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Abstract—The process of power network analysis during VLSI chip
design is inherently iterative. It is very common for the designer to
make many small perturbations to an otherwise complete design, to
enhance the design or fix design violations. Considering the size of the
modern chips, updating the solution for the changed network can be a
computationally intensive task. In this paper we propose an efficient and
accurate incremental solver that utilizes the backward random walks to
identify the region of influence of the perturbation. The solution of the
network is updated for the significantly smaller region only. The proposed
algorithm is capable of handling consecutive perturbations without any
degradation. The experimental results show speedups of up to 13.7× as
compared to a complete solution.

I. INTRODUCTION

Many problems in VLSI design and in other fields involve the
solution of a system of linear equations where the left hand side has
the form of diagonally dominant matrix with positive diagonal and
nonpositive off-diagonal entries. Examples include supply network
analysis, temperature analysis under the resistive-electrical duality,
and quadratic placement. This paper addresses the problem of
incremental power grid analysis; incremental versions of the other
problems may also be solved in similar ways.

The equations that represent the power grid are given by:

GV = E, (1)

where G ∈ �N×N is the left hand-side (LHS) matrix, modeling the
conductances, V ∈ �N is the vector of unknown node voltages, and
E ∈ �N is the right hand side (RHS) vector, modeling the current
loads. Matrix G is sparse and diagonally dominant (

∑
i�=j

|gij | ≤
gii,∀i), and all off-diagonals of G are less than or equal to zero.
Mainstream methods for solving such systems include direct methods
such as LU/Cholesky factorization and iterative methods. Lately,
there has been an upsurge of interest in the use of random walk-based
solvers for solving systems with diagonally dominant LHS matrices,
and these solvers are competitive with conventional solvers [1]–[4].

We focus on the problem of incremental analysis of the power
network for the steady-state case. Power grid design is a highly
iterative process in which the designer makes small perturbations
to a complete initial design to fine-tune the design or fix violations
in the noise specifications. Examples of perturbations to a power
network include changes to the wire conductances (e.g., when the
length or thickness of the wires change), power pad placement, or
current loads. For a small perturbation the solution of the perturbed
system is close to the initial solution, meaning that the change in the
solution of most of the nodes of the network is insignificant [5].

The notion of closeness of the solution of the perturbed system to
the initial solution suggests that for finding the perturbed solution,
solving for the entire system from scratch is quite wasteful. To
efficiently perform this task, one should leverage the property of
“closeness” and utilize the unperturbed solution. However, this is
not a trivial task since it is unclear a priori which nodes change
significantly and which do not. One possible method would be to
partition the network, create macromodels for each partition, and
solve the problem hierarchically, as in [6]. However, this may require
a large number of partitions, involving large amounts of computation.
Other approaches employ iterative solvers [7] using the unperturbed
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solution as an initial guess, sensitivity methods [8], and the fictitious
domain method [9]. These suffer from the fact that they require the
full system to be solved again, for the entire chip, and do not fully
utilize the “closeness” properties above. An iterative solver is also
described in [10], but operates on smaller, denser systems.

An alternative approach is to identify the set of nodes that
are significantly affected by the perturbation, called the region of
influence (RoI). The RoI is the set of all of the nodes in the network
for which the voltage changes by more than a given threshold under
the applied perturbation changes. If the RoI could be found, one
could solve for a drastically smaller system of equations by keeping
the solution of the nodes out of RoI at their initial values, and
recomputing only the solutions within the RoI. Fig. 1 illustrates the
dimension of LHS matrix corresponding to the full network and the
much smaller subsystem corresponding to the RoI of a perturbation.
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Fig. 1. Reduction in system size using RoIs.

Identifying the RoI is nontrivial. The work of [11] uses the
bookkeeping information of the random walk solver of [1] (which
we will refer to as forward random walks), obtained as part of a
preprocessing phase, to identify the RoI for any perturbation. This
approach has two drawbacks: (1) it uses approximations that neglect
second-order terms, leading to some errors, and (2) it neglects the fact
that the bookkeeping information changes due to these perturbations,
making this method increasingly inaccurate as more consecutive
perturbations are made.

The work in this paper finds the RoI accurately and efficiently
using the notion of backward random walks. The basic concept
was outlined almost 50 years ago in [12], but with no regard to
computational efficiency. The backward random walk method is also
known as shooting method in computer graphics, and has been used
in the context of radiosity and illumination problems to determine the
reflections of a light source on the environment [13]. The shooting
method in graphics shares the idea of our approach, finding the
affected region due to a source by running random walks from
a source, but the problem structure is sufficiently different that
solutions from that domain cannot be adapted easily.

In this work, we develop the idea of backward random walks
to (1) make the approach computationally practical, (2) show a
theoretical relation to LU factorization, and (3) apply it to incre-
mental analysis. Our incremental solver can capture any number of
consecutive perturbations on the LHS and the RHS of the network of
fixed size, without degradation in the accuracy. Experimental results
show speedups of up to 13.7× compared to the Hybrid Solver of
[14] on IBM power grid benchmarks of [15]. The key feature of the
backward random walk approach is the ability to find some columns
of G−1 efficiently, individually, without finding the entire G−1.

The paper is organized as follows. The backward random walk
method is discussed in Section II. Next, Section III discusses the
proposed incremental solver, after which the relation between the
backward random walks with LU decomposition of the LHS is stated
in Section IV. Finally, Section V presents the experimental results.



II. BACKGROUND

A. Motivation for Computing G−1 by the Column

The solution to Eq. (1) is V = G−1E, and can be written as:


v1

v2

...
vN


 =




(G−1)11
(G−1)21

...
(G−1)N1


 e1 + · · · +




(G−1)1N

(G−1)2N

...
(G−1)NN


 eN (2)

where (G−1)ij is the (i, j)th element of G−1, vi and ei are the ith

elements of V and E, respectively, and N is the dimension of G.
Each element,

[
(G−1)1i, (G

−1)2i, . . . , (G
−1)Ni

]T
ei, of the

summation is the contribution of the ith element of the RHS, E, on
the solution vector V. The full solution simply is the superposition of
the contributions of all ei. In the context of ground network analysis,
this is the contribution of each current load on the node voltages of
the network. Fig. 2 shows voltages of the nodes in the network due
to just one of the current loads. As this figure suggests, there is a
close relation between finding the RoI and Eq. (2).

Fig. 2. Contribution of a single current load on the power network solution.

B. The Backward Random Walk Game

In this section, we qualitatively review the similarities and differ-
ences of backward random walks of Section II.A and the forward
random walks described in [1]. The forward game captures the effect
of all of the RHS elements (i.e., the current loads in power network
analysis context) on the solution of a single node, while the backward
game captures the effect of a single source on the solution of the
entire system, as indicated by Eq. (2). For the case where there
are few nonzero elements on the RHS, only a few corresponding
columns of G−1 must be computed, and backward random walks are
extremely appealing. As we will show, this arises during incremental
analysis, i.e., in finding the effect of a small perturbation on the
solution of the entire system.

The forward game is suitable for the case that the full solution
of a subset of nodes in the network is desired (e.g., voltages of a
subset of nodes in the power grid), while the backward game is good
at finding the effect of individual sources on the entire system (e.g.,
the effect of a current load on the node voltages of the entire grid).

The key difference is that the forward game is constructed based
on the rows of G, while the backward game is constructed based on
the columns of G. Therefore, the forward game finds the rows of
the matrix inverse, G−1, and the backward game finds the columns
of this matrix. In mathematical terms a backward game is based on
Eq. (2) while the forward game is based on:

vi =
[

(G−1)i1 (G−1)i2 . . . (G−1)iN

]
E (3)

where i = 1, . . . , N and the parameters are as defined before.
As described later in Section II.C, the construction of the games is

the same except in the fact that the forward walk road probabilities
are constructed based on the rows of G, while the road probabilities
of the backward game are based on the columns of this matrix.

In both games multiple walks are started from a motel of interest,
ended when a home is reached, and the motel visits are recorded. The
difference then is how this information is interpreted. In a forward
game the analogy is that the walker has to pay for each motel he visits
and gets an award as he reaches a home. In contrast, the analogy
for the backward game is the walker has a sum of money (similar

to home award in forward game) that he has to distribute among
the motels he visits based on how frequently he visits them. These
analogies are then translated to the rows and columns of G−1 for
the forward and backward games, respectively.

C. Constructing the Backward Walk Game

We now describe how the backward random walk game is con-
structed from Eq. (1), and how the columns of G−1 are computed
using this approach. This game is based on a network of roads
with motels or homes at its intersections. The walker starts from
some intersection, j, and takes one of the roads at the intersection
randomly, according to some known probability distribution pji, to
get to the adjacent intersection, i, where i = 1, . . . , degree(j), and
degree(j) denotes the number of roads at intersection j. The walker
continues until a home is reached. This completes one full walk. The
number of motels visited on the path is called walk length. The goal
of this game is to enumerate the visits to each motel during a walk.

Without loss of generality it can be assumed that for the network,

N∑
j=1,j �=i

|gij | = gii, ∀i (4)

Note that this is always the case for supply network equations if
the connections to the ground node are included in the equation.
In general, this can be assured by adding a dummy variable whose
value equals the supply node voltage (Vdd or zero) to the V vector
and a new column to the LHS of the Eq. (1), G. For the ground
network, for each row of the G we have:

N∑
j=1

gijvj =

N∑
j=1

gijvj + gi(N+1) × 0, ∀i

gi(N+1) = gii −
∑
j �=i

|gij | (5)

where
∑N+1

j=1
gij = 0 (for the supply network, if this transform

is applied, the excitation vector E must be appropriately adjusted).
The insertion of the dummy nodes is essential to obtain valid road
probability distributions discussed in Theorem 1.

Theorem 1 For each row of a system of linear equations defined by
Eq. (1), a valid probability mass distribution can be defined as:

pji =

{
−gij/gii j �= i
0 j = i

(6)

Proof: Based on the assumption of Eq. (4) and since all off-diagonals
of G are less than or equal to zero, for i, j = 1, . . . , N , we have:

0 ≤ pji ≤ 1
N∑

i=1

pji = 1

Note that in Eq. (6), pji = 0 for many of the i’s due to the sparsity
of G. Overloading subscript i to show only the nonzeros, we have:

degree(j)∑
i=1

pji = 1, j = 1, . . . , N (7)

where degree(j) denotes the number of nonzeros in the jth equation.
Writing pji’s in matrix form, P , we get:

G = (I − P )T D (8)

where D is the matrix of the diagonals of G, and I is the identity
matrix. Notice that as mentioned in Section II.B, the road proba-
bilities are computed using the columns of the LHS matrix, which
distinguishes the backward game from the forward game.



A random walk game can be constructed from Eq. (1) by modeling
each element of the vector V as an intersection, nonzero elements of
the LHS as roads, and road probabilities as in Eq. (6). Note that the
vector V consists of both unknowns as well as known variables that
are added, as shown in Eq. (4). The unknown and known variables
of vector V, are mapped to motels and homes, respectively.
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Fig. 3. An example of a backward random walk game modeling Eq. (9).
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Fig. 4. An example of a forward random walk game modeling Eq. (9).

D. Example of Backward and Forward Game Construction

Consider the following diagonally dominant matrix:

G =




1.5 0 −1 0
0 2 −1 −0.5

−0.75 −1.25 2.25 −0.25
0 0 −0.25 1.25


 (9)

To construct the backward game corresponding to this matrix, the
columns of G should be normalized to its diagonals, such that it
can be written in the form of Eq. (8), a row-wise probability matrix
(corresponding to the transpose of the normalized G). Fig. 3 shows
the random walk game, with the probability matrix:

Pbackward =




0 0 0.5 0 0.5
0 0 0.625 0 0.375

0.44 0.44 0 0.11 0
0 0.4 0.2 0 0.2


 (10)

Note that in this equation the last column corresponds to the ground
node, to generate all probabilities as in Eq. (4).

Similarly the forward random walk game is constructed based on
probability matrix of Eq. (11) which is computed by normalizing to
rows of matrix G [16]. Fig. 4 shows the corresponding game.

Pforward =




0 0 0.67 0 0.33
0 0 0.5 0.25 0.5

0.33 0.55 0 0.11 0
0 0 0.6 0 0.4


 (11)

E. Computing the Individual Columns of G−1

In this section we show how the individual columns of G−1 can
be computed using backward random walks.

Carrying out M walks from intersection j, one can find the
conditional expected number of visits to each motel by:

zij =
Number of visits to motel i in M walks from j

M
(12)

where zij is the expected number of visits to motel i when total of
M walks initiated from motel j. This expected value becomes more
exact as M → ∞.

The backward random walk game, as described in Section II.A,
can solve Eq. (1) using the probability matrix P of Eq. (6). The
solution is given by:

V = D−1 (I − P )−T E = D−1ZE

where D is the matrix of the diagonals of G: the multiplication by
D−1 scales the inverse of the normalized LHS (i.e., (I −P )T ) back
to the inverse of the original LHS, G. We define:

X = DV = (I − P )−T E = ZE

Z = [zij ]N×N (13)

where the zij ’s are defined by Eq. (12) [12].
Thus, the jth column of G−1 can be found by:

(G−1)ij =
zij

gii
, i = 1, . . . , N (14)

As before, (G−1)ij is the element in (row i, column j) of G−1.
Table I shows the second column of the exact G−1, denoted by

(G−1)∗2, of the example of Fig. 3, and the average relative error,
in percent, of the estimation using backward random walks method,
where the average is over 100 runs of the random walk method.

This table suggests that as M increases, the random walk results
become more accurate. This table also suggests that the error of the
random walk results halves for 4 times more walks. In other words
the error of the random walk method is proportional to 1/

√
M . Note

that for even a small number of walks, the results are fairly accurate.
Hence, if a rough but fast estimation of G−1 is desired, backward
random walks is a suitable candidate.

TABLE I
AVERAGE RELATIVE ERROR, IN PERCENT, FOR ESTIMATED G−1

2 FOR
DIFFERENT WALK NUMBERS, M

(G−1)∗2 M = 25 M = 100 M = 400 M = 1600

0.4115 26.7% 12.0% 5.8% 2.9%
0.8395 10.1% 4.9% 2.5% 1.2%
0.6173 21.3% 8.9% 4.6% 2.4%
0.1235 34.3% 18.9% 10.8% 5.1%

The number of walks for a desired accuracy can be determined
dynamically in a manner similar to that derived in [16]. It can be
shown that for a given relative error of δ, the number of walks needed
for the relative error of random walk method to be less than or equal
to δ, with confidence of α (e.g., 99%), is given by:

(σ/µ)2

M
<

(
δ

Q−1
(

1−α
2

)
)2

(15)

where Q−1 is the inverse of Q(x) = 1/
√

2π
∫∞

x
e−u2/2du and µ

and σ are the mean and standard deviation of the walk length.

III. INCREMENTAL SOLVER

We now propose an efficient incremental solver based on back-
ward random walks in the framework of power network analysis. Our
incremental solver proceeds under the reasonable assumption that the
the solution to the unperturbed system of equations, GV = E, is
known. When the design is perturbed, it may result in a change in
either G or E, resulting in the new relationship:

(G + ∆G)(V + ∆V) = E + ∆E (16)

where ∆G models the change in the LHS, ∆E models the change
in the RHS, and ∆V is the change in the solution caused by the



perturbation. This equation can be rewritten as:

(G + ∆G)∆V = ∆E − ∆GV

Geff∆V = ∆Eeff (17)

where ∆Eeff = ∆E−∆GV is the effective change in the RHS and
Geff = G + ∆G is the total perturbed LHS.

Note that in contrast with [11], where the second order term,
∆G∆V, is ignored, Eq. (17) captures any perturbation to the
system without any approximation. Moreover, it does not make any
assumptions regarding the nature of the perturbation as long as the
number of nodes of the network is fixed. Note further that since the
perturbed system models a power grid, it is diagonally dominant,
and all of the off-diagonals are less than or equal zero, therefore it
can be solved using random walks.

The steps followed by the proposed incremental solver are:
Step 1: Solve Eq. (17) using backward random walks.
Step 2: Find the RoI using the computed solution.
Step 3: Refine the solution for the nodes within RoI.
We now describe each of these steps in greater detail.
Step 1: The first step of the incremental solution involves finding the
columns of G−1

eff corresponding to nonzeros of ∆Eeff. For a small
perturbation, most of the LHS matrix, G, and the RHS vector, E,
will be unchanged and therefore most of the entries of ∆Eeff are
zero. As a result, only a few columns of G−1

eff must be computed,
corresponding to nonzeros of ∆Eeff. Then, ∆V is given by:

∆V =
[
G−1

eff

]
N×η

[∆Eeff]η×1 (18)

where [∆Eeff]η×1 denotes η nonzeros of ∆Eeff, and
[
G−1

eff

]
N×η

denotes the columns of G−1
eff corresponding to these nonzeros.

This step of the algorithm relies on the fact that random walk
solver is capable of finding an estimate of the solution efficiently with
moderate accuracy, just enough to identify the RoI that corresponds
to the nodes that are significantly affected.

As discussed in Section II.E, the accuracy of the random walk
solution is proportional to the square root of the number of walks,
and it is not efficient for very high accuracies. Therefore, this step
merely feeds Step 2, which finds the RoI based on this solution, and
a precise solution is found in Step 3.

In this work a relative tolerance of 30% is used for the random
walk solver. This means that the relative error of G−1

eff × (∆Eeff)j

is less than or equal to 30% with a confidence of α = 99%, where
(∆Eeff)j denotes the vector of ∆Eeff where all of its elements are
set to zero except for the jth one.
Step 2: The second step of the incremental solver compares the
computed estimate of ∆V given by Eq. (18), to a user-defined
tolerance, tol, to determine the RoI. Specifically, node j is said to
lie within the RoI if ∆Vj > tol.

In order to account for the potential errors in the estimated
solution, a safety margin (i.e., s < 1) is used to get a pessimistic
RoI where the criterion for putting node j in this pessimistic RoI
is ∆Vj > s × tol. A pessimistic RoI contains all of the nodes
with potentially substantial change and the computational expense
is passed on to the exact solver that operates on the small RoI
region, whose size is 	 N . In this work, the safety margin is chosen
empirically to be s = 1/3.
Step 3: The last step of refinement involves the application of an
exact solver. In this step, we leverage the initial solution of the
network, V, the estimated changes computed using random walks,
∆V, and the RoI. Reordering Eq. (17) according to RoI we have:[

G
(in,in)
eff G

(in,out)
eff

G
(out,in)
eff G

(out,out)
eff

] [
∆V(in)

∆V(out)

]
=

[
∆E

(in)
eff

∆E
(out)
eff

]
(19)

where the superscripts in and out denote the nodes inside and outside
of the RoI, respectively.

Although ∆V(out) should be set to 0 from the definition of the
RoI, in practice, we find that it is more appropriate to use the constant
(but small) value of ∆V(out) from Step 1, which enables us to be less
conservative with the RoI. Therefore, we solve the above equation for
∆V(in), keeping the ∆V(out) unchanged from Step 1, by solving:

G
(in,in)
eff ∆V(in)

r = ∆E
(in)
eff − G

(in,out)
eff ∆V(out) (20)

where ∆V
(in)
r is the refined solution of the nodes within RoI.

The size of this equation, |RoI|, is significantly smaller than N as
illustrated in Fig. 1. For this small system, any direct or iterative
solver can be used; here, we use LAPACK [17]. The total solution
is then computed by adding ∆V

(in)
r for the nodes inside the RoI,

and ∆V(out) for nodes out of RoI, to the initial solution V.

IV. LU DECOMPOSITION

Having developed the idea of backward random walks as an
alternative to forward random walks, and having applied backward
walks to efficiently solve the incremental analysis problem, we now
explore another novel theoretical result. We study an interesting
correspondence between the backward random walks of Section II.A
with LU decomposition of the LHS matrix of Eq. (1), G. This relation
can be used to find a quick and moderately accurate LU factorization
of G which can be used for a variety of applications, e.g., as a
preconditioner for an iterative method similar to the work of [16].
The work of [16] showed the relation between the UL factors of
the LHS and the forward random walks, and this is its counterpart
for backward walks. This relationship is not specifically used by the
incremental solver but is pointed out for completeness.

The basic idea behind this relation is the notion of reusing the
walks. Taking a second look at the backward random walk game
described in Section II.A, it is easy to see that during a walk, when
the walker arrives at an intersection that has been frequently visited
in the past, further walks are not necessary: the walker already has
all of the information he needs. Therefore, for the purposes of the
game, he can simply stop the walk and use the previous information,
i.e., reuse the previous walks.

In practice, this notion is implemented simply by marking a
processed motel as a home and keeping two separate visit records,
one for motel visits, and one for the stops at the home nodes which
are the processed motels. Formally:

• qij : (# of visits to motel i in M walks from j)/M
• hij : (# of stops at home i in M walks from j)/M

Writing these in matrix format, we have:

Q = [qij ]N×N , H = [hij ]N×N (21)

where Q and H contain the motel and home visit records, respec-
tively. Note that the matrices Q and Z have similar definitions, but
the difference is that the Q matrix incorporates the effect of stopping
at home nodes that are defined during the process of solving the
system. As discussed shortly, Q is a lower triangular matrix while
Z is a full matrix. The G matrix can be constructed from either Z
and D or from Q, H , and D.

Without loss of generality, assume that the motels are processed
in natural order. Hence, when processing motel l, all of the motels
j < l are previously processed and marked as home. As a result,
the indices of all motels that the walker visits on his way are greater
than or equal to the starting motel index. Similarly, the indices of all
of the home nodes that the walker stops at are strictly less than the
starting motel index. Therefore, Q and H will be lower-triangular
and strictly upper-triangular matrices, respectively.

As discussed in Section II.E there is a direct relation between the
backward random walks and G−1, through Eq. (12). Similarly, there
is a direct relation between H , Q and G−1, stated in Theorem 2



below. The idea behind this relation is that the full visit records of
Eq. (12) can be reconstructed from columns of H and Q.

Theorem 2 Given the visit records, {H,Q}, G−1 can be found by:

Zj = Qj +

N−1∑
i=1

hijZi, j = 1, . . . , N (22)

G−1 = D−1Z (23)

where Zj and Qj denote the jth column of Z and Q, respectively,
and D is the matrix of the diagonals of G.

Proof: By definition, hij is the number of times that a walk, started
from motel j, reaches home i. For the full visit record, denoted by
Zj , it is enough to add hij times the average visit number to all of
the motels, given the walk was started from node i (i.e., Zi), to the
collected record, Qj . Finally, G−1 is found from Z using Eq. (14).

Eq. (22) can be rewritten in matrix format as:

G−1 = D−1(I − H)−1Q

G = Q−1(I − H)D = LGUG (24)

where LG = Q−1 and UG = (I − H)D are the lower-triangular
and upper-triangular factors of G. For a symmetrical G, LDL and
Cholesky factorization can be computed from D, H , and diagonals
of Q, without actually computing Q−1, similar to [16].

V. EXPERIMENTAL RESULTS

A. Performance of the Backward Random Walk Solver

Our incremental solver is tested and compared on a UNIX
machine with 2.5GHz processor and 8GB RAM, and applied to the
IBM power grid benchmarks of [15], where Vdd = 1.8V.

To demonstrate the accuracy of the RoI found by the proposed
algorithm, we apply various randomly generated perturbations to
the benchmarks and find the corresponding RoI using the proposed
algorithm as well as an exact direct solver. The exact RoI is the
set of nodes for which the exact solution is perturbed by more than
a specified tolerance, 1% of the Vdd here. The first measure of the
quality of the RoI found by our approach is the number of undetected
nodes: these are nodes that belong to the exact RoI, but are not listed
in the RoI found by our method. The second measure is the amount
of error in the solution of the undetected nodes.

The benchmarks are perturbed by randomly choosing a node and
modifying the conductances, gij’s, and the current loads, ei’s, of that
node and a number of its neighboring nodes. The amount of change
applied is called the perturbation amount and the number of nodes
being perturbed is called the perturbation size.

For the range of perturbations in our experiments, the size of
the RoI is no more than about 2% of the total circuit size, and
depending on the change, is often less. The empirically-chosen safety
factor parameter in the algorithm is set to 1/3 to compensate for
approximation error and to generate a pessimistic RoI.
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(a) Normalized number of undetected
nodes
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(b) Average change in the voltage of
undetected nodes

Fig. 5. Number of undetected nodes, normalized to the exact RoI size, and
the average change in their voltage for various perturbation sizes (tolerance
= 1%Vdd , perturbation amount = 20%, averaged over 10 perturbations).

Fig. 5(a) shows the number of undetected nodes, normalized to
the exact RoI size, versus the size of the perturbed region, for
perturbation amount of 20%. The numbers shown in all plots are
averaged over 10 different sets of perturbations. This figure indicates
that the number of undetected nodes is equal to zero for benchmark
ibmpg1, and for the rest of the benchmarks, this number is less than
0.7% the size of the corresponding exact RoI.

Then the next issue is the significance of these undetected nodes.
The error caused by these nodes are the error of the estimated
solution from random walks. The average of this error is plotted
in Fig. 5(b). It is found that the average of this error is less than 1%
of Vdd, indicating that even the nodes that lie within the RoI, but are
not detected, see an insignificant degradation in accuracy, and this is
due to the fact that the estimated solution given by random walks is
fairly accurate for the purposes of detecting the RoI.

Due to the stochastic nature of random walks, different runs result
in slightly different estimated solutions and hence different computed
RoIs. As discussed in Section II.E, the differences remain less than
the given tolerance (i.e., 1%Vdd), with a confidence of α. Due to this
effect, in Fig. 5(b), the error for perturbation size of 20 was more
than that for a perturbation size of 30.

In this paper, like other authors, we exclude the results of ibmpg3
because of the specific structure of the LHS of this benchmark (sim-
ilar observations have been made by other authors). This benchmark
models the power network of a circuit with very few external Vdd

and ground connections, less than 0.1% of the nodes. As a result, the
corresponding random walk game hass very few, resulting in very
long walks and hence large runtimes. For such circuits, conventional
solvers should be used instead of random walk solvers.

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

1

2

3

4

5

6
x 10

−3

A
ve

ra
g

e 
E

rr
o

r 
N

o
rm

al
iz

ed
 t

o
 V

D
D

 

 
Perturbation Size 10
Perturbation Size 20
Perturbation Size 30

(a) Before refinement
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(b) After refinement

Fig. 6. Absolute error of the solution normalized to Vdd and averaged over
10 perturbations, for nodes within the RoI before and after the refinement
phase. (tolerance = 1% of Vdd, perturbation amount = 20%, averaged over
10 perturbations).

Next, we examine the accuracy of the solution within the RoI.
Fig. 6(a) shows the average error of the nodes within the RoI
normalized to Vdd, for different perturbation sizes. This figure
suggests that although the relative tolerance of the random walk
solver is set to 30%, the average error of the estimated solution is
less than 0.5% of Vdd. Feeding the solution to the refinement stage,
where we solve a much smaller system of size |RoI| × |RoI|, the
solution becomes more accurate; this can be seen by comparing the
results in Figs. 6(a) and 6(b).

TABLE II
RUNTIME COMPARISONS (TOLERANCE = 1% OF Vdd , PERTURBATION

REGION SIZE = 30, PERTURBATION AMOUNT = 20% )
Equation Hybrid Refinement Incremental
Size (N) [2] (sec) (sec) Total (sec)

[Speedup]

ibmpg1 30638 0.170 0.002 0.119[1.4×]
ibmpg2 127238 2.110 0.053 0.725[2.9×]
ibmpg4 953583 24.210 0.202 1.771[13.7×]
ibmpg5 1079310 15.500 0.136 1.975[7.8×]
ibmpg6 1670494 25.470 0.127 2.040[12.5×]

Average Speedup: 7.7×
Table II compares the runtime of our proposed incremental solver

with the Hybrid Solver of [2], which is an efficient public-domain



iterative solver that uses a preconditioner based on random walks
that has been shown to be faster than other comparable solvers, using
identical solver tolerances. The first column shows the size of the
benchmarks N . The second column shows the runtime of the Hybrid
Solver and the remaining columns are related to our incremental
solver. It can be seen that the refinement phase is extremely fast and
takes only a small fraction of the total runtime, and that the total
speed up of the proposed incremental solver for perturbation size
of 30 and perturbation amount of 20% is significant: an average of
7.7× and a maximum of 13.7×.

Moreover, broadly speaking, as the system size increases the
benefit of using the incremental solver becomes more significant. The
intuitive reason for this is that for benchmarks of similar topology, a
perturbation of the same size and amount results in a RoI of almost
the same size, which requires almost the same amount of effort for
the random walk solver to find the RoI and the exact solver to refine
the solution. In fact, the speedup depends on the structure of the
equation as well, i.e., its density, condition number, and the number
of home nodes in its corresponding random walk game.

B. Backward Solver on Asymmetrical LHS Matrices

Large power grids are typically abstracted on to grids where the
loads are modeled as current sources at nodes on the grid. However,
commonly, and even on standard benchmarks such as [15], the
current loads are modeled as independent sources. This ignores the
effect of the voltage drop at the cells that draw current, introducing
inaccuracy in the solution. This modeling error can be corrected by
use of voltage controlled current sources (VCCS). It can be shown
that mapping current loads at low levels of the power grid to VCCS’s
connected to the grid results in an asymmetrical G matrix.

We have created variations of the ibmpg benchmarks [15] that
capture this asymmetry effect while modeling the power grid more
accurately. In particular, we show results on circuits ibmpg1’ and
ibmpg2’, which are represent the same grids as ibmpg1 and ibmpg2,
respectively, but with VCCS’s instead of curent sources. Our first
result in Table III demonstrates that the use of asymmetrical LHS
matrices with VCCS’s is essential for accuracy. To detect the model
error precisely and compare the accuracy of the symmetrical and
asymmetrical power grid abstractions, we use exact LU solvers here.
For these circuits, ignoring the VCCS behavior can result in absolute
errors of up to almost 30% of Vdd. On the other hand, using VCCS’s
makes the power grid model more realistic, resulting in a solution
with better average and maximum errors.

TABLE III
ACCURACY: ASYMMETRICAL VS. SYMMETRICAL MODEL

Asymmetrical Model Error Symmetrical Model Error
Normalized to Vdd Normalized to Vdd

Average Max Average Max

ibmpg1’ 2.00% 8.55% ibmpg1 6.16% 28.51%
ibmpg2’ 0.05% 1.54% ibmpg2 5.72% 14.47%

TABLE IV
COMPARISON: INCREMENTAL SOLUTION OF SYMMETRICAL AND

ASYMMETRICAL POWER GRID LHS’S (TOLERANCE = 1% OF Vdd ,
PERTURBATION REGION SIZE = 30, PERTURBATION AMOUNT = 20% )

Asymmetrical Model Symmetrical Model
Error Runtime Runtime

(Norm. to Vdd) (Sec) (Sec)

ibmpg1’ 1.3e-4 0.106 ibmpg1 0.119
ibmpg2’ 8.2e-5 0.774 ibmpg2 0.725

Next, we apply the backward random walk solver on these asym-
metrical LHS’s to solve the incremental analysis problem. Table IV
shows together the results for both the asymmetrical and symmetrical
cases; the numbers for the latter come from Table II. The total
runtime of an incremental solution and the absolute error of the

solution, relative to the exact solution of the VCCS based model, are
also shown. Evidently, the backward solver can sove both the less
accurate symmetrical and more accurate asymmetrical cases fast; it
can be shown that the forward solver does not solve the asymmetric
incremental problem efficiently.

C. Comparing Forward/Backward Solver Based Incremental Analysis

In order to compare the proposed approach with [11], the incre-
mental solver of this work is applied to the same benchmarks with the
same setup of [11]. The amount of perturbation is chosen uniformly
in interval (0, 10%), with perturbation sizes of 10, 20, and 30.

The results indicate that the average absolute error of the solution
for the nodes within the RoI, normalized to Vdd, is reduced 5× to
12× before refinement and up to 3× after refinement. They both
show about the same performance in number of undetected nodes.
The amount of ∆V in the undetected nodes in backward walks
approach turns out to be up to 4× more than that of [11] but yet
below the threshold of 1% of Vdd.

The runtime benefit of the proposed backward walks method
becomes more clear as the benchmark size increases. For the smallest
benchmark, the backward walks runtime is slightly smaller than
HybridSolver [2]. It is 3× less than [11] for a single run. For 10
consecutive runs (i.e., for 10 consecutive perturbations), the runtime
of the backward walks method is only 30% more than [11]. For
the largest benchmark, the backward solver is 3.6× faster than
HybridSolver. In addition, the backward solver is 9.4× faster than
[11] for a single run and 1.5× faster for 10 runs.

Note that as the number of runs increase, the runtime benefit of
backward solver compared to [11] decreases. However, the solution
from [11] solver looses its accuracy as errors from consecutive per-
turbations accumulate; on the other hand, the backward incremental
solver retains its accuracy regardless of the number of perturbations.
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