
SeFAct: Selective Feature Activation and Early Classification for CNNs

Farhana Sharmin Snigdha1, Ibrahim Ahmed1, Susmita Dey Manasi1,
Meghna G. Mankalale1, Jiang Hu2, Sachin S. Sapatnekar1

1Department of ECE, University of Minnesota, 2Department of ECE, Texas A&M University
e-mail: {sharm304,ahmed589,manas018,manka018,sachin}@umn.edu, jianghu@ece.tamu.edu

Abstract—This work presents a dynamic energy reduction
approach for hardware accelerators for convolutional neural
networks (CNN). Two methods are used: (1) an adaptive data-
dependent scheme to selectively activate a subset of all neurons,
by narrowing down the possible activated classes (2) static
bitwidth reduction. The former is applied in late layers of the
CNN, while the latter is more effective in early layers. Even
accounting for the implementation overheads, the results show
20%–25% energy savings with 5–10% accuracy loss.

I. INTRODUCTION

Neural architectures [1], [2] have multiple layers consisting
of artificial neurons, where each layer is trained to recognize
various features of the input, with deeper layers uncovering
more complex features. Such deep neural networks (DNNs),
often implemented as CNNs, can solve increasingly complex
problems. The computational requirements of DNNs have
rapidly increased as networks with more layers and features
are utilized [2]. These platforms are thus power-hungry and
require large memory footprints. Energy reduction of DNNs
is paramount in both datacenters and mobile platforms.

Prior works have proposed several methods for reducing
computations, including data parallelization using multiple
cores, specialized hardware [3]–[5], and approximate compu-
tation [6]–[9] based on simplified architecture and arithmetic.

However, there are also more specific properties that may
be leveraged, related to how features are mapped to neurons
in various layers. We make two observations regarding the
feature activation patterns in CNNs. First, during both training
and testing, specific features tend to be activated by the recog-
nition of specific classes. Second, deeper layers have higher
neuron activation sparsity, i.e., fewer neurons are activated per
layer [10]. Some paths through the network are unlikely to be
activated because specific sets of neurons are seldom activated
together. We propose a selective feature activation approach,
SeFAct, to develop quantitative metrics for identifying such
scenarios, and to save energy by reducing unnecessary com-
putations. During training, we group similar activations across
multiple classes into clusters. During testing, we use these
clusters to dynamically prune or approximate, unlike well-
known static pruning [6], a large section of the CNN that
does not help interpret the input, allowing us to reduce both
the number of memory accesses and the computation energy,
particularly in the later layers of a DNN. For earlier layers of
the DNN, we use reduced precision to improve energy savings
without significantly affecting accuracy.

II. OVERVIEW OF THE SELECTIVE FEATURE ACTIVATION

A. Motivating Example
We illustrate our key idea on a simplified neural network for
letter recognition with three fully connected layers, L1, L2,

This work was supported in part by the NSF under awards CCF-1525925, CCF-1763761,
CCF-1525749.

Fig. 1: Activation pattern of features for (a) Class B and (b) Class D in
layers, L1 to L3 of an example neural net.

and L3, shown in Fig. 1. We later implement this idea on
larger, standard CNN topologies. Each neuron represents one
feature, and the outputs map to six classes, corresponding to
the letters, A through F . Two feature activation patterns are
shown in Fig. 1, where the activated neurons for Classes B
and D are highlighted. The unactivated neurons are white.

It can be seen that classes B and D have 75% or more
common activated features in both layer L1 and L2. As the
activation patterns of the classes B and D are very similar, we
can cluster them together in training phase. More generally, we
identify the common feature activation pattern for all classes
in each cluster, which we refer to as its “stamp”. During the
testing phase, if the feature activation pattern of an input
matches with a particular stamp, then the input is said to
belong to one of the classes from the corresponding cluster.
This clustering helps predict classes in early layers, and can
be used to reduce both the neuron computation and memory
access energy in the subsequent layers.

We build a framework for identifying and using important
features to selectively activate neurons. We work in two steps:

1) Cluster learning phase We augment the traditional
training phase with a step that identifies clusters. Based
on the trained weights and training data, we

a) identify the important features for each class
b) cluster classes with similar feature activation patterns
c) prepare stamps and cluster data for the testing phase

2) Testing phase The traditional testing phase is modified
to use the cluster learning results. At each CNN level, we

a) compare feature activation patterns with the cluster
stamps and identify the activated cluster(s)

b) load and compute data only for the predicted class(es)
c) propagate the predicted class sets to the next layer

Thus, cluster learning is a preprocessing step associated with
training. Changes to the testing phase incur overheads, but also
generate savings, and are implemented in real-time.

Notation 1. We frequently refer to a variable x in multiple
layers. We denote the variable x in the current layer, Li,
without a superscript; the variable in the previous layer, Li−1,



and the next layer, Li+1, as x− and x+, respectively.

B. Cluster Learning Phase
1) The Concept of Important Features: A CNN has convo-

lutional (Conv), fully connected (fc), or pooling (Pool) layers.
There are three types of data associated with a Conv layer:
• ifmap, the input feature map, F if ∈ RK−×H−×W− ,

which comes from the computations in layer Li−1.
• filter, the filter weights, F filter ∈ RK×K−×d×d, i.e., K

3D filters with each feature dimension d× d are applied
to the ifmap, and

• ofmap, the output feature map, F of ∈ RK×H×W , which
acts as the ifmap for layer Li+1.

Fig. 2 illustrates various data types of Conv layer.

Fig. 2: Illustration of ifmap, filter, and ofmap in a Conv layer.

For stride size U under bias F bias[u], layer Li computes [2]:

F of [u][x][y] = ReLU
(
F bias[u] +

K−∑
k=1

d∑
i=1

d∑
j=1

F filter[u][k][i][j]

× F if [k][Ux+ i][Uy + j]

)
(1)

where, 1 ≤ u ≤ K, 1 ≤ x ≤ H, 1 ≤ y ≤W

The kth feature of F if is represented by the 2D feature
plane, F if

k ∈ RH−×W− , 1 ≤ k ≤ K−. We show how we
mark the important features for a single input image.

For the ifmap, the summation of all data in the kth feature
plane, F̃ if

k =
∑H−

h=1

∑W−

w=1 F
if
khw, is a “signature” for the

feature. We calibrate the importance of a feature in a layer
based on the relative magnitude of F̃ if

k with respect to the
average of all feature plane data, F̃ if

avg =
∑K−

k=1 F̃
if
k /K−.

Definition 1. The indicator function 1{·} is defined as
1{true} = 1, and 1{false} = 0.

Definition 2. Feature k is considered important if it satisfies

Ik = 1
{
F̃ if
k ≥ T1 × F̃ if

avg

}
= 1

{
F̃ if
k ≥ TI

}
(2)

where T1 is a tunable threshold parameter.

Computational simplification: While Eq. (2) can be applied
relatively easily to an fc layer where H− = W− = 1 and the
volume of data is moderate, Conv layers must handle a much
larger volume of data. In a realistic hardware implementation,
the 3D data processed by a Conv layer of the CNN is fetched
through a memory hierarchy. It is computationally expensive to
fetch the data and compute F̃ if

avg for use in Eq. (2). Moreover,
ifmap data is very sparse, i.e., numerous elements are zero.

We simplify the computation by assuming self-similarity
between the data in various features in each layer: in particular,
we assume that the average of all nonzero data for each feature
of the ifmap of a Conv layer is identical, denoted as µif ,

and that various layers differ merely in the sparsity, Sif
k for

feature k. This helps to reduce computation without hurting
the effectiveness of our method, as seen in Section V.

Theorem II.1. Under the self-similarity assumption, feature
k in a Conv layer is important, as defined in Definition 2, if

Ik = 1
{
Sif
k ≤ TI

}
, (3)

where Sif =
∑K−

k=1 S
if
k /K

− is the constant overall ifmap
sparsity, and TI = 1− T1 × (1− Sif ).

Proof. The number of nonzero elements associated with each
feature is H−W−(1−Sif

k ). Under the self-similarity assump-
tion, we can write, F̃ if

k = H−W−(1−Sif
k )µif . Eq. (2) for a

Conv layer then becomes:

Ik = 1

{
H−W−(1− Sif

k )µif ≥ T1 ×
∑K−

k=1H
−W−(1− Sif

k )µif

K−

}
= 1

{
Sif
k ≤ 1− T1 × (1− Sif )

}
= 1

{
Sif
k ≤ TI

}
(4)

The latter expression arises because H−, W−, and µif are
constant for a given ifmap layer, F if , and cancel out.

2) Important Feature Detection for Each Class: The re-
lation in (2) shows how the kth element of the class-based
importance feature vector, I ∈ RK− , is used to develop the
importance criterion for the features of an individual input
image in layer, Li. However, during the cluster training phase,
we work with multiple images in multiple classes to identify
important features for the cluster.

In the current layer, let us say that we apply (2) to determine
the importance feature vector I ′ of the qth image of one
particular class c, i.e., I ′(c, q) = I . During cluster learning, we
repeat this operation over all Nclass classes of the CNN, with
NI(c) images for each class c. Due to the network training
inaccuracies, or image pixel pattern variations, all the images
with same class may not have the same activation pattern for
a specific layer. Therefore, we deem a feature to be important
for a particular class if it is important for a sufficiently large
number of images in the class, i.e., if it is activated for an
empirically chosen fraction, T2, of all training images. This
provides a criterion for determining the important features
through the vector Ĩc ∈ RK− , for class c of the current layer:

Ĩc = 1{
∑NI(c)

q=1 I ′(c, q) ≥ T2 ×NI(c)} (5)

3) Clustering: Classes with closely matched features are
now grouped together as clusters that satisfy these properties:
Property: A cluster is a set of classes, with one or more
clusters associated with each layer, satisfying these properties:
• Clusters in the last layer are singleton sets, with each set

containing one class.
• No cluster is a subset of another cluster in the same layer.
• If C and C+ are the sets of clusters in layer Li and layer
Li+1, then each cluster Cx in layer Li must satisfy

C+y ⊆ Cx for some y.

We refer to this as the diverging clustering criterion.
We define a cluster graph in which each cluster forms a
vertex, and an edge is drawn from x to y if the above
criterion is satisfied. Moreover,

Cx =
⋃

x→y C+y .



Fig. 3 shows a sample clustering of the network of Fig. 1.
Clusters in the last layer are singletons, consistent with the
first property. The third property can be illustrated by cluster
CL1
3 = {B,D,E, F} of layer L1, which diverges through its

connections to clusters CL2
2 = {B,D} and CL2

4 = {B,E, F}.

Fig. 3: Example to illustrate the properties of clusters.
The diverging clustering criterion allows the network to

reduce the number of predicted classes monotonically. For
example, if an image of the letter, E, is provided to the
network, then the probable classes for layer L1, L2, and L3

are {B,D,E, F}, {B,E, F} and {E}, respectively.
The class-based importance vector, Ĩc, obtained in (5), lists

the set of important features in a layer. We use this information
to create diverging clusters from layer to layer. We begin by
creating singleton clusters in the last layer; the number of
clusters equals the number of classes. Then, we topologically
move backwards maintaining the diverging clustering criterion.

For each cluster C+k of layer Li+1, we prepare a cluster-
based important feature vector for layer Li, Jk, that lists the
features important to all cluster members, using the AND (

∧
)

operator:
Jk =

∧
c∈C+k

Ĩc (6)

We then combine clusters in layer Li+1 into larger clusters
in layer Li. We create a graph G(V,E) whose vertex set
V = C+, and with edge set E connecting clusters that
have high affinity, but keeping clusters with low affinity
unconnected. The affinity metric for clusters C+i and C+j is
given by Aij = 〈Ji, Jj〉, the inner product between Ji and Jj .
Since these vectors are Boolean, the inner product measures
the number of important features that these clusters have in
common. We add an unweighted edge to E if the affinity
exceeds a threshold, T3×Amax, where Amax is the maximum
of all cluster affinities:

(i, j) ∈ E iff. {Aij > T3 ×Amax} 1 ≤ i, j ≤ NC+ (7)

The goal of clustering is to combine the clusters in layer
Li+1 so that high-affinity clusters are grouped together. We
map this problem to the maximum independent set (MIS)
problem on graphs. Two vertices are independent if they have
no edge between them, i.e., they have low affinity. The MIS
problem finds a maximal set of independent vertices, which act
as roots of individual clusters. By definition, elements of the
MIS have low affinity for each other and should be in different
clusters. Each cluster is thus defined by an MIS element, and
also includes its neighbors, i.e., classes with high affinity.

Algorithm 1 finds the clusters in layer Li by first identifying
the vertices in G (i.e., cluster IDs) to be merged based on
finding the MIS. Since the MIS problem is NP-hard, we
employ a greedy heuristic [11]. After initialization (line 1),
the algorithm sorts the vertices in non-ascending order of their
degrees (line 2). In each iteration, the minimum degree node
in V is added to the MIS (line 5). A new cluster is formed,

combining the clusters associated with v and its neighbor set
(line 7). The iteration ends with v and its neighbors eliminated
from V (line 8). Once all clusters have been found, the
cluster IDs in D+ are used to construct the set of classes
in the cluster set C (line 11). The complexity of the algorithm
is O (NC+ log (NC+)), which is dominated by the sorting
operation of the vertices (line 2).

Algorithm 1 {D+, C} ← FindCluster(G, C+)
INPUT: Edge connectivity graph G(V,E) based on C+
Cluster set of layer Li+1: C+
OUTPUT: Diverging cluster set: D+ . IDs of clusters to be merged
Cluster set of layer Li: C . Set of classes in the cluster
METHOD:
1: Initialize Is = ∅, D+ = ∅
2: Sort the vertices in V in non-ascending order of degree
3: while V 6= ∅ do
4: Set v to be the minimum-degree vertex in V
5: Is = Is ∪ v . Add v to the independent set
6: nv ← {u}∀(u, v) ∈ E . Set of neighbors of v
7: D+ ← D+ ∪ {{v} ∪ nv} . Add v and its neighbors to D+

8: V ← V \ {{v} ∪ nv}
9: end while

10: ∀D+
k ∈ D

+, Ck ← ∪v∈D+
k
C+v . Build clusters using cluster IDs

11: C ←
⋃
Ck . Set of all clusters at layer Li

12: return {D+, C}

4) Data Preparation for Testing Phase: We now encapsu-
late clustering information to enable its efficient use during
the testing phase. At each layer Li, the set D+ shows how the
clusters in the current layer diverge to those in the next layer.

We prepare stamps for each cluster in layer Li, correspond-
ing to the features that can activate the cluster, i.e., the features
that are important to all classes in the cluster. These stamps are
used in the testing phase to determine the activated clusters,
by comparing the list of important features in the input data
with each cluster stamp. The stamp Sk for cluster k is:

Sk =
∧

c∈Ck Ĩc (8)

For each cluster Ck in layer Li, we now create a record
of the features to be computed, F+

k , to identify potentially
activated clusters in layer Li+1. During the testing phase, for
each activated cluster Ck, only these features are inspected. For
cluster Ck, we compute F+

k by combining, through a binary
OR (

∨
), the important features of layer Li+1 as:

F+
k =

∨
c∈Ck Ĩ

+
c (9)

For example, in Fig. 3, the stamps for all clusters in layer
L1 are used to check which classes are activated. In the testing
phase, for an input image B, depending on which features are
activated, the stamps for CL1

3 could trigger the identification
of this cluster. Next, from D+

3 , we know that the activated
clusters in layer L2 may be CL2

2 and CL2
4 . Accordingly, we

use the list of important features given by (9) to compute the
important features for classes in clusters CL2

2 and CL2
3 . If any

other cluster is activated, then a similar approach is used to
add to the list of important features to be computed.

5) Overall algorithm: Algorithm 2 summarizes the cluster
learning phase for layer Li. Lines 1 and 2 prepare, respectively,
the class-based and cluster-based importance feature vectors at
level Li. Based on the clusters and their affinities, the cluster
graph G is formed. Next, Algorithm 1 is invoked to form the

Note that not all important features of a class are activated by each image:
therefore, an image in class B may well activate only CL1

3 and not CL1
2 .



diverging clusters. Finally, in preparation for the testing phase,
for each cluster, a cluster stamp and a record of important
features for the next level are computed.

Algorithm 2 The Cluster Learning Phase
INPUT: Layer Li: ifmap data F if ; thresholds T1, T2, T3

Layer Li+1: importance vectors Ĩ+c ∀ classes c; cluster set C+
OUTPUT: Layer Li: importance vectors Ĩc∀ classes c; cluster set C; cluster
stamps S ∈ RNC×K− ,
Layer Li+1: divergent cluster set D+; features F+ ∈ RNC×K

METHOD:
1: Create importance vectors for layer Li, Ĩc . Use T1, T2, and (5)
2: Form cluster importance vectors in layer Li, J . Use C+ and (6)
3: Create G(V,E) . Use (7) and T3

4: {D+, C} ← FindCluster(G, C+) . Algorithm 1
5: for k = 1 : NC do
6: Prepare stamp, Sk; important features, F+

k . Use (8) , (9) and Ĩ+c
7: end for
8: return

C. Testing Phase
The cluster testing phase for layer Li is described in Algo-
rithm 3. Based on the cluster activations, the class predictions
are updated and the information is used to reduce computation
for future layers. First, we count the number of stamp elements
that are not matched by the input data (line 1). By performing
these computations only on D̃ clusters, we greatly reduce
energy. Next, we find the minimum mismatch to detect the
activated clusters that are within some margin of this mismatch
(lines 2 and 3). The activated clusters contain the updated
predicted classes. The L1 norm used in these computations is
the sum of absolute differences of each element of the vector.

Algorithm 3 The Cluster Testing Phase
INPUT: Layer Li: ifmap F if ; filter F filter ; bias F bias; importance
features, I ; cluster set C; cluster stamps Sk∀ clusters k; activated clusters
D̃; features F ; threshold T4

Layer Li+1: divergent cluster set D+; threshold T+
1

OUTPUT: Layer Li: ofmap data: F of

Layer Li+1: activated clusters D̃+; important features: I+
METHOD:
1: Find cluster mismatch, Mk =

∑
k∈D̃ ‖Sk ∧ ¬I‖1

2: m = min(M) . Minimum cluster mismatch
3: Ak = 1

{
Mk ≤ m+ T4 ‖Sk‖1

}
, k ∈ D̃ . Cluster activation

4: Obtain features to compute for ofmap, F̃ = ∨Ak=1Fk

5: Compute ofmap using (1) and F̃
6: Detect important features for layer Li+1, I+ . Use (2) and T+

1
7: Obtain clusters to check for layer, Li+1, D̃+ =

⋃
Ak=1D

+
k

8: return

Next, for the updated predicted classes, we identify the
important features of ofmap, F̃ . The reduced ofmap data
is determined in line 5. Finally, lines 6 and 7 determine,
the important features and activated clusters in layer Li+1,
respectively. Note that these computations are identical to the
cluster learning phase, except here we work with only one test
image at a time.

III. DESIGN OPTIMIZATIONS FOR ENERGY REDUCTION

We enable energy-efficient neural computation by combining
selective feature activation, SeFAct, described in Section II,
with optimized reduced-precision approximation. Reduced
precision schemes have been explored in recent research [3],
[7] as well as commercial platforms [1], [4]. Some approaches
have used fixed bitwidths (for example, 8-bit [1]) for all the
layers. Other approaches [12] have used layerwise bitwidth

optimization for controlled error introduction and improved
power savings. We obtain optimized bitwidths for various
layers for accuracy and energy savings with Monte-Carlo
simulations. The reduced precision approximation and our
SeFAct approach are two orthogonal processes that introduce
controlled levels of error in network to achieve energy savings.

A. Choice of Layers for Selective Activation Implementation
The SeFAct scheme is useful in network layers where a
relatively few features are activated for each class. However, in
early layers, individual neurons do not have enough informa-
tion from the input to narrow down the set of possible classes,
and many neurons may be activated, regardless of the class.

For image data, an alternative way to explain this is through
the concept of the receptive field [13]. The receptive field of a
neuron is the region in the input image that affects the neuron.
The dimensions of square receptive field for different layers
of LeNet (AlexNet) are given in Table I (Table II). The size
of input images for LeNet (AlexNet) is 28× 28 (227× 227).

TABLE I: Receptive fields of various layers in LeNet

Layer c1 p1 c2 p2 fc1 fc2

Dimension 5 6 14 16 28 28

TABLE II: Receptive fields of various layers in AlexNet

Layer c1 p1 c2 p2 c3 c4

Dimension 11 19 51 67 99 131
Layer c5 p5 fc6 fc7 fc8

Dimension 163 195 355 355 355

To improve energy savings, SeFAct should be implemented
at the earliest possible layer. However, the neurons in a specific
layer can characterize the classes only if they see enough of
the image to identify specific objects. For example, neurons
in layer c2 of LeNet (AlexNet) process information about
(14/28)2 = 25% ((51/227)2 = 5%) of the input image.
Empirically, we choose to implement SeFAct from the layers
whose receptive field covers about a quarter of the image,
namely, from c2 (c5) onwards in LeNet (AlexNet).

B. Choice of Data Bitwidth for Various Layers
SeFact cannot be implemented in the early layers of a CNN
as they are unable to process enough data to correlate to
specific classes due to limited receptive field. However, these
early layers have high levels of resilience to inaccuracy. This
provides an opportunity to implement error sensitivity based
circuit approximations for early layers for these reasons:
• The number of resilient neurons is significantly higher in

initial layers of the network [8] in comparison to later
layers. The reason is that neurons in the initial layers
typically process features local to a certain region of
the image, while neurons in the final layers infer global
features from the previously extracted local features.

• Errors in neurons near the inputs are more likely to be
compensated/filtered out later in the network.

Therefore, we have achieved power savings through optimized
reduced precision to incorporate errors in early layers, along
with our selective activation approach for deeper layers.

IV. HARDWARE IMPLEMENTATION

We implement our SeFAct scheme in combination with opti-
mized reduced precision bitwidths in the testing phase. The
baseline implementation of the testing phase is performed in
three steps in each layer, Li. First, the ifmap and the filter, are



loaded from the memory. Next, multiply-accumulate (MAC)
operations are performed to compute the ofmap of layer based
on (1), and data is written back to the memory. The ofmap
computation leverages the ifmap data sparsity.

Memory hierarchies are used in neural network accelerators
to reduce the cost of data movement [2], [4], [5]. Similar to
[4], we assume that the hierarchy consists of a DRAM, then a
108 kB global SRAM buffer that services 12×14 = 168 neural
processing elements (PE). Each PE has a total of 0.5 kB local
register file (RF) storage. Each MAC computation requires
four RF accesses: three read operations for the operands, and
one write operation for the result.

The total computation energy is calculated as the product
of the number of operations at each of the DRAM, SRAM,
and RF levels, multiplied by the energy per unit operation
(eDRAM , eSRAM , and eRF ) at each of these levels, incorpo-
rating the reduction in operation count from (1) due to sparsity.

Using Ey
x , x ∈ {r, w}, y ∈ {I, F,O} to represent the energy

for operation x and computation y, the energy requirement, E,
for layer Li of the baseline testing phase is:

E = EI
r + EF

r + EO
w + ERF + EMAC (10)

where the first three memory access terms are a weighted sum
of DRAM and SRAM energies. The weights correspond to
the number of memory access to each level, which depends
on the data movement and reuse pattern in the DRAM and
SRAM. For both the baseline and our enhancement, all data
communication with the DRAM (i.e., ifmap read or ofmap
write) is performed in run-length compressed (RLC) format,
incorporating data sparsity, which is decoded in the SRAM.

Our energy savings appear due to two factors, outlined in
Section III. The reduction of bitwidths is performed statically
during the training phase, primarily in early layers of the
network. The other part, obtained in later layers of the network,
involves the addition of hardware that supports dynamic adap-
tation of computations during the testing phase, as described
in Algorithm 3. We now summarize these changes.

Line 1 performs inexpensive mismatch computations which
involves summations of one-bit numbers. The min compu-
tation in line 2 is a sequence of compare (i.e., subtract)
operations over all clusters. The implementation cost of both
lines 2 and 3 are linear in the number of clusters. Line 4
associates flags in F̃ for all activated clusters.

Line 5 performs reduced ofmap computation using the flags
in F̃ . Here, we only load the ifmap and filter data based on the
important features, I . All the flags, such as I , F̃ , are stored in
single-bit register files which are used in inexpensive decision
circuitries to reduce memory access operations. Compared to
the baseline, energy savings are achieved from (i) bitwidth
reduction, (ii) fewer memory fetches, and (iii) a reduction
in the number of MAC operations as only F̃ features are
computed. The change in bitwidth affects memory access
energy linearly and computation energy quadratically, since
the dominant component of MAC operations is multiplication,
whose complexity is quadratic in the number of bits.

Line 6 detects the important features of ofmap in layer Li,
and only these features of the ofmap are written into the mem-
ory. This reduces the memory overhead and also effectively
further increases the inherent sparsity (due to ReLU) for level
Li+1, which uses this ofmap as its ifmap. Line 7 prepares

Due to the large volume of data at each level, the data within a level cannot
be completely stored within the SRAM, and DRAM writes are essential.

cluster activation flags to limit computations at layer Li+1

which is similar as line 4.
From (2), the energy overhead for detecting important

features arises from (i) computation of the threshold and (ii)
a comparison operation. We limit the summation of all ofmap
data, F of only to important features, F̃ , for the currently
predicted classes. For these computations, we model energy
for an n-bit adder as n0.922 × eadd [14]. The multiplication
of this summation by T+

1 /K corresponds to a few add-and-
shift operations: empirically, this number varies from 3–5 for
standard CNN topologies, and the computed threshold can be
represented by at most 6 bits. For the Conv layer, the check is
simplified to (4), where the sparsity summation involves the
addition of one-bit zero flags, an inexpensive operation.

The energy savings, ∆E for layer Li can be formulated as:

∆E = ∆EI
r + ∆EF

r + ∆EO
w + ∆ERF + ∆EMAC − Eov

where Eov includes the energy associated with lines 1
through 4 and lines 6 through 7 in Algorithm 3. The detailed
computation of this overhead is simple and is omitted due to
space constraints.

V. RESULTS

Simulation Parameters/Models We demonstrate our energy-
efficient CNN framework on two well-studied networks, LeNet
applied to the MNIST handwritten digit recognition dataset,
and AlexNet applied to the Imagenet dataset using Caffe
platform [15]. Based on [1], [3], we assume the baseline, as
defined in the beginning of Section IV, uses 8-bit words for
ifmaps, filters, and ofmaps. We use 10,000 (5,000) images
for the cluster learning phase and 5,000 (2,000) images for
testing phase for AlexNet (LeNet). The top-5 (top-1) accuracy
of AlexNet (LeNet) for the baseline is 78.30% (99.06%).

We use an internal simulator (details omitted due to space
limitations) to determine the number of DRAM, SRAM, and
RF memory accesses and computations for AlexNet and LeNet
by modeling [4]. The per unit energies for DRAM, SRAM,
and RF memory access are obtained from [2].

TABLE III: Modified bitwidths of early layers in AlexNet

Bitwidth input c1 c2 c3 c4 c5 fc6 fc7 fc8

ifmap/ofmap 6 7 5 6 5 8 8 8 8
filter 8 7 7 6 7 8 8 8 8

TABLE IV: Modified bitwidths of early layers in LeNet
Bitwidth input c1 c2 fc1 fc2

ifmap/ofmap 4 3 8 8 8
filter 3 4 8 8 8

Reduced Bitwidths We implement reduced precision bitwidths
from the input layer to the c4 (c1) layer in AlexNet (LeNet).
For later layers, the bitwidths are the same as the baseline.

The reduced precision bitwidths in various layers of CNN
have trade-off relation with classification accuracy and en-
ergy savings. We used Monte-Carlo simulations for 1,500
prospective bitwidth combinations in early layers and checked
the classification accuracy on 5,000 test images. The optimal
bitwidth is chosen based on the maximum classification accu-
racy and energy savings. The modified bitwidths in AlexNet
and LeNet are listed in Tables III and IV, respectively. The
Pool layers use the same bitwidths as their previous Conv layer.
Selective Feature Activation We use our clustering based
method for selective feature activation, as explained in Sec-
tion II-B, for all layers beyond c5 for AlexNet and c2 for



LeNet. During the testing phase, the input image activates the
clusters similar to its feature pattern to activate a smaller set of
computations. For example, we find that the images of various
non-shedding dogs (e.g., shih-tzus, spaniels, and terriers) are
all seen to activate the same cluster in layer fc7 of AlexNet.

We define average probable classes of a layer as the average
number of predicted classes for all the input test images in the
layer. The average probable classes depends on the thresholds,
T1, T2, T3 and T4 in each layer as described in (2), (5), (7) and
line 3 in Algorithm 3, respectively. These can be tuned during
training in the same way as any neural net parameter. Based
on the empirical observations, we keep T2 = 0.6 constant
for all layers and vary thresholds T1, T3 and T4 in various
layers to obtain an accuracy vs. energy savings trade-off.
Table V shows that for a particular combination of thresholds
in all SeFAct layers, the average probable classes are reduced
monotonically, which results in a significant improvement in
percentage energy savings (PES) with respect to the baseline,
for a small accuracy drop.

TABLE V: The effect of sample threshold on average probable classes,
accuracy and PES

Network Layer T1 T3 T4

Average
probable
classes

Accuracy
(Baseline
accuracy)

PES

AlexNet
c5 0.08 0.20 0.55 1000

72.5%
(78.3%)

27.4%fc6 0.12 0.18 0.49 926
fc7 0.23 0.14 0.46 730

LeNet c2 0.60 0.60 0.22 10 96.1%
(99.1%)

20.8%
fc1 2.40 0.70 0.14 3

Fig. 4: (a) Average probable classes in layers with SeFAct implementation
and (b) layer-wise energy consumption in AlexNet

The average number of probable classes of each layer using
SeFAct in AlexNet for various threshold values, and the layer-
wise energy for the baseline and our enhancement are shown
in Fig. 4. Energy savings in the early layers come from the
optimized bitwidth, while those in later layers change with the
threshold values. Similar trends are seen for LeNet.

Fig. 5: PES vs. accuracy for (a) AlexNet (b) LeNet

Trade-off Between Energy Savings and Accuracy We com-
pute the classification accuracy and energy savings for var-
ious combinations of threshold values. Fig. 5(a) (Fig. 5(b))
shows the trade-off between the PES and the accuracy (both

normalized to the baseline) for AlexNet (LeNet). The red
vertical line shows the accuracy of the baseline. The inexpen-
sive overhead circuitries, described in Section IV, consume
less than 1% of the total energy. Hence, significant energy
savings are achievable: for small (5–10%) degradations in
accuracy, 15–25% savings are possible. For the same energy
savings, the relative percentage contributions between reduced
bitwidth approximation and SeFAct are about 60% and 40%,
respectively. For scenarios where low accuracy is acceptable
(e.g., in mobile embedded systems, where battery limitations
are the paramount consideration, and a best-effort accuracy is
good enough), improvements of almost 40% are visible.

Fig. 6: Contribution of energy consumption of various operations for
baseline energy and energy savings for (a) AlexNet (b) LeNet

The total energy and the contributions from DRAM, SRAM
and RF memory accesses, and MAC computations are shown
in Fig. 6. Results for both the baseline implementation and
the energy savings for our approach in AlexNet and LeNet are
shown, and it is easily seen that the memory access operations
are the dominant components of both cases.

VI. CONCLUSION

This paper has proposed an effective way to dynamically re-
duce the energy of a CNN accelerator, using bitwidth reduction
in early layers, and selective feature activiation in later layers.
Large energy savings are seen, even for small accuracy losses.

REFERENCES

[1] N. P. Jouppi, et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ISCA, pp. 1–12, 2017.

[2] V. Sze, et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proceedings of IEEE, vol. 105, pp. 2295–2329, Dec 2017.

[3] P. Gysel, et al., “Hardware-oriented approximation of convolutional
neural networks,” 2016. arXiv preprint arXiv:1604.03168.

[4] Y.-H. Chen, et al., “Eyeriss: An energy-efficient reconfigurable accel-
erator for deep convolutional neural networks,” IEEE J. Solid-St. Circ.,
vol. 52, no. 1, pp. 127–138, 2017.

[5] Y. Chen, et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. MICRO, pp. 609–622, 2014.

[6] S. Han, et al., “Deep compression: Compressing deep neural network
with pruning, trained quantization and Huffman coding,” 2015. arXiv
preprint arXiv:1510.00149.

[7] S. Gupta, et al., “Deep learning with limited numerical precision,” in
Proc. ICML, pp. 1737–1746, 2015.

[8] S. Venkataramani, et al., “AxNN: Energy-efficient neuromorphic systems
using approximate computing,” in Proc. ISLPED, pp. 27–32, 2014.

[9] V. Mrazek, et al., “Design of power-efficient approximate multipliers
for approximate artificial neural networks,” in Proc. ICCAD, pp. 1–7,
2016.

[10] W. Yu, et al., “Visualizing and comparing AlexNet and VGG using
deconvolutional layers,” in Proc. ICML, 2016.

[11] M. M. Halldórsson and J. Radhakrishnan, “Greed is good: Approximat-
ing independent sets in sparse and bounded-degree graphs,” Algorith-
mica, vol. 18, pp. 145–163, May 1997.

[12] D. D. Lin, et al., “Fixed point quantization of deep convolutional
networks,” in Proc. ICML, pp. 2849–2858, 2016.

[13] Y. Lecun, et al., “Gradient-based learning applied to document recog-
nition,” Proceedings of IEEE, vol. 86, pp. 2278–2324, Nov 1998.

[14] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in Proc. ISSCC, pp. 10–14, Feb 2014.

[15] Y. Jia, et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. ACM Multimedia, pp. 675–678, 2014.


