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Abstract—This paper presents a method for inferring circuit
delay shifts due to bias temperature instability using ring oscillator
(ROSC) sensors. This procedure is based on presilicon analysis,
postsilicon ROSC measurements, a new aging analysis model called
the Upperbound on fMax (UofM), and a look-up table that stores
a precomputed degradation ratio that translates delay shifts in the
ROSC to those in the circuits. This method not only yields delay
estimates within 0.2% of the true values with very low runtime, but
is also independent of temperature and supply voltage variations.

I. INTRODUCTION

Bias Temperature Instability (BTI) is a pressing reliability issue
that degrades the threshold voltages (Vth) of nanometer-scale MOS
devices during normal circuit operation under voltage and temper-
ature stress. The degradation in PMOS [NMOS] is called Negative
[Positive] Bias Temperature Instability, or NBTI [PBTI], and both
are partially reversible on the removal of stress. Incorporating these
recovery effects, the long-term degradation depends on the average
duty cycle, but is independent of stressing signal frequency.

The overall effect of BTI is to reduce the maximum operating
frequency, fMax, of a circuit over its lifetime. To ensure that a
chip meets its timing requirements over its lifetime, compensation
techniques have been developed. In the presilicon design, appropriate
delay guardbands may be added [1], [2], while the postsilicon phase
may adapt the circuit during operation in the field [3], using sensors
built in at the presilicon phase, by adjusting its clock frequency,
supply voltage, or body bias. However, by definition, presilicon
techniques are unaware of the runtime operating environment experi-
enced by a chip and must consider worst-case scenarios by assuming
pessimistic stress conditions for the circuits. Postsilicon techniques
limit pessimism and deploy just enough adaptive compensation, based
on monitors that periodically evaluate fMax in the circuit under test
(CUT). Two classes of monitors may be employed:
• Surrogate circuit monitors: These are test circuits used to

estimate fMax degradation in the CUT by trying to emulate
the operating conditions/functionalities of the CUT. These range
from simple ring oscillators (ROSCs) [4], [5] to more complex
representative critical path (RCP) circuits [6], [7], [8].

• CUT monitors: In these methods, delay tests are directly per-
formed on the CUT at predetermined intervals to measure its
performance in terms of fMax degradation [9], [10].

CUT monitors are accurate since they directly monitor the CUT, but
may suffer from large hardware and test time overheads. Although
such tests are required infrequently and their runtime can be reduced
[11], the overheads of testing the entire chip may still be onerous. In
this work we use surrogate circuit monitors (ROSCs to be specific)
to characterize aging in the CUT.

Our contributions are summarized as follows. First, we propose
a new Upperbound on fMax (UofM) model to estimate a safe
fMax that the CUT can operate at. This model accounts for the
possibility that critical paths may change over the lifetime of a chip
due to nonuniform delay degradation on various circuit paths, by
finding an envelope for the CUT delay. Second, we analyse the
maximum pessimism in the UofM model and demonstrate it to be
practically less than 0.2% in representative benchmark circuits. Third,
we leverage the UofM model to present a novel aproach for inferring

the delay degradation of the CUT based on data from on-chip
ROSCs. Our scheme involves an initial presilicon characterization
that uses a compact on-chip look-up table to determine a calibration
factor, which we call the degradation ratio, D, that translates ROSC
measurement data to CUT delay degradation while capturing process-
voltage-temperature (PVT) fluctuations in the manufactured circuit.
Our solution accounts for BTI recovery when the circuit is power-
gated and is robust to changes in the on-chip temperature and DVFS-
related supply voltage changes. Our approach also captures the effects
of process variations on the sensors and the CUT.

The rest of the paper is organized as follows. We begin with an ex-
planation of on-chip monitors in Section II. Next, Section III presents
a brief background on BTI-induced delay degradation, followed by
detailed overview of the UofM model in Section IV. Section V shows
the maximum pessimism in delay estimation possibly incurred by the
UofM model using a given library of gates. Section VI demonstrates
the experimental setup and results, and we conclude in Section VII.

II. SURROGATE CIRCUITS FOR ON-CHIP MONITORING

ROSC-based surrogate circuits are widely used in industry to
evaluate aging. In silicon odometers [4], they have been demonstrated
to provide high resolution and remove common-mode disturbances.
ROSCs have several advantages over RCPs. First, ROSCs are com-
pact and uniform, and require the design and layout of only a single
repeatable macrocell, as against RCPs, which must be designed and
laid out individually. Second, the process of generating RCP circuits
is computationally expensive (for circuit b15, RCP generation can
take 30 minutes [7], as against this work, where the computational
effort for ROSC characterization takes less than two seconds).

However, like RCPs, ROSCs are mere surrogates for the CUT.
Therefore, measuring fMax degradation in ROSC is not equivalent to
measuring degradation in the CUT, for several reasons. First, since
the gate types on a CUT path are not the same as those on the ROSC,
the path delay sensisitvity to Vth-shifts under aging is different from
the ROSC delay sensitivity. Although RCP circuits try to overcome
this issue, they suffer from the limitations of irregularity in layout
and high design effort, as pointed out above, and are less used in
industrial designs than ROSCs. Second, the ROSC has a single path
that ages along a constant profile through its lifetime; in contrast, the
delay of a CUT is the maximum of all path delays. Since a set of
near-critical paths may have different aging sensitivities, the critical
path may change over the lifetime of the CUT, causing it to age at
different rates at different times.
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Fig. 1. Block diagram of a functional block with CUTs and ROSCs.

Within a larger circuit, ROSCs can be placed close to the CUT
as illustrated in Fig. 1: since ROSCs are cheap and compact, many



copies can be replicated within the chip. Small circuit blocks may
share a ROSC, while a very large block could contain several ROSCs.

To correlate well to the CUT, a test structure should try to match
its (a) temperature, (b) Vdd, (c) process parameter variations, and (d)
signal stress probability. Spatial proximity of the ROSC and the CUT
ensures similar temperatures and enables the design to connect the
supply of the ROSC to that of the CUT (thus capturing the effects of
Vdd change under DVFS and power gating). Further, due to proximity,
the ROSCs face a similar set of systematic process variations and
spatially correlated random variations, i.e., shifts within the CUT in
any manufactured part are similar to those in the nearby ROSCs. The
granularity at which these sensors are deployed reflects a trade-off
between overhead and accuracy: in this work, we assume that ROSC
placement is a user input. Thus, it is easy to match criteria (a) and
(b) and some parts of (c) above.

Matching random parameter variations and signal stress probabili-
ties is harder since ROSCs are surrogate circuits. Shifts in delay due
to purely random process variations in the CUTs are, by definition,
physically impossible to capture in any surrogate; however, these
effects can be diluted by using ROSCs with many stages [4]. Within
CUTs, which typically have ten or more stages of logic on their
critical paths, there is also a natural level of dilution of random
variations. The switching activity of the CUT is similarly impossible
to capture in a surrogate ROSC circuit. Therefore it is common
practice to assume pessimistic worst-case stress probabilities for
the CUT that will guarantee correctness of a prediction. Note that
this pessimism is not specific to our method and is an unavoidable
guardband that must be built into any design methodology based on
surrogates [2]. In addition, we assume that sufficient margin has been
kept for the clock skew due to aging in the clock network, since CUT
aging is interpreted in terms of timing violation.

In our work, we use identical ROSC-based sensors, thus sim-
plifying layout and design effort to insert them in the chip, and
derive analytical methods to predict delay degradation (and hence
operable fMax) in the CUT based on measurements from the ROSC.
Our method captures PVT effects due to temperature, Vdd, and
systematic/spatially correlated variations correctly, dilutes the effects
of random variations, and uses routine pessimistic approaches to
address the built-in inability of ROSCs in capturing CUT stress
probabilities.

III. THE IMPACT OF BTI-INDUCED AGING ON DELAY

The precise mechanisms of BTI are a matter of debate within
the research community. Two candidates have emerged as the most
important: the reaction-diffusion (RD) model [12] and the charge
trapping (CT) model [13]. The key difference is in the trap generation
mechanism in the oxide layer: the former [latter] gives a power-law
[logarithmic] dependence of the Vth-shift with time.

In general, the Vth-shift depends both on the stress time and the
average duty cycle. If the precise switching probabilities in a circuit
are known, they may be used to determine the average duty cycle.
However, in many cases, it is impossible to guarantee that specific
switching probabilities will be maintained, and instead a worst-case
probability may be used. Common approaches include using a worst-
case constant-stress assumption on each transistor for NBTI, or a
stress probability (SP) of 0.95 on each transistor [2].

The magnitude of the Vth-shift in PMOS and NMOS device at
time t, ∆Vth,p(t) and ∆Vth,n(t) respectively, is given by:

∆Vth,p(t) = K1 ξ1 f(t) = c1f(t)

∆Vth,n(t) = K2 ξ2 f(t) = c2f(t) (1)

where ξ1 and ξ2 are the SPs of the PMOS and NMOS device,
respectively, and K1 and K2 are constants dependent on temperature
and Vdd specified by the aging model ( [12] or [13]). Since PMOS

[NMOS] devices are stressed when signal is low [high], ξ1 [ξ2] is the
probability that the signal is at logic 0 [1]. The functions f(t) are
governed by the trap generation mechanisms for NBTI and PBTI.
In principle, the functions f(t) could be different for PMOS and
NMOS devices, but these are experimentally observed to be the same,
as documented in design manuals and the published literature [14].
Typically, K2 < K1.

It is particularly important to note that f(t) is a sublinear and
monotonically increasing function that captures BTI degradation; for
the RD model, f(t) ∼ tn, where n ∼ 0.1 − 0.2, and for the CT
model, f(t) ∼ log(t). Although the Vth-shifts through multiple
stress-recovery cycles are not monotonic, f(t) captures the envelope
of the delay function, including recovery effects. The motonoticity
property of the envelope is used later in Theorem 1.

For a given logic gate, let its delay D(t) at time t be represented
by the function g(Vthx(t)) (x : p or n depending on whether rise
or fall delay is considered). For convenience, we henceforth drop
subscripts p and n. Similarly, instead of c1 and c2, we use a general
c and represent ∆Vth = c f(t). Under a small Vth-shift, the gate
experiences a delay shift as:

D(t) = g(Vth(t0) + ∆Vth) = g(Vth(t0)) +
∂g

∂Vth

∣∣∣∣
Vth(t0)

∆Vth

= D(t0) + k f(t) (2)

where D(t0) is the delay of the gate at time t01 and k is a constant
multiplicative factor. Here, k = Sc, where S is the sensitivity of
delay with respect to the absolute value of Vth, calculated at the
nominal Vth(t0). Thus, under fixed stress conditions of temperature,
supply voltage, and duty cycle, the delay is a function of time and is
easy to compute as long as the nominal delay and sensitivity to Vth

variation for each gate have been characterized.

IV. DELAY ESTIMATION AND AGING PREDICTION

One of the primary difficulties in using a ROSC to predict the delay
degradation of the CUT is that the CUT may have several near-critical
paths that age at different rates and may become critical at various
time points during its lifetime, while the frequency of the ROSC is
determined by a single path. In this paper, we develop a method
called the Upperbound on fMax (UofM) procedure that provides a
guaranteed upperbound on the delay (and thus the degraded maximum
frequency of operation) of the CUT based on ROSC sensor data.

For an n-input gate, let Di be the arrival time at input i ∈ 1, · · · , n
of the gate, and di→o be the delay from input i to the output o of the
gate; both parameters vary with time due to aging-related slowdowns.
The arrival time at the gate output is given by:

Do(t) = max
1≤i≤n

(Di(t) + di→o(t)) (3)

where the form of di→o(t) is given by Equation (2). Therefore, the
arrival time at the output of the gate is the envelope of a set of delay
curves corresponding to each argument of the max operator above.

If we perform static timing analysis (STA) over the entire CUT,
we can obtain the temporal delay of the CUT: this is an envelope
of a set of path delays (exemplified in Fig. 2 for a CUT with four
paths). The idea of the UofM method is simple: if the max operator
could be pessimistically approximated by a smooth function with
continuous derivatives, such as the red curve in the Fig. 2, then the
unitary operation of finding a smooth approximation to Do(t) at any
gate output could be repeated to find a smooth approximation to the
delay of the CUT.

1Normally, one might consider t0 = 0, but realistically, chips undergo a
burn-in phase causing some level of accelerated aging. Thus, based on the
f(t) functions characterized on fresh devices, we begin with a general value
of t0 as 3 months (as assumed in several prior papers).
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Fig. 2. Delay of CUT over its lifetime tf .

A. An upper bound on the maximum delay
In this section, we lay the basis for the task of determining a

smooth bound on Do(t) through the major theoretical result in
our paper. Theorem 1 presents the case for upper-bounding the
maximum of n aging curves. Pictorially, the theorem provides a
precise expression for the red curve in Fig. 2, which is a continuous
upper-bounding function for the maximum of n aging curves.

Theorem 1 In the interval [t0, tf ], an upperbound on the maximum
of a set of monotonically increasing functions x1(t), x2(t), · · · ,
xn+1(t) such that xi(t) = xi(t0) + ki(f(t)− f(t0)), is given by

yn(t) = xM (t0) +

[
xM (tf )− xM (t0)

f(tf )− f(t0)

]
(f(t) − f(t0)) (4)

where the function xM (t) = maxi∈{1,··· ,n+1}(xi(t)) represents the
upper envelope of the functions x1 through xn+1.

Intuitively, the bound is simply the curve of the form in Equa-
tion (1) that matches the maximum curve at times t0 and tf . Note
that the maximum at these two times could lie on different xi curves,
as illustrated in Fig. 2. The formal proof is deferred to Appendix I.

B. Applying the UofM bound to circuits using block-based analysis
In any circuit, the delay of a path is the sum of a set of gate delays

whose temporal variations are each given by an equation of the form
of Equation (2). Therefore, if Dp(t) represents the delay of a path
p in the circuit, the relationship between the path delays at any two
times t0 and t are given by a function of the form:

Dp(t) = Dp(t0) + k(f(t)− f(t0)) (5)

From Equation (5), we can see that each path delay is similar to
the form of the xi functions in Theorem 1. Moreover, as discussed
in Section III, the aging function f(t) is a monotonically increasing
function. Therefore, for a circuit with n paths, it is conceptually
possible to obtain an upper bound, yn(t), on the delay of the circuit
using the results of Theorem 1. As stated in Section III, while
obtaining the UofM bound, we have considered SPs, ξ1 = 0.95 and
ξ2 = 0.95, corresponding to NBTI and PBTI, respectively, at every
gate of the CUT. Superficially, this may seem erroneous since a signal
cannot be simultaneously high and low with the same probability.
However, any input-output path through a gate goes through either
the PMOS or the NMOS but not both. Therefore, either NBTI- or
PBTI-based degradation is propagated, and our assignment of ξ1 and
ξ2 correctly captures the worst-case delay for this worst-case path.

Theorem 1 allows the use of block-based STA by evaluating timing
at the initial time t0 and at the final time tf , using the Vth aging
model. In other words, only two timing analyses are needed to predict
a safe upper bound on the delay over the entire lifetime.

The unitary operation in STA is to compute the maximum arrival
time at the output of a gate, given the arrival times at the inputs.
As an invariant, we assume that every arrival time is of the form
in Equation (5): this invariant is preserved by writing the output
arrival time in the same form. As is well known and apparent from
Equation (3), STA involves two operations, “sum” and “max” and we
now consider the preservation of the invariant under each operation.

• Sum: We add delay functions D1(t), · · · , Dm(t), where
Di(t) = Di(t0) + ki(f(t)− f(t0)), to obtain

Dsum(t) =
∑m

i=1Di(t) = Dsum(t0) + ksum(f(t)− f(t0))

where Dsum(t0) =
∑m

i=1Di(t0) and ksum =
∑m

i=1 ki.
• Max: For the max over a set of delay functions
D1(t), · · · , Dm(t), each in the form of Equation (5),
Theorem 1 immediately shows how the invariant is preserved.

Thus, block-based STA can compute the UofM function for the
maximum arrival time at any node in the circuit, as well as the
maximum delay of the circuit, in linear time in the number of gates.

C. Analyzing aging in the CUT based on ROSC data
Applying the analysis in Section IV-B to a given CUT, the temporal

trend of the CUT delay can be represented using the UofM as:

DCUT (t) = DCUT (t0) + kCUT (f(t)− f(t0)) (6)

1) The delay of an aged ROSC: A ROSC is a chain of an odd
number, 2l + 1 of inverters connected in a closed loop. Assuming,
for simplicity, that each inverter has a rise delay of dr and a fall
delay of df , the period of the ring oscillator is well known to be
(2l + 1)(dr + df ). We refer to the period of a ROSC as its delay,
DROSC , and express it as:

DROSC(t) = DROSC(t0) + kROSC (f(t)− f(t0)) (7)

The change in period of a ROSC can be measured easily on-the fly
by prestablished methods such as the silicon odometer [4], which
uses the notion of beat frequencies to measure delay variations in
the ROSC to a very high degree of precision.

2) The Degradation Ratio, D: We now examine how ROSC aging
measurements can be used to predict aging in the CUT. Let the
delay degradation in the CUT at time t be given by ∆DCUT (t) =
DCUT (t)−DCUT (t0), and let the corresponding value for the ROSC
be ∆DROSC(t) = DROSC(t)−DROSC(t0). From (6) and (7), we
define the CUT degradation ratio, D, as:

D =
∆DCUT (t)

∆DROSC(t)
=

kCUT

kROSC
(8)

We make the following observations:
• From Equation (8), D for a CUT is a constant, independent of

time t. Therefore, for any CUT, D can be precharacterized and
stored in a look-up table to translate the ROSC delay degradation
to the CUT delay degradation at various instants of time.

• The value of D may be different for different CUTs.
• If the CUT has one dominant critical path throughout its lifetime,

the degradation ratio provides the true delay degradation of the
CUT at any time (as does the UofM bound in this case).

• If the CUT has multiple critical paths that successively become
dominant over its lifetime, D is based on the UofM bound, and
Equation (8) provides a pessimistic bound on the CUT delay.

• PVT variations due to thermal and Vdd effects, systematic
variations, and spatial correlations are all accounted for through
the close spatial proximity of the ROSC and the CUT. Random
variations in the ROSC can be reduced by using a larger number
of stages [4].

D. Impact of temperature and Vdd on D
As stated above, the effect of process variations is captured by

the proximity of the ROSC and CUT, due to which their process
parameters track each other. It is widely observed that a constant
value of k in Equation (2) captures variations at all process corners.
However, k depends on temperature, T and Vdd effects.

In this section, we investigate the impact of T and Vdd on D
defined in Equation (8). To do so, it is necessary to analyse the f(t)
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term in the aging model. The threshold voltage degradation with time
for the RD model is given by [12] as:

∆Vth(t) = k1e
Eox
E0 e

−k2
T tn (9)

For the CT model, this is given by [15] as:

∆Vth(t) = k3e
−k4Vdd

T e
k5
T [A+ log(1 + Ct)] (10)

Here, Eox =
Vgs−Vth

tox
, and Vgs = ±Vdd (during stressed/relaxed

mode) and k1, k2, k3, k4, k5, and E0 are constants obtained from
the aging model. Substituting ∆Vth(t) in Equation (2) and adding
up gate delays to find the circuit delay degradation ∆D(t), we get:

RD: ∆D(t) = k′e

(−k2
T

+Eox
E0

)
(tn − tn0 ) (11)

CT: ∆D(t) = k′′e

(
k5−k4Vdd

T

)
log

(
1 + Ct

1 + Ct0

)
(12)

Here, k′ and k′′ represent the effect of adding the contributions of
gate delays on a path during STA. The other terms are dependent
on T , Vdd and time, which are identical for the CUT and ROSC
by construction, and they cancel out when computing the ratio D.
Therefore, under both the RD and CT model, the value of D is:

RD: D =
k
′
CUT

k′ROSC

; CT: D =
k
′′
CUT

k′′ROSC

(13)

Since the right hand sides of both equations above are independent
of T and Vdd, the degradation ratio D is independent of T and Vdd.

V. BOUNDING THE MAXIMUM PESSIMISM IN UOFM MODEL

The UofM bound is a pessimistic estimate of the delay of a CUT
even when the actual switching activity of the CUT is known. In
this section, we present Theorem 2, which bounds the maximum
pessimism incurred by the proposed UofM model. The proof of the
theorem is provided in Appendix II.

Theorem 2 If k1 and k2 are the aging sensitivities of the gates
in the current library with minimum and maximum percentage
degradation over their lifetime, respectively, the maximum error in
delay estimation in a CUT incurred by the UofM model using this
library is upper-bounded by Emax as:

Emax =
(k2 − k1)(f(tf )− f(t0))

4
(14)

where t0, tf , f(t) and n have been defined earlier.

The maximum fractional error, Efrac, which is the ratio of Emax

(Equation (14)) to Ctop(t′) [or Cbot(t
′)] (delay of the two paths with

maximum and minimum sensitivities when they cross over as shown
in Fig. 5), is obtained by algebraic manipulation as:

Efrac =
4(E2

max)

d1d2( k2
d2
− k1

d1
)(f(tf )− f(t0))

(15)

where d1 and d2 are defined in the proof of Theorem 2. The values of
k1, k2 and d2 can be found from the current library and d1 obtained
by adjusting the number of gates with minimum percentage delay
degradation such that d1−d2 = 2Emax. Thus, Efrac depends on the
gate library, the numerical value of which is shown in the Section VI.

VI. EXPERIMENTAL SETUP AND RESULTS

The ideas in this paper are exercised on a set of representative
ISCAS’89 and ITC’99 benchmarks. The circuits are implemented
using a gate library that consists of the following functionalities:
two- and three-input NAND and NOR gates, three- and four-input
AOI gates, inverter, and buffer, each with drive strength X1, X2
and X4, from the NanGate 45nm Open Cell Library. Each gate is

characterized for nominal delay, output slew and delay sensitivities
to Vth (for both rise and fall transitions) using the 45nm Predictive
Technology Model (PTM). The benchmark circuits are synthesized
using Synopsys Design Compiler.

The constant c1 in Equation (1) is calibrated such that Vth,p of
the PMOS degrades by 25% in 10 years under a Vdd of 1.1V at an
operating temperature of 85◦C. The function f(t) in Equation (2)
follows the power-law model (with n = 1

6
), and the constant c2 is

chosen so that the Vth,n degradation in NMOS due to PBTI is one-
third of that due to NBTI [3]. To account for the initial transient and
burn-in, we set t0 = 3 months and constrain the circuit lifetime to
be 10 years beyond this point. The choice of burn-in period does
not however affect our proposed methodology. In addition, since the
actual SPs are unknown, we use a pessimistic value of 0.95 for both
ξ1 and ξ2 (in Equation (1)) at every gate input of the CUT to obtain
the corresponding kCUT values, similar to [2] (however, our results
will look fundamentally similar even if we use a worst-case SP of 1.0
instead of 0.95). We obtain kROSC using a 33-stage inverter chain as
in [4], by considering SP of each inverter in the chain as 0.5. It is to
be noted that we do not solve any placement problem of the ROSC
in this work and assume them to be in enough proximity to the CUT
so that perfect correlation exists between the process parameters of
the ROSC and the CUT.

Table I presents the results of our method on the representative
benchmarks at T = 85◦C and Vdd = 1.1V. Each row corresponds to
a single benchmark circuit associated with a single ROSC, except the
circuit smult, which corresponds to a single ROSC that is shared by
circuits s5378, s13207, and s15850. For each CUT, the second column
in the table lists its gate count, |G| and the third column shows the
logical depth of the critical path dcrit: since the critical path may
change over time, for convenience we consider the critical path at
time t = tf . We have observed that even if the critical path changes,
the logical depth of the critical path does not vary appreciably over
time. Generally speaking, larger values for dcrit correspond to larger
values for the degradation ratio, D, listed in the fourth column (note
that D has no units).

Thus, we observe that extent of aging in a CUT is not necessarily
dependent merely on the total number of gates, but also on the
properties of the critical path(s), such as the logical depth. The
sensitivity of a cell typically depends on its driving power and its
load: cells with a larger driving power tend to have lower sensitivities,
and those with larger loads have higher sensitivities. Critical paths
are observed to contain large-sized cells, which have low sensitivity
to Vth-shifts, but the cells that drive these large cells see large
loads, particularly if they are smaller, making them sensitive to aging
degradations. Thus, for critical paths with a larger number of stages,
the impact of the larger cells is diluted by the smaller cells; this is
less so for circuits with fewer stages. This explains why kCUT (and
hence D, since kROSC is constant) generally increases with dcrit.

The next column represents the maximum percentage error of the
UofM bound (over the entire lifetime): the estimation error due to
the use of the upper bound is seen to be virtually negligible, even
though each circuit has multiple near-critical paths. This is followed
by a column that provides the percentage area overhead, ∆A, of
the ROSC, i.e., the ratio of the ROSC area to the total area of the
CUT+ROSC, as determined by Design Compiler. As expected, this
area overhead is significant only for the smallest circuits, and is quite
low when the CUT is larger. For the circuit, smult, in which the
first three circuits in the table share a single ROSC, the overhead is
small, and the estimation error is negligible. The final column lists
the total CPU time, τ , that is required to compute the value of D for
each CUT, evaluated on a 64-bit Ubuntu server (Intel® Core™2 Duo
CPU E8400 3GHz). The modest runtimes (significantly faster than
RCP procedures in, e.g., [7]) indicate the aptness of our method for
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handling very large CUTs. Thus, during design time, these D values
can be computed cheaply and stored in look-up tables for each CUT,
using which one can estimate its delay degradation at any point of
time based on a cheap measurement of ROSC delay degradation.

TABLE I
RESULTS FOR ROSC-BASED ESTIMATE FOR T = 85oC AND Vdd = 1.1V

CUT |G| dcrit D Error ∆A τ
# # (%) (%) (s)

s5378 690 11 1.51 0.17 4.63 0.50
s13207 590 18 1.88 0.00 5.74 0.46
s15850 336 18 1.95 0.00 10.41 0.36
smult 1616 18 1.95 0.00 2.06 0.78
s38417 4565 25 2.79 0.09 0.64 1.75
s38584 4585 26 2.61 0.00 0.67 1.69
b15 6311 63 6.35 0.00 0.49 1.99
b17 17882 62 6.28 0.00 0.17 5.18
b18 67776 130 12.78 0.00 0.04 16.95
b19 128494 120 11.89 0.00 0.02 31.64
b20 24080 128 12.25 0.00 0.13 6.09
b22 36149 128 12.23 0.00 0.09 8.38

To investigate the reason for the low errors, we further examined
the characteristics of the critical paths. All of these circuits contain
multiple near-critical paths, and although we do observe a crossover
where the critical path changes as the circuit ages, the UofM bound
is very close to the envelope of the maximum delay over time.
We evaluate the bound in Theorem 2 to evaluate the theoretical
maximum on the error. The maximum and minimum percentage
delay degradation,

(
D(tf )−D(t0)

D(t0)

)
, occur for the three-input NOR

gate and buffer (having sensitivities k2 and k1), respectively, both
with drive strength X4 and denoted as NOR3 X4 and BUF X4. We
synthesized a circuit with just two critical paths where each path was
obtained by concatenating NOR3 X4 and BUF X4 respectively. The
nominal delays d1 and d2 of the paths were tuned by the number of
stages in each path while keeping k1 and k2 unchanged, to obtain
the maximum error scenario shown in Fig. 5. It can be proven that
the maximum fractional error Efrac (as defined in Equation 15) for
this circuit is the absolute maximum possible in this library (proof
omitted due to space constraints). This error, found to be 3.59%,
corresponds to the maximum possible pessimism of the UofM based
delay estimate under our library.

In fact, achieving this bound requires a pathological case (since
gates with small delays also tend to have small sensitivities) in which
the critical path at t0 has a low delay sensitivity, the critical path at
tf has a high delay sensitivity and is near-critical at t0. The latter can
be achieved if the critical path at t0 has a small number of stages and
the critical path at tf has a large number of stages. This is unlikely
to be seen in practice, and is not seen in any of our circuits. This is
the reason why the UofM bound is even more accurate in practice
than the already small bound on pessimism from Theorem 2.

Next, we evaluate the correctness of the notion that D is indepen-
dent of the temperature, T , and Vdd, as claimed in Section IV-D.
Simulations were run at various T (40◦C, 85◦C, 125◦C) and Vdd

(0.9V, 1.1V, 1.2V) values, and the dependence on the constants c1
and c2 in Equation (1) on Vdd and T was accounted for. Fig. 3(a)
shows the kCUT values of three CUTs, (s38585, b15, b22) for three
values each of T on one axis and Vdd on another, normalized with
respect to their baseline values at T = 85◦C and Vdd = 1.1V . For
each (Vdd, T ) point, the three bars correspond, from left to right, to
s38584, b15, and b22, respectively. It can be seen that the bars at
each such point are of equal height, indicating that each (Vdd, T )
point experiences an equal multiplicative effect for each CUT.

Fig. 3(b) shows the D values, normalized to their corresponding
baseline values in Table I, for the same three circuits and the T and
Vdd values. When we examine the degradation ratio, D, we find that
all bars have a value that is very close to unity, i.e., D is independent
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Fig. 3. Effect of change in temperature and Vdd on kCUT and robustness
of D to these changes

of Vdd or T . This may be understood by observing that kROSC also
changes as T and Vdd are altered, and it tracks kCUT very well at
each point. The average absolute error of the normalized D from the
ideal value of unity is only 3.79% for each of the three CUTs, across
all T and Vdd values. Note that this error corresponds to a percentage
of the already small delay shift (and not the delay), and is therefore
negligible. This independence demonstrates that a single LUT serves
the purpose of aiding delay degradation (and thus aging) estimation
irrespective of variations in the operating temperature and Vdd, under
our scheme where the CUT and the ROSC both operate in the same
environment with regard to thermal changes and DVFS/power gating.

In this work, we are unable to show detailed comparisons with
other approaches. To our knowledge, there is no other work that
relates ROSC delays to CUT delays under aging. Existing work on
RCPs for aging uses different methodologies, libraries and delay
models. However, as pointed out earlier, the best proposed approach
[7] requires significantly more computation than our method and
entails complex layout issues. Moreover, our work is easier to
implement in an industrial setting where ROSC-based methodologies
have been in use for years.

VII. CONCLUSION

In this paper, we presented a technique to estimate delay degra-
dation of a circuit using nearby ROSC-based aging sensors. We
quantitatively determine how the data from the ROSC can be used
to find the change in the circuit delay. Experimental results show
that we can use the UofM metric to distill the relation between the
CUT delay trend and the ROSC delay trend into a single degradation
ratio, which can accurately predict the CUT delay degradation based
on inexpensive measurements on the ROSC.
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APPENDIX I
In this section, we present a proof of Theorem 1. We begin by presenting

a lemma for a simpler version of the theorem for just two paths, and then
prove the theorem.
Lemma 1 Consider two monotonically increasing functions x1(t) and x2(t)
in the interval [t0, tf ].

x1(t) = x1(t0) + k1(f(t)− f(t0))

x2(t) = x2(t0) + k2(f(t)− f(t0)) (16)

An upper bound on maximum of x1(t) and x2(t) is given by:

y1(t) = xM (t0) +

[
xM (tf )− xM (t0)

f(tf )− f(t0)

]
(f(t) − f(t0)) (17)

where the function xM (t) = maxi∈{1,2}(xi(t)) represents the upper
envelope of the functions x1 and x2.

Proof: Without loss of generality, assume that x1(t0) ≤ x2(t0). Note that
since both curves are montonically increasing, one of two possibilities must
be satisfied, as illustrated in Fig. 4.
Case I: If x1(tf ) ≤ x2(tf ), then x2 dominates x1 over the interval.
Case II: If x1(tf ) ≥ x2(tf ), the curves cross over once in [t0, tf ].

Time 0 tft0

x1(0)

x2(0)

x1(tf )
x2(tf )

x1(t)

x2(t)

Case I

Time 0 tft0

x1(0)

x2(0)

x1(tf )

x2(tf )

x1(t)

x2(t)

Case II

Fig. 4. Possible trends for monotonically increasing x1(t) and x2(t).

In Case I, the result is trivially true, since the expression evaluates to
the equation for x2(t). For Case II, xM (t0) = x2(t0), xM (tf ) =

x1(tf ). Observing that k1 =
x1(tf )−x2(t0)

f(tf )−f(t0)
, and performing some algebraic

manipulation, we find that:

y1(t)− x1(t) = (x2(t0)− x1(t0))

[
f(tf )− f(t)

f(tf )− f(t0)

]
> 0, (18)

y1(t)− x2(t) =
(
x1(tf )− x2(tf )

) [ f(t)− f(t0)

f(tf )− f(t0)

]
> 0, (19)

Each line above evaluates to be positive due to the monotonicity of f , i.e.,
f(tf ) > f(t) > f(t0) ∀ t0 < t < tf . Thus, y1(t) is an upper bound on
max(x1(t), x2(t)) over the interval [t0, tf ]. �

Proof of Theorem 1: Building upon Lemma 1, the proof is presented
by mathematical induction over n. For the basis case, n = 1, Lemma 1
demonstrates that y1(t) forms an upper bound on max(x1(t), x2(t)) ∀t ∈
[t0, tf ], and has the form:

y1(t) = xM (t0) + α1(f(t)− f(t0))

where α1 is a constant of the form as in Equation (4).
For the inductive step, we assume that yn−1(t) is an upper bound on

maximum of x1(t), · · · , xn(t), and attempt to show that yn(t) is an upper
bound on maximum of x1(t), · · · , xn+1(t).

From the inductive hypothesis, yn−1(t) is an upper bound on the first n
functions with the form:

yn−1(t) = xM (t0) + αn−1(f(t)− f(t0))

where αn−1 is a constant of the form in Equation (4). Therefore it is enough
to prove that yn(t) is an upper bound on the maximum of yn−1(t) and
xn+1(t) for t ∈ [t0, tf ]. This result follows immediately from Lemma 1. In
particular,

xM (t0) = max(yn−1(t0), xn+1(t0)) = max
1≤i≤n+1

xi(t0)

xM (tf ) = max(yn−1(tf ), xn+1(tf )) = max
1≤i≤n+1

xi(tf ) �

APPENDIX II
Proof of Theorem 2: Consider a CUT with multiple critical paths over its
lifetime. Let us represent the paths which are critical at t = t0 and t = tf by
P1 and P2 and denote them by the curves Cbot(t) and Ctop(t), respectively,
(Fig. 5 exemplifies this for a CUT with three critical paths) as:

Cbot(t) = d1 + k1(f(t)− f(t0)) ; Ctop(t) = d2 + k2(f(t)− f(t0))

where d1 and d2 are the delays of P1 and P2 at t = t0 respectively.

D
el

ay
Ctop(t)

Time 

d1

t’t0 tf

CUofM(t)
emax

d2

Cbot(t) Delay curves of paths critical at t0 and tf
Delay curve of path critical at t’

Curve of UofM bound of delay 
Actual delay curve

∆2 

∆1 

Fig. 5. Error bound for the UofM model.

Evidently, d2<d1. Using the UofM model, the estimated delay, denoted
by CUofM (t), (e.g., the red curve in Fig. 5) is given by:

CUofM (t) = d1 +

(
k2 +

d2 − d1
f(tf )− f(t0)

)
(f(t)− f(t0)) (20)

The deviations of CUofM (t) from Cbot(t) and Ctop(t) are given by e1(t)
and e2(t), respectively, as:

e1(t) =
f(t)− f(t0)

f(tf )− f(t0)
∆2 ; e2(t) =

f(tf )− f(t)

f(tf )− f(t0)
∆1 (21)

where ∆1 and ∆2 are the differences in the the two path delays at t0 and
tf , respectively. The error (pessimism) of the UofM curve is bounded by
minimum of e1(t) and e2(t) (as can be visualized from Fig. 5), which
are monotonically increasing and decreasing, respectively. Therefore, the
maximum error, emax, occurs when both are equal, i.e., at t = t′ when
the two curves cross over:

emax = ∆1

(
1−

∆1

(k2 − k1)(f(tf )− f(t0))

)
(22)

Given the value of k1 and k2 as the sensitivities of the paths with minimum
and maximum percentage degradation possible using the current gate library,
the choice of ∆1 can be optimized to ∆opt

1 that gives the maximum value
of emax, denoted by Emax. In other words, given fixed k2 and d2 for the
path P2, and k1 for P1, the number of gates in P1 can be adjusted to obtain
d1 such that d1 − d2 = ∆opt

1 . Note that changing number of cells in P1
should not change k1 (which can be ensured by concatenating same type
of gates in the path). We obtain ∆opt

1 by differentiating emax with respect
to ∆1, obtaining the maximum value of emax, Emax as (∆opt

1 /2), when
∆opt

1 =
(k2−k1)(f(tf )−f(t0))

2
. The result follows immediately.

At this optimum value, ∆1 = ∆2, so that the differences in the two path
delays at time t0 is identical (and the negative of) the difference at time tf .
�
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