reduces execution cost as compared to generic static
hardware resource allocation, e.g., improvements of up to 50× in
the energy-delay product for VGG-16 and 41× for GoogleNet-v1.

CCS CONCEPTS
•Hardware→Hardware accelerator;Operations scheduling;
• Computing methodologies→ Neural networks.

KEYWORDS
CNN, scheduling, hardware accelerator
ACM Reference Format:
Susmita Dey Manasi and Sachin S. Sapatnekar. 2021. DeepOpt: Optimized
Scheduling of CNN Workloads for ASIC-based Systolic Deep Learning
Accelerators. In 26th Asia and South Pacific Design Automation Conference
(ASPDAC ’21), January 18–21, 2021, Tokyo, Japan. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3394885.3431539

1 INTRODUCTION
Inference tasks in deep convolutional neural networks (CNNs, or
DNNs) involve massive amounts of data movement between the
computation core and on-chip and off-chip memory. These transac-
tions are a primary bottleneck in CNN performance and dominate
the overall execution cost of a network [1, 2]. Standard CNN topolo-
gies consist of tens to hundreds of layers [3–6], where the sizes
(i.e., data volumes) as well as configurations (i.e., data dimensions)
of the layers vary widely even within the same network topol-
ogy. The multidimensional structure of DNN layers offers multiple
choices for mapping computations to hardware, which determine
the level of data reuse, which in turn determine the memory access

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431539

overheads. Prior works that map computations to systolic [7] or
non-systolic accelerators [8–10] primarily opt for a fixed dataflow
scheme for a network that is empirically tailored for the underlying
hardware. Minerva [11] optimizes DNN hardware over a differ-
ent optimization space than our work. The work in [12] does not
systematically explore the scheduling space, but adopts different
dataflows for coarse-grained layer classes. However, within each
layer class, layer dimensions differ significantly and the optimal
schedule may vary.

We introduce DeepOpt to methodically explore the search space
for optimizing CNN computation by minimizing data access costs.
DeepOpt specifically schedules operations in each layer in a given
CNN, based on characteristics of the underlying hardware acceler-
ator (e.g., on-chip SRAMs, number of parallel computational units).
DeepOpt is open-sourced at github.com/manasiumn37/DeepOpt.

H

W
C*

R
S

C

F 3D filters One 3D ifmap

G
F

E

One 3D ofmap

Convolution

F

X
Y

ZoZi
Directions

Figure 1: A Conv layer with ifmap, filter, and ofmap.

CNNs primarily consist of three types of layers: convolution
(Conv), fully-connected (FC) and pooling (Pool), and computation is
dominated by Conv layers. As illustrated in Fig. 1, each Conv layer
convolves an input feature map (ifmap) with C channels of size
H ×W with a filter that has C channels of size R × S , to produce
an output feature map (ofmap) with F planes, each of size E ×G.

The convolution of the ifmap with a 3D filter involves element-
wise multiplication between each channel of the 3D filter and a
same-sized sub-region of the corresponding ifmap channel to pro-
duce intermediate partial sums (psums). For example, each channel
of the first (purple) filter is multiplied by the shaded regions in each
ifmap channel to produce the purple psum shown in the ofmap.
We refer to this as a unit operation. Similar unit operations are
performed on each of the F filters to generate psums for the F chan-
nels of the ofmap, as shown by the color-coded correspondence
between filters and ofmap channels. For each filter, the weights
in a channel slide through its corresponding channel of the ifmap
with a convolution stride ofU , and a multiply-accumulate (MAC)
operation is used to add the generated psums. Conv layers may be
followed by Pool layers that reduce the dimension of ofmap data.
Design Space for SchedulingConv Layers For a given hardware
configuration, unit ofmap operations can be scheduled as follows:

• X : taking strides ofU , proceeding along the width of ofmap
• Y : taking strides ofU , proceeding along the height of ofmap

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan S. D. Manasi and S. S. Sapatnekar

X Y ZiZo

Y Zi Zo ZoZoZi Zi YYX XX

Zi ZoY Zo Y Zi Zi Zo ZoX X Zi Y YY Y Zo ZoX XX XZi Zi

Zi XZo Y Zi Y Zo Zi Zo XZo Zi Zo Y Y XZo XZi Y Zi X Y X

Unit volume of computation

Depth-1

Depth-2

Depth-3

Depth-4

Figure 2: Computational search tree for convolution layers.

• Zo : processing 3D filters sequentially along ofmap channels
• Zi : processing each filter channel and the corresponding
ifmap plane, proceeding along the channels of ifmap

These operations can be scheduled in many ways, as illustrated in
Fig. 2 (blue and green paths are explained in Section 2.4). Each level
of the tree (Depth-1 – Depth-4) indicates a direction for processing
data and corresponds to a nesting of the computational loop: Depth-
1 is the innermost loop and Depth-4 is the outermost. We will show
how this tree can be pruned so that only the blue paths remain.
Table 1: Comparison of schedules XYZiZo vs. XZiYZo for
Conv2 and Conv3 of AlexNet, under two hardware configu-
rations. Cost function = Normalized memory access energy.

Hardware1, Conv3 Hardware1, Conv2 Hardware2, Conv2

Winner Penalty
for loser Winner Penalty

for loser Winner Penalty
for loser

XYZiZo 39.2% XZiYZo 50.3% XYZiZo 60.0%

With limited on-chip storage, each scheduling scheme corre-
sponds to a different set of memory access patterns for the ifmap,
filter, and psum data. Since data access can be a primary deter-
minant of CNN performance, the execution time and energy for
CNN strongly depend on operation scheduling. Table 1 considers
two candidate paths in the tree for computing Conv2 and Conv3
in AlexNet and uses our memory access models from Sections 2
and 3. For hardware configuration Hardware1, XYZiZo wins over
XZiYZo for Conv3, but loses for Conv2: the energy penalty for using
the other (losing) path is significant. If configuration Hardware2
is used, XYZiZo wins even for Conv2. Thus, the optimal branch in
Fig. 2 is specific to the Conv layer and the hardware configuration.

In the innermost loop of the tree (Depth-1), multiple scheduling
choices are possible, and data movement overheads are minimized
when either the ifmap, ofmap, or filter data are kept stationary. By
definition, one of these three is not possible for a given direction
– e.g., computation along X proceeds along ifmap, and therefore
ifmap cannot be stationary, leaving two choices for each direction
in the innermost loop. DeepOpt analytically analyzes these choices.

The sequence of direction variables in the nested loops at Depth-
2–Depth-4 creates additional scheduling choices. We develop meth-
ods to prune suboptimal choices, thus allowing a limited number
of choices that can be exercised at run-time, and individualized to
specific layers. Pruning the number of available choices is vital for
reducing the hardware overhead of run-time configurability.
Target ASIC Hardware Platform We evaluate our scheduling
framework on a general ASIC-based systolic hardware accelera-
tor (Fig. 3) for DNN inference, similar to [13, 14]. The core of the
accelerator is a two-dimensional J×K systolic array of processing el-
ements (PE). Each PE contains a MAC unit and registers to hold one
ifmap and one filter element locally, as well as a pipeline register to
forward the computed psum data to the PE below. The architecture

p0

+

a2

w21
+

a1

w11

+

aJ

wJ1

+

p0

+

a2

w22
+

a1
w12

+

aJ

wJ2

+

p0

+

a2

w2K+

a1
w1K

+

aJ

wJK

+

One PE

PE Array

O
ff

ch
ip

 D
R

A
M

Register

filter SRAM (bit-width = 𝑏!), Total size = 𝑓𝑆𝑅𝐴𝑀 bits

ifm
ap

SR
A

M
 (b

it-
w

id
th

 =
 𝑏
")

To
ta

l s
iz

e
=
𝑖𝑆
𝑅𝐴
𝑀

bi
ts

J

K

SRAM bank SRAM bank SRAM bank

SRAM bank SRAM bank SRAM bank
psum SRAM (bit-width = 𝑏#), Total size = 𝑝𝑆𝑅𝐴𝑀 bits

Figure 3: Block diagram of the hardware architecture.

also consists of three separate on-chip SRAMs for filter, ifmap, and
psum data, which communicate data with off-chip DRAM.

In each clock cycle, the PE array performs multiply-accumulate
(MAC) operations between a 1×J ifmap vector and a J×K weight
matrix. In the PE array, ai andwi j denote individual elements of the
ifmap vector and weight matrix, respectively. In the systolic flow,
data in the ifmap vector are reused horizontally in each PE row
and psums are accumulated vertically from top to bottom. Once
the pipeline is full, the array produces a 1×K vector of psums (one
psum/column) per cycle. All notation is visually illustrated in Fig. 3.

2 THE OPTIMIZATION FRAMEWORK
The execution cost of a CNN consists of two primary components:
(i) MAC computation in the PE array, and (ii) SRAM/DRAM data
access. For a given PE array size, the MAC computation cost of a
layer is independent of the choice of scheduling: scheduling merely
changes the order of MAC operations, but not their total number.
However, the data access cost from on-chip and off-chip memory
can vary significantly based on the scheduling choice. For DNNs,
the cost of arithmetic computation constitutes less than 10% of
the total cost [2] and data access cost is the dominant component.
DeepOpt finds an optimized schedule cost for each layer among the
choices in the search tree (Fig. 2) while minimizing the number of
accesses from the three on-chip SRAMs (for ifmap, filter, psum), and
the off-chip DRAM. DeepOpt analytically models memory access
patterns and prunes out branches from the search tree.

Offline, DeepOpt determines the schedule for each layer, for a
given hardware configuration and target CNN topology. The layer-
specific individualized schedule is exercised at runtime. DeepOpt
applies this schedule on the computationally heavy Conv and FC
layers while light layers (i.e., ReLU, Pool, etc.) are not optimized.
The DeepOpt framework is also applicable for cross-layer fusion
where Conv/FC computation is fused with an adjacent light layer.

2.1 Computation in the Search Tree
Unit volume of computation: The unit volume of computation
in the PE array of Fig. 3 corresponds to the multiplication between
the filter matrix and ifmap vector. Fig. 4 shows how computation
in a Conv layer is mapped into a matrix-vector multiplication. The
light blue boxes correspond to unprocessed data, and darker col-
ored boxes are processed in the multiplication. The ifmap vector
is formed using S ifmap elements from each ⌊J/S⌋ ifmap channels
(dark-colored region in the ifmap); S is small in a CNN so that J > S .

DeepOpt: Optimized Scheduling of CNN Workloads for ASIC-based Systolic Deep Learning Accelerators ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

3D ifmap 3D ofmap

J

S
ifmap vector

*

filter matrix

output psum
vector

J

K

*

3D filters

S

f1

f2

f3

f1 f2 f3

K

𝐽
𝑆

𝐽
𝑆

(a) (b)

Figure 4: Unit volume of computation.

*
ifmap psum (yellow)

ofmap (green)

1

filters

R
f1

f2

f3

R

X

*

ifmap psum (yellow)
ofmap (green)

1

filters

R
f1

f2

f3

XàY

*
ifmap psum (yellow)

ofmap (green)
filters

R
f1

f2

f3

Xà Yà Zi

*
ifmap psum (yellow)

ofmap (green)
new filters

R
f4

f5

f6

XàYà ZiàZo

1 2

3 4

Figure 5: Example of computation using theXYZiZo branch.
The filter matrix is formed using data from K 3D filters, where each
column of the matrix comes from ⌊J/S⌋ channels of a single 3D
filter (dark-colored region in each fi filter). After the pipeline is
filled (in typical networks, the pipeline setup overhead is small and
can be neglected in practice), in each cycle, the systolic PE array
performs the matrix-vector multiplication and produces K psums
in K channels of the ofmap (yellow ofmap boxes).

The number of ifmap/filter channels,Cuv , and the number of 3D
filters, Fuv , that are processed in parallel in the unit volume are

Cuv =min (⌊J/S⌋ ,C) ; Fuv = min(K , F) (1)

The second terms cover the corner case where C and F are small.
Conceptual illustration: In boxes 1 – 4 in Fig. 5, we show the
computation for the XYZiZo branch. As before, unprocessed data
are shown in light blue while darker colors refer to processed data.
Depth-1 (X direction, box 1): The innermost loop simultaneously
performs matrix-vector multiplications between three filters (i.e.,
f1, f2, and f3; Fuv = 3) and three pink ifmap/filter channels (Cuv =
3). Depending on the scheduling choice, the filter or the psum data
can remain stationary. The process continues for multiple cycles
until the pink ifmap and filter regions produce the yellow psum
elements in the X direction, in the first row of ofmap.
Depth-2 (XY , box 2): In the next nested loop, the computation in
box 1 is repeated to cover all ofmap rows (the entireY direction of
ofmap), generating the yellow psums of the first Fuv ofmap planes.
Depth-3 (XYZi , box 3): At the next level of nesting, the com-
putation in box 2 is repeated to cover all ifmap/filter channels,
processing the entire Zi direction of the ifmap to produce the final
(green) Fuv ofmap planes; these ofmaps are then moved to DRAM.
Depth-4 (XYZiZo , box 4): In the outermost loop, the computation
in box 3 is repeated using the next Fuv sets of 3D filters until the
full Zo ofmap direction is covered, yielding the full ofmap volume.

2.2 Search Tree: Depth-1
We now begin to explore the search tree in Fig. 2, starting from
Depth-1. As illustrated in Fig. 6, there are four candidate paths at

Depth-1 of the tree, corresponding to directions X ,Y ,Zo , and Zi .
During computation along these paths, one type of data (filter/
ifmap/psum) can remain stationary in the PE array while the other
two types change every cycle. Depending on which data is station-
ary, SRAM accesses vary, resulting in different path costs. At other
levels of the tree, DRAM access patterns may vary across paths.

For each candidate (sub)path O in the search tree, we analyze
the number of accesses per cycle to the filter SRAM, ifmap SRAM,
and psum SRAM, denoted as ASf ,O , A

S
i,O , and A

S
p,O , respectively.

Candidate subpaths for X : Along X , there are two ways to per-
form the computation: the unit volume of computation repeats in
every cycle to convolve the pink ifmap and filter region of Fig. 6(a)
to produce the yellow psum rows in the ofmap, either according to
Fig. 6(e) or Fig. 6(f). We refer to these as Xa and Xb , respectively.
Cycle count: ForXa andXb , in each cycle, every PE column outputs
a psum element. This requires G cycles to generate the psums for
an ofmap row, repeated for R filter/ifmap rows. Ignoring the small
pipeline setup overhead, this adds up to (G × R) cycles.
filter SRAM accesses: For Xa in Fig. 6(e), each filter is loaded only
once from the SRAM to PE array: it remains stationary while the
ifmap row slides through. Hence, the number of filter SRAM ac-
cesses is the total number of filter elements in the computation,
(R ×S ×Cuv × Fuv ×bf). Thus, the number of accesses per cycle is

ASf ,Xa
= (S ×Cuv × Fuv × bf)/G (2)

For Xb in Fig. 6(f), the unit volume of computation changes the
filter matrix in each cycle, requiring a total of (S ×Cuv × Fuv ×bf)

loads to the filter SRAM per cycle, i.e., ASf ,Xb = G ×ASf ,Xa
.

ifmap SRAM accesses: For Xa , while the filter matrix remains sta-
tionary, the ifmap vector changes every cycle. In each cycle, (S×Cuv)
ifmap elements are loaded from the ifmap SRAM to the PE array,
so that the number of ifmap SRAM accesses per cycle is

ASi,Xa
= S ×Cuv × bi (3)

For Xb , the ifmap also changes every cycle, and ASi,Xb = ASi,Xa
.

psum SRAM accesses: For Xa , a psum operation involves G psum
data for Fuv PE columns. The number of accesses/operation is

aSp,Xa
= G × Fuv × bp (4)

For the first filter/ifmap row, only a write access is required, but
for the remaining (R − 1) filter/ifmap rows, the psum must be both
read and written. Therefore, a total (1 + 2(R − 1)) = 2R − 1 sets of
accesses are required, so that the number of accesses per cycle is

ASp,Xa
= (2R − 1) × aSp,Xa

/(G × R) = (2R − 1)Fuv × bp/R (5)

For Xb , since the unit volume of computation moves to the subse-
quent filter/ifmap row in every cycle, psum data are written once to
the SRAM after accumulating all the psums over the (R×S) window.
Thus, after every R cycles one psum write to SRAM occurs from
each of the Fuv PE columns. Over (G × R) cycles, the number of
psum SRAM accesses for Xb is same as (4). Thus,

ASp,Xb = Fuv × bp/R (6)

The number of accesses for subpaths Y ,Zo ,Zi can be similarly
derived, as outlined below and summarized in Table 2.
Candidate subpaths for Y : The possibilities for scheduling com-
putations are equivalent to those for subpath X , except that all

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan S. D. Manasi and S. S. Sapatnekar

*
ifmap

psum (yellow)
ofmap (green)

1

filters

R
f1

f2

f3

R

X

*
ifmap

psum (yellow)
ofmap (green)filters

f1

f2

f3

Zi

*
ifmap

psum (yellow)
ofmap (green)filters

f1

f2

f6
Zo

R

(a)

*
ifmap

psum (yellow)
ofmap (green)

1

filters

S
f1

f2

f3

S

Y

(b) (c)

R
S S

(d)

1
1

1
1

Cuv Fuv Cuv Cuv CuvFuv Fuv Fuv

R

S

Stationary Stationary

ifmap

f1 f1

filter

f1

f4

f1

f4Xa Xb Zo,a
* * *

Zo,b
*

(e) (f) (g) (h)

Figure 6: Illustration of computation using the four candidate paths at Depth-1.

operations are transposed with respect to the ifmap. Therefore, the
two possibilities, Ya and Yb , parallel those for the previous case,
and the number of accesses is identical to Xa and Xb , respectively.
Candidate subpath Zi : The choice of moving along Zi requires
the psum to be stationary, so that only an output-stationary sce-
nario exists. Fig. 6(c) shows option Zi , where the data processed
by this path is shown by the pink ifmap and filter region, which
produces the green ofmap elements. Since each cycle processes a
new ifmap/filter row that must be loaded, the number of filter and
ifmap SRAM accesses for this path are identical to Xb . Since the
ofmap is fully constructed, one psum write operation is required
per PE column, i.e., Fuv ×bp accesses to the psum SRAM (we omit a
second mapping with the same filter, ifmap, and psum access costs).

Each cycle processes one filter/ifmap row from each of the
Cuv channels, and this is repeated for R rows. All C channels are
covered in R × (C/Cuv) cycles. Therefore, the number of psum
SRAM accesses per cycle is (Fuv × bp)/[R × (C/Cuv)], i.e., ASp,Zi =
ASp,Xb

/(C/Cuv). Note that from Equation (1), C/Cuv ≥ 1.
Candidate subpaths for Zo : The pink ifmap and filter regions
in Fig. 6(d) are processed to produce the yellow psum element in
each channel of the ofmap. Under one possible schedule, shown in
Fig. 6(g), after every cycle the unit volume of computation processes
rows from a new set of Fuv 3D filters while the ifmap data remains
stationary in the PE array and the filter matrix changes every cycle.

The ifmap access count is (R × S ×Cuv ×bi), and the ifmap data
are used for (F/Fuv × R) cycles. Therefore, the average number of
accesses per cycle, ASi,Zo,a = (S ×Cuv × bi)/(F/Fuv), i.e.,

ASi,Zo,a = ASi,Xa
/[F/Fuv] (7)

using (3). From (1), F/Fuv ≥ 1. The filter data is loaded in each cycle,
as in the case of Xb , and therefore, ASf ,Zo,a = ASf ,Xb

= G ×ASf ,Xa
.

The psum accesses are shown in Table 2 (details omitted).
Alternatively, Zo,b in Fig. 6(h), produces the yellow ofmap psum

elements with row-wise processing of (R×S)windows of the ifmap
and Fuv filters. The process is repeated to cover all filters. The
SRAM access patterns are identical to those for Xb : both the filter
matrix and ifmap vector change every cycle; one psum element
from each of the Fuv PE columns is written to the SRAM after every
R cycles, after accumulating psums over the (R × S) window.

2.3 Pruning Paths at Depth-1
All four paths at Depth-1 cover small data volumes where the com-
putations require only a single fetch per data from the DRAM to

Table 2: Filter, ifmap, psum SRAM access count (Depth-1).

Direction Xa, Ya Xb , Yb , Zo,b Zi Zo,a
filter Eq. (2) Eq. (2) ×G Eq. (2) ×G Eq. (2) ×G

ifmap Eq. (3) Eq. (3) Eq. (3) Eq. (3)
(F /Fuv)

psum Eq. (5) Eq. (5)
(2R−1)

Eq. (6)
(C/Cuv)

Eq. (5)

SRAM. Hence, the four candidate paths at Depth-1 are equivalent
in terms of DRAM accesses, and it is the SRAM access that differ-
entiates one path from another at this depth of the tree.

Using Table 2, we analytically compare the four paths. Depth-
1 is in the innermost loop of the computation. Regardless of the
mapping scheme, the number of MAC operations across the four
iterative loops is identical and equals the product of the number of
iterations at each level. The total ifmap/filter/psum SRAM access
cost is the product of this constant and the number of operations.

Hence, given twomapping schemes at Depth-1, if one scheme has
higher memory access cost per operation over the ifmap SRAM, filter
SRAM, and psum SRAM, it can be said to be provably suboptimal
and can be pruned from the search. We make a mild approximation
of counting all SRAM accesses equally, since all SRAM sizes are
similar. For pruning, this approximation is reasonable in practice.
Candidate subpaths (Xb ,Yb ,Zo,b) vs. Zi : From Table 2, both
paths have same SRAM access pattern for the filter and ifmap data.
However, subpaths Xb ,Yb ,Zo,b incur C/Cuv times higher cost for
the psum data than Zi , implying that subpath Zi is always better.
Therefore, we prune out choices (Xb ,Yb ,Zo,b) at Depth-1.
Candidate paths (Xa ,Ya) vs. Zo,a : Table 2 shows that these sub-
paths have the same SRAM accesses for psum; Zo,a incurs G times
higher filter access; Xa ,Ya incurs F/Fuv times higher ifmap access.
Thus, (Xa ,Ya) is a better choice than Zo,a when(

ASf ,Xa
+ASi,Xa

)
<

(
ASf ,Xa

×G
)
+
(
ASi,Xa

/[F/Fuv]
)

(8)

Using analytical methods using Equations (2) and (3), we can show
that this translates to Fuv ≥ bi/bf . Typically, F ≫ K , and Fuv = K ,
and the above condition translates to bi ≤ K × bf . Typically, the
bit-widths are similar, but a typical value of K is 8 or larger, so that
the condition is always satisfied. Hence, direction Zo is pruned out.
Candidate paths (Xa ,Ya) vs. Zi : These two paths have same
ifmap data access pattern. However, path (Xa ,Ya) incurs (2R −

1) ×C/Cuv times higher access for psum data while path Zi incurs
G times higher access for the filter data. Therefore, none of these
paths are pruned out and we explore them at further tree levels.

The result of pruning is that only Xa (henceforth referred to as X)
and Zi remain unpruned at Depth-1 of the tree in Fig. 2.

DeepOpt: Optimized Scheduling of CNN Workloads for ASIC-based Systolic Deep Learning Accelerators ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

2.4 Search Tree: Depth-2 through Depth-4
As discussed in Section 2.2, the SRAM access patterns are deter-
mined at Depth-1. Choices at Depth-2 – Depth-4 do not change
SRAM patterns, but may have different DRAM access counts.

At Depth-2, the amount of data processed by typical networks
is small enough that it does not have to be fetched more than once
from the DRAM to the SRAM. Therefore, since the DRAM access
overheads are similar, none of the paths can be pruned out at Depth-
2. For a 16 × 16 8-bit array, for AlexNet, VGG16, GoogleNet-v1, and
SqueezeNet-v1.1, SRAM sizes of 1 − 4kB each are sufficient.

Our analysis yields nine surviving options at Depth-4 (high-
lighted paths with blue and green in Fig. 2):
With X at Depth-1, the three choices at Depth-2 are XY , XZi and
XZo . Each has two choices at the two remaining depths (e.g., XY
can choose {ZiZo ,ZoZi } at the next two levels; XZi can expand to
{YZo ,ZoY }, and XZo to {YZi ,ZiY }), for a total of six options.
With Zi at Depth-1, it can similarly be shown that there are six
choices, of which three have identical cost because of the X ,Y sym-
metry, leaving three options, ZiXYZo , ZiXZoY , and ZiZoXY .

The total number of SRAM accesses, for each type of access,
corresponds to the number of SRAM accesses per cycle for X or Zi
at Depth-1 (listed in Table 2), multiplied by the number of iterations
in the four nested loops; this multiplier is given by:

(R ×G) × (E) × (C/Cuv) × (F/Fuv) (9)

i.e., the product of the iteration counts of the X , Y , Zi , and Zo loops.

L2H1 L14H1 L36H1 L48H1 L20H2 L10H2
0

0.5

1

1.5

N
or

m
al

iz
ed

 A
cc

es
s

 9
9.

11

J

 1
91

.2

J

 7
6.

13

J

 7
9.

23

J

 1
3.

26

J

 1
44

.4

J

SR
A
M

D
R
A
M

Figure 7: Normalized memory (SRAM + DRAM) energy for
six different layers of GoogleNet-v1 with two hardware con-
figurations, for five branches in the search tree. (Ln = Layer
number.H1:bf =8,pSRAM=32kB.H2:bf =4,pSRAM=8kB.H1 and
H2: bi=8, bp=32, J=16, K=32, f SRAM=64kB, iSRAM=32kB.)

2.5 Off-chip DRAM Access
We motivate the impact of DRAM access patterns by showing the
effect of choosing different paths in the tree. These results are
shown for two hardware configurations. For layers (L2, L14, L36,
L48, L20, and L10) of GoogleNet-v1, Fig. 7 shows the combined
energy cost for SRAM (lighter shade) and DRAM (darker shade)
accesses for psum (SRAM only), ifmap, and filter data. Each set of
bars is normalized to the smallest in the class where the absolute
energy value associated with the smallest (i.e., the value of 1) is
annotated in the figure. Following [15], one DRAMaccess is taken to
have 33.3× the energy of one SRAM access. The results are executed
on hardware H1 and H2, using various candidate branches. The
optimal choice in each case is marked with a star. The most notable
aspect is to see that the optimal path is different for each case.

The DRAM access pattern of a branch depends on various condi-
tionals which primarily represent how the hardware configuration
(i.e, sizes of on-chip SRAM, PE array size) and the shape of a layer
can play together to alter the number of off-chip accesses. The
DRAM is used to load ifmap and filter data (psum data stays in the
SRAM). Due to space limits, we illustrate the number of DRAM
accesses for one example branch, XYZiZo (Fig. 5). Similar results
are derived for other branches; the precise derivations for some
branches (e.g., XZiYZo) involve the enumeration of more cases.

To reduce costly off-chip accesses, DNN accelerators [2, 13, 16]
typically move psums between the on-chip SRAM and the PE array
without going to the off-chip DRAM. After psums are accumulated
along the full Zi direction, the ofmap is written to DRAM. Due to
the limited size, pSRAM , of on-chip psum SRAM, in some cases the
entire dimension ϕ ∈ {H ,W ,E,G, F } cannot be processed at a time:
we then replace ϕ by a value ϕeff that reflects the actual processed
dimension. For example, for branch XYZiZo , if the psum SRAM is
not large enough for the entire row, G is replaced by

Geff = min
(
G,

⌊
pSRAM/(Fuv × bp)

⌋)
(10)

and the computation is repeated over ⌈G/Geff⌉ iterations. Similarly,
the entire Y dimension of E rows may have to be replaced by an
iteration over Eeff = min(E, ⌊pSRAM/(Geff × Fuv ×bp)⌋). Thus, the
DRAM loads the SRAM ni = ⌈G/Geff⌉ × ⌈E/Eeff⌉ times.
DRAM access for filter data: Through the sliding window operation,
filter data are reused across the width and height of an ifmap. For
branch XYZiZo , the inner loops are over X and Y , which allows
maximal filter reuse by loading all filter data only once from the
DRAM. Thus, the filter requires V4Df × ni DRAM accesses, where
V4Df = (R × S ×C × F × bf) is the full 4D filter data volume.
DRAM access for ifmap data: If the ifmap SRAM is large enough to
fit the full 3D volume of an ifmap during an iteration, then each
ifmap element is loaded just once from the DRAM, and thus, the
ifmap requiresVi f map×ni DRAMaccesses. However, if the SRAM is
not large enough for the full ifmap, ifmap data is reloaded ⌈F/Fuv ⌉
times for the computation using each Fuv sets of 3D filter and, the
number of DRAM accesses for XYZiZo is

ADi−XYZiZo = Vi f map × ⌈F/Fuv ⌉ × ni (11)

2.6 Final Set of Candidates After Pruning
In Section 2.4, the 24 options in the search tree of Fig. 2 were reduced
to nine. For four of these branches (XZiZoY , XZoZiY , ZiXZoY ,
ZiZoXY), where both Zi and Zo appear at Depth-3 or earlier, in
order to process the first ofmap row (i.e., data up to Depth-3), the
filter SRAM must work with all the channels of all 3D filters, i.e.,
the entire 4D filter volume. This is typically too large for an on-chip
filter SRAM and requires repeated replacement from the DRAM,
incurring high cost, significantly more than any other branch. After,
we prune out these four branches, five surviving options remain:
XYZiZo , XZiYZo , XYZoZi , XZoYZi , and ZiXYZo .

3 ANALYZING ENERGY AND PERFORMANCE
3.1 Energy Computation
The total energy of a layer, EL , consists of four components:

EL = EMAC + ER + ES + ED (12)

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan S. D. Manasi and S. S. Sapatnekar

where EMAC indicates the computation energy of a layer to perform
the MAC operations in the PE array, ER is the energy to access
data from the registers in the PEs, while ES [ED] denotes the data
access energy from the SRAMs [DRAM]. EMAC is computed by
multiplying the total number of MAC operations in a layer, NMAC ,
by the energy per MAC operation, eMAC , i.e.,

EMAC = NMAC × eMAC (13)

Since each ofmap entry requires R × S × C operations, NMAC =

(R × S ×C) × (E ×G × F). A MAC operation is accompanied by four
register accesses in a PE: three filter, ifmap, and psum reads and
one psum write. Therefore, the register access energy is

ER = NMAC × (bf + bi + 2bp) × eR (14)

where eR is the energy for per-bit register access. Denoting eS and
eD as the energy for per bit SRAM and DRAM access, respectively,
the SRAM and DRAM data access energy for each branch is

ES = eS ×
∑
α=f ,i,p ASα−O (15)

ED = eD ×

(∑
α=f ,i ADα−O + (E ×G × F × bi)

)
(16)

whereASα−O (ADα−O) denotes the total number of SRAM (DRAM)
accesses for branch O for psum (SRAM only), filter, and ifmap data.
For the SRAMs, this can be obtained as the product of the access
per cycle in Section 2.2 and the multiplication factor over all four
nested loops (given by (9)), and for the DRAM, using the procedure
in Section 2.5. The last term in (16) represents the energy to write
back the final ofmap data to the DRAM.

3.2 Inference Delay/Performance Computation
The total inference delay for a layer is the sum of two components:
(i) Computation cycles, i.e., the number of cycles required to
perform the MAC operations in the PE array, given by:

DComp = NMAC/((Cuv × S) × Fuv) (17)

where the denominator determines the #of PEs working in parallel,
with parameters Cuv and Fuv are computed using (1). The number
of computation cycles largely depends on the size of the PE array
and does not change based on the choice of scheduling.

r1 r2 rn
XY: block-1

ifmap +
filter

∆ifmap ∆ifmap
r1 r2 rn

XY: block-2

ifmap +
filter

∆ifmap ∆ifmap time
Depth-1

Depth-2
Depth-3

Figure 8: Sequence of computation for branch XYZiZo .

(ii)DRAM stall cycles during which the systolic PE array remains
idle, waiting for data to be fetched from the off-chip DRAM. Typi-
cally, due to the limited off-chip bandwidth and the high volume
of DRAM transfer required to process a layer, there can be signifi-
cant memory transfer delays that affect the overall throughput of
computation. For a given off-chip bandwidth, the scheduling choice
determines the number of DRAM accesses to compute a layer, and
hence, the number of DRAM stall cycles.

DeepOpt overlaps DRAM access cycles with computation cycles
to reduce the number of DRAM stall cycles, as shown in Fig. 8 for
branch XYZiZo (other branches are handled similarly). The figure
shows the granularity of computations for Depth-1 – Depth-3, with

ofmap rows ri processed at Depth-1, multiple rows inCuv channels
at Depth-2 (reusing filter data), and new filter channels at Depth-3.

Filter data is fetched once every n rows. For the ifmap, new data
is always fetched for r1 but with each stride, older data that overlaps
with previous computations is reused and only some data,∆ifmap, is
fetched. Thus, the memory overhead for r1 always exceeds that for
any other ri . Data fetch for each cycle overlaps with computation
from the previous cycle, and if data access time exceeds computation
time, a stall is required. The process is repeated to cover all the 3D
filters at Depth-4 to determine the total DRAM stall cycles.

4 RESULTS
4.1 Layer-Specific Optimal Scheduling (LOS)
We use DeepOpt to evaluate the layer-specific optimal scheduling
(LOS) using five CNN topologies: AlexNet, VGG16, GoogleNet-v1,
SqueezeNet-v1.1, and ResNet-50. We perform our evaluation under
65nm technology parameters. For SRAMs, the access energy vs. size
trend is obtained fromCACTI [17]. The access energy/bit for DRAM,
SRAM, and register, and per unit energy for addition/multiplication
are obtained from [10, 15, 18]. The bandwidth of off-chip DRAM
is 128 bits/cycle. The five non-pruned branches (XYZiZo , XZiYZo ,
XYZoZi , XZoYZi , and ZiXYZo

1) are considered for scheduling.
The hardware is parameterized by PE array (J ×K), and SRAM sizes
(f SRAM, iSRAM , pSRAM) and bit-widths (bi , bf , bp).

DeepOpt uses a user-specified performance metric (PM) as an op-
timization objective. This could be the Energy, Delay, Energy×Delay,
Energy2×Delay, or Energy×Delay2. Here, the Delay represents the
per image inference time of a network. Similar performance metric
is used for the evaluation of DNN in [15]. For a given network
topology and an underlying hardware accelerator configuration,
DeepOpt uses layer-specific scheduling to determine the branch
for each layer within the network that optimizes the specified PM.

Table 3: Penalty of FS as compared to LOS (GoogleNet-v1).

Fixed
scheduling
(FS) scheme

Penalty relative to layer-specific optimal scheduling (LOS)

Energy Delay Energy×
Delay

Energy2×
Delay

Energy×
Delay2

XYZiZo 11.7% 19.4% 44.7% 77.4% 89.1%
XZiYZo 12.5% 33.8% 22.4% 9.5% 16.4%
XYZoZi 15.4% 27.2% 61.3% 107.5% 132.0%
XZoYZi 32.2% 66.6% 89.5% 120.0% 152.3%
ZiXYZo 613.7%1 (large)1 (large)1 (large)1 (large)1

Table 3 shows the percent penalty on the total execution cost of
GoogleNet-v1 when all layers of the network are computed using
a fixed scheduling (FS) scheme, chosen from the five good, non-
pruned schemes of Section 2.6, as compared to the optimal LOS
from DeepOpt. The evaluations are shown across all five PMs for
an accelerator specification of: bi = bf = 8, bp = 32, J × K = 32 ×
64, f SRAM = 16kB, iSRAM = 32kB, pSRAM = 8kB. Note that the
per-layer optimal configuration in each column is different, and
therefore, for example, the optimal (Energy×Delay) is not the same
as the optimal(Energy) × the optimal(Delay): the latter is a lower
bound that is achievable only when the optimal Energy and optimal
Delay configurations are identical (this is typically not the case).
As seen from the table, across all five PMs, the penalty for each of

1In practice, off-chip access ofZiXYZo greatly exceeds other four branches unless the filter SRAM
can fit (R × S ×C × Fuv × bi) volume of data. When this large storage constraint is not met, we
evaluate this branch for Energy and not the other PMs.

DeepOpt: Optimized Scheduling of CNN Workloads for ASIC-based Systolic Deep Learning Accelerators ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

the FS schemes with respect to LOS is significant, e.g., up to 90%
for Energy×Delay if FS scheduling choices are not explored.

23
0.
4%

la
rg
e

13
3.
2%

la
rg
e

16
2.
5%

27
5.
8%

49
0.
7%

la
rg
e

28
2.
7%

16
5.
3%

32
0.
6%

la
rg
e

AlexNet VGG16 GoogleNet SqueezeNet ResNet50
0

50

100

%
Pe
na
lty

la
rg
e

la
rg
e

la
rg
e

16
9.
0%

la
rg
e

16
4.
3%

22
8.
4%

la
rg
e

AlexNet VGG16 GoogleNet SqueezeNet ResNet50
0

40

80

%
Pe
na
lty

23
0.
4%

la
rg
e

13
3.
2%

la
rg
e

16
2.
5%

27
5.
8%

49
0.
7%

la
rg
e

28
2.
7%

16
5.
3%

32
0.
6%

la
rg
e

AlexNet VGG16 GoogleNet SqueezeNet ResNet50
0

50

100

%
Pe
na
lty

la
rg
e

la
rg
e

la
rg
e

16
9.
0%

la
rg
e

16
4.
3%

22
8.
4%

la
rg
e

AlexNet VGG16 GoogleNet SqueezeNet ResNet50
0

40

80

%
Pe
na
lty

23
0.
4%

13
3.
2%

16
2.
5%

27
5.
8%

49
0.
7%

28
2.
7%

AlexNet VGG16 GoogleNet SqueezeNet
0
20
40
60
80

%
Pe
na
lty

89
.5
0%

16
9.
0%

AlexNet VGG16 GoogleNet SqueezeNet
0
20
40
60
80

%
Pe
na
lty

(a)

(b)

Figure 9: Energy×Delay penalty of FS schemes vs. LOS for
two hardware configurations (for ZiXYZo , see Footnote 1).

Similar trends are seen for AlexNet, VGG16, SqueezeNet-v1.1,
and ResNet-50 as summarized in Fig. 9(a) for the same hardware con-
figuration: due to space constraints, only the results for Energy×Delay
are shown. For a second hardware configuration (bi = bf = 16, bp =
32, J ×K = 64 × 32, f SRAM = 64kB, iSRAM = 32kB, pSRAM = 8kB),
Fig. 9(b) shows the Energy×Delay penalties for all the FS schemes
over LOS for these networks. For this hardware, most layers in
SqueezeNet-v1.1 opt for the same configuration (XZiYZo) under
LOS, due to which the penalty of FS is small for this choice.

4.2 Optimal Allocation of Hardware Resources
We use DeepOpt’s layer-specific optimal scheduling (LOS) to per-
form design space exploration, optimally selecting hardware re-
sources under an area budget of 16mm2, permitting a deviation of
10% to allow greater flexibility in choosing the optimum. We set bf
= bi = 8, and bp = 32 [13]. The area per PE is obtained from a post
place-and-route implementation of the systolic array, and SRAM
area is estimated using a commercial 65nm memory compiler.

Table 4 shows the optimal allocation of the accelerator param-
eters for GoogleNet-v1 across all five PMs, and shows the impact
of optimal allocation over an arbitrary approach. The rightmost
column shows the reduction in the PM at the optimal hardware
point, as compared to the worst-case allocation, and thus represents
the performance range from best-case to worst-case allocation: e.g.,
if the allocation is chosen without careful analytical modeling, as in
this work, the Energy×Delay product could be up to 40.71× higher.
Similar degradations are seen for other PMs. For AlexNet, VGG16,
SqueezeNet-v1.1, and ResNet-50, Energy×Delay deteriorates from
best to worst case by 12.0×, 50.1×, 21.6×, and 20.2×, respectively.
Table 4: Optimal vs. worst-case hardware allocation for
GoogleNet-v1 under a 16mm2 area budget.

Performance
metric (PM)

Optimal hardware allocation Improvement
over worst-case

allocationJ K SRAM size (kB)
filter imap psum

Energy×Delay 48 32 32 64 32 40.7×
Energy2×Delay 48 32 64 64 4 87.7×
Energy×Delay2 48 32 64 64 8 1134.5×
Energy 38 32 64 128 4 2.0×
Delay 48 36 16 16 64 17.1×

Finally, Table 5 quantifies the suboptimality in running a different
network on hardware tuned to optimize another network, e.g.,
running AlexNet on hardware tuned for the other networks. It

can be seen that AlexNet, VGG16, and GoogleNet-v1 exhibit a
small penalty on hardware tuned for any of the other two, but the
penalty is much higher when SqueezeNet-v1.1 or ResNet-50 is run
on hardware tuned on any of these three, or vice versa. This is not
surprising: SqueezeNet-v1.1 has fewer parameters and a smaller
model size, while ResNet-50 is a deepermodel with residual building
blocks. DeepOpt successfully finds these separate optima.

Table 5: Percent penalty on Energy×Delay when a network
is executed on the optimal hardware for another network.

Optimal hardware
J /K /f SRAM /

iSRAM /pSRAM*

Percent penalty
Alex-
Net VGG16 Google-

Net-v1
Squeeze-
Net-v1.1

ResNet-
50

AlexNet: 50/32/16/32/64 0% 3.18% 3.92% 34.20% 7.04%
VGG16: 54/32/16/16/64 1.01% 0% 5.72% 32.86% 11.18%
GoogleNet-v1: 48/32/32/64/32 3.69% 2.64% 0% 22.79% 9.83%
SqueezeNet-v1.1: 40/34/16/128/32 8.77% 22.92% 20.87% 0% 15.33%
ResNet-50: 40/32/32/32/128 8.58% 28.33% 22.79% 24.63% 0%
*Unit of f SRAM , iSRAM , and pSRAM is in kB.

5 CONCLUSION
A systematic approach for scheduling computations on a DNN,
minimizing the overhead of costly memory accesses, has been pro-
posed. It is shown that substantial savings are possible by using
layer-specific optimized scheduling as compared to fixed schedul-
ing schemes which use popular weight/output stationary methods
in the innermost loop. Design space exploration is performed to
optimally tune hardware resources for running a specific DNN.

ACKNOWLEDGMENTS
We thank Z. Wang and A. B. Kahng (UCSD) for helping in modeling
SRAM area. This work is supported in part by NSF (CCF-1763761).

REFERENCES
[1] V. Sze, et al., “Efficient Processing of Deep Neural Networks: A Tutorial and

Survey,” Proc. of the IEEE, vol. 105, pp. 2295–2329, Dec. 2017.
[2] Y. H. Chen, et al., “Eyeriss: An Energy-efficient Reconfigurable Accelerator for

Deep Convolutional Neural Networks,” IEEE Journal of Solid-State Circuits, vol. 52,
pp. 127–138, Jan. 2017.

[3] A. Krizhevsky, et al., “ImageNet Classification with Deep Convolutional Neural
Networks,” in Proc. Adv. NIPS, pp. 1097–1105, 2012.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in Proc. ICLR, 2015.

[5] C. Szegedy, et al., “Going Deeper with Convolutions,” in Proc. CVPR, Jun. 2015.
[6] K. He, et al., “Deep Residual Learning for Image Recognition,” in Proc. CVPR, 2016.
[7] A. Samajdar, et al., “SCALE-Sim: Systolic CNN Accelerator Simulator,”

arXiv:1811.02883, 2018.
[8] Y. Ma, et al., “Performance Modeling for CNN Inference Accelerators on FPGA,”

IEEE T. Comput. Aid. D., vol. 39, pp. 843–856, April 2020.
[9] X. Yang, et al., “Interstellar: Using Halide’s Scheduling Language to Analyze DNN

Accelerators,” in Proc. ASPLOS, pp. 369–383, 2020.
[10] S. D. Manasi, et al., “NeuPart: Using Analytical Models to Drive Energy-Efficient

Partitioning of CNN Computations on Cloud-Connected Mobile Clients,” IEEE T.
VLSI Syst, vol. 28, pp. 1844–1857, Aug. 2020.

[11] B. Reagen, et al., “Minerva: Enabling Low-Power, Highly-Accurate Deep Neural
Network Accelerators,” in Proc. ISCA, pp. 267–278, 2016.

[12] H. Kwon, et al., “Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflow: A Data-Centric Approach,” in Proc. MICRO, pp. 754–768, 2019.

[13] N. P. Jouppi et al., “In-datacenter Performance Analysis of a Tensor Processing
Unit,” in Proc. ISCA, pp. 1–12, 2017.

[14] H. Sharma, et al., “Bit Fusion: Bit-Level Dynamically Composable Architecture
for Accelerating Deep Neural Network,” in Proc. ISCA, pp. 764–775, 2018.

[15] Y. Chen, et al., “Eyeriss: A Spatial Architecture for Energy-efficient Dataflow for
Convolutional Neural Networks,” in Proc. ISCA, pp. 367–379, 2016.

[16] Y. Ma, et al., “Optimizing the Convolution Operation to Accelerate Deep Neural
Networks on FPGA,” IEEE T. VLSI Syst, vol. 26, pp. 1354–1367, Jul. 2018.

[17] “CACTI.” available at http://www.hpl.hp.com/research/cacti/.
[18] M. Horowitz, “Computing’s Energy Problem (and What We Can Do About It),”

in Proc. ISSCC, pp. 10–14, 2014.

