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Abstract— Three-dimensional (3D) silicon integration tech-
nologies have provided new opportunities for Network-on-Chip
(NoC) architecture design in Systems-on-Chip (SoCs). In this pa-
per, we consider the application-specific NoC architecture design
problem in a 3D environment. We present an efficient floorplan-
aware 3D NoC synthesis algorithm, based on simulated allocation,
a stochastic method for traffic flow routing, and accurate power
and delay models for NoC components. We demonstrate that this
method finds greatly improved topologies for various design ob-
jectives such as NoC power (average savings of 34 %), network la-
tency (average reduction of 35%) and chip temperature (average
reduction of 20%).

I. INTRODUCTION

Three dimensional (3D) integrated circuits, in which multi-
ple tiers are stacked above each other and vertically intercon-
nected using through-silicon vias (TSVs), are emerging as a
promising technology for SoCs [1-4]. As compared to 2D de-
signs, 3D circuits permit reduced latencies for critical inter-
connect structures, resulting in higher system throughput, per-
formance, and power, and allow other benefits such as hetero-
geneous integration. All of these flexibilities enable the de-
sign of new high-performance System-on-Chip (SoC) struc-
tures that were previously thought to have prohibitive over-
heads. In spite of well-known challenges such as thermal bot-
tlenecks (to which several solutions have been proposed), the
benefits of 3D integration are considerable. In the context of
intrachip communication, 3D technologies have created signif-
icant opportunities and challenges in the design of low latency,
low power and high bandwidth interconnection networks.

In 2D SoCs choked by interconnect limitations, networks-
on-chip (NoCs), composed of switches and links, have been
proposed as a scalable solution to the global communication
challenges: compared to previous architectures for on-chip
communication such as bus-based and point-to-point networks,
NoCs have been shown to provide better predictability, lower
power consumption and greater scalability [5, 6]. 3D circuits
enable the design of more complex and more highly intercon-
nected systems: in this context, NoCs promise major benefits,
but impose new constraints and limitations. 3D NoC design
introduces new issues, such as the technology constraints on
the number of TSVs that can be supported, problems related
to optimally determining tier assignments and the placement of
switches in 3D circuits, and accurate power and delay model-
ing issues for 3D interconnects.

This work addresses the problem of designing application-
specific 3D NoC architectures for custom SoC designs, in con-
junction with floorplanning. Specifically, our work determines
both the NoC topology and the floorplan of the NoC switches
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and cores. We propose a synthesis method to find the best
topology for the application, under different optimization ob-
jectives such as power and network latency, and determine the
paths for traffic flows. We use a 3D thermally-aware floorplan-
ner to assign the cores to different 3D tiers, while optimizing
chip temperature, and find an initial floorplan for the cores on
each tier. Given the positions of cores, we use a stochastic flow
allocation method, Simulated Allocation (SAL), to route the
traffic flows and build the topology for the application, initially
using a simple strategy for determining the approximate loca-
tions of the switches. When the best topology is found, a fast
floorplanner is applied to further optimize the positions of the
added switches. Accurate power and delay models for switches
and links are integrated into our algorithm.

Our approach has three significant features that together
make it uniquely different from competing approaches: first,
we use improved traffic flow routing using SAL that accom-
modates a realistic objective function that has components that
are nonlinear and/or unavailable in closed form; second, we in-
terleave floorplanning with NoC synthesis, using specific mea-
sures that encourage convergence by discouraging blocks from
moving from their locations in each iteration; and third, we use
an accurate NoC delay model that incorporates the effects of
queueing delays and network contention.

Our algorithm is extremely flexible and is applicable both
to 2D and 3D layouts, but we demonstrate that the use of 3D
designs results in significantly reduced NoC power and latency,
when compared to optimal 2D implementations.

II. CONTRIBUTIONS OF OUR WORK

There has been a great deal of prior work on NoCs alone
and on 2D and 3D layout alone, but less on integrating the
two. In the area of designing NoC architectures for 3D ICs,
most of the literature has focussed on regular 3D NoC topolo-
gies such as meshes [7-11], which are appropriate for regu-
lar 3D designs [12, 13]. However, most modern SoC architec-
tures consist of heterogenous cores such as CPU or DSP mod-
ules, video processors, and embedded memory blocks, and the
traffic requirements among the cores can vary widely. There-
fore, regular topologies such as meshes may have significant
area and power overhead [14, 15], and tuning the topology for
application-specific solutions can provide immense benefits.

The synthesis of an application-specific NoC topology in-
cludes finding the optimal number and size of switches, es-
tablishing the connectivity between the switches and with the
cores, and finding deadlock-free routing paths for all the traffic
flows. For 2D systems, the problem of designing application-
specific NoC topologies has been explored by several re-
searchers [16-20]. Srinivasan et al. [17] present a three-phase
NoC synthesis technique consisting of sequential steps that



floorplan the cores, next perform core-to-router mapping, and
then generate the network topology. In [19], Murali et al.
present an NoC synthesis method that incorporates the floor-
planning process to estimate link power consumption and de-
tect timing violations. Several topologies, each with a different
number of switches, are explored, starting from one where all
the cores are connected to one switch, to one where each core
is connected to a separate switch. The traffic flows are ordered
so that larger flows are routed first.

In the 3D domain, Yan et al. [14] present an application-
specific 3D NoC synthesis algorithm that is based on a rip-
up-and-reroute procedure for routing flows, where the traffic
flows are ordered in the order of increasing rate requirements
so that smaller flows are routed first, followed by a router merg-
ing procedure. Murali ez al. [15] propose a 3D NoC topology
synthesis algorithm, which is an extension to their previous 2D
work [19], described above. The 3D NoC synthesis problem
has been shown to be NP-hard in [21].

Our work is motivated by the following observations:

e The final results of application-specific NoC topology
synthesis depend on the order in which the traffic flows
are routed. In some cases, routing larger flows first pro-
vides better results [18, 19], while in others, routing the
smaller flows first may yield better results [14]. A strat-
egy is required to reduce the dependency of the results on
flow ordering.

e In all of the works mentioned previously, the average hop
count is used to approximate the average packet latency in
NoCs. This ignores the queueing delays in switch ports
and the contention among different packets for network
resources such as switch ports and physical links, and can-
not reflect the impact of physical core-to-switch or switch-
to-switch distances on network latency. More accurate de-
lay models that include the effects of queueing delay and
network contention, and better delay metrics, should be
applied for NoC performance analysis.

e The delays and power dissipation for physical links in
NoCs are closely linked to the physical floorplan and
topology of cores and switches. We show in Section VI
that interleaving floorplanning and NoC topology synthe-
sis process leads to superior results.

We address these important problems in application-specific
NoC topology synthesis. Our solution to overcoming the or-
dering problem is based on the use of a multicommodity flow
network formulation for the NoC synthesis problem: the ad-
vantage of such an approach is that it takes a global view of the
problem and eliminates the problem, described above, of find-
ing the best order in which to route the traffic flows. The multi-
commodity flow problem is a well-known approach for solving
such problems, but has seen little use in NoC design, with a
few exceptions. In [22,23], Hu et al. propose a scheme to op-
timize NoC power consumption through topology exploration
and wire style optimization, subject to the average communi-
cation latency constraints, but do not handle layout synthesis
issues, and assume simple linear objective functions.

Our work utilizes a stochastic SAL approach to efficiently
solve the multicommodity flow problem under a nonlinear ob-
jective function that can be evaluated by an oracle, but is hard
to express in closed form. The SAL framework has previously
been used to solve multicommodity flow problems in com-
puter network design. We also use an accurate delay model
for switches in NoCs which consider the queueing delay and

network contention. Finally, our algorithm performs the floor-
planning of cores/switches and NoC topology synthesis in an
integrated iterative loop, attempting to find the optimal solution
for the problem of application-specific NoC design.

III. PROBLEM INPUTS, OBJECTIVES, AND CONSTRAINTS

The input to our 3D NoC synthesis problem is a directed
graph, called the core graph, G(V, E, A). Each node v; € V
represents a core (either a processing element or a memory
unit) and each directed edge e,, »,, € E denotes a traffic flow
from source v; to destination v;. The bandwidth of traffic flow
from core v; to v; is given by A(ey, ;) in M B/s. In addi-
tion, NoC architectural parameters such as the NoC operating
frequency, f , and the data link width, W, are also assumed
to be provided as inputs. The operating frequency is usually
specified by the design and data link width is dictated by the IP
interface standards.

Our 3D NoC synthesis framework permits a variety of ob-
jectives and constraints, including considerations that are par-
ticularly important in 3D, such as power dissipation, tempera-
ture, and the number of TSVs, and NoC-specific issues such as
minimizing the average/maximum network latency, limitations
on the maximum bandwidth, as well as general factors such
as the design area. In addition, the solution must be free of
deadlocks, which can occur during routing flows due to cyclic
dependencies of resources such as buffers. We use the turn pro-
hibition algorithm presented in [24] to ensure that our topology
is deadlock-free. The specific optimization objectives in each
step of our approach are described in Section IV.

The output of our 3D NoC synthesis solution is an optimized
custom deadlock-free network topology with pre-determined
paths on the network to route the traffic flows in the core graph
and the floorplan of the cores and switches in the NoC such that
the constraints are satisfied.

IV. THE OVERALL DESIGN FLOW

The design flow of our NoC synthesis algorithm is presented
in Fig. 1. Given a given a core graph, we first obtain an ini-
tial floorplan of the cores using a thermally-aware floorplan-
ner. This precedes the 3D NoC synthesis step, and is important
because the core locations significantly influence the NoC ar-
chitecture. Associating concrete core positions with the NoC
synthesis step better enables it to account for link delays and
power dissipation.

Area, power,
delay models of
NoC components

Design goals
& cosntraints

Design
parameters

bandwidth

Core graph

1. 3D custom NoC architecture
2. Floorplan of cores & switches

Fig. 1. Application-specific 3D NoC synthesis flow.

Our 3D NoC synthesis algorithm is performed on a directed
routing graph G'(V/, E’): V' is the vertex set, which is the
union of core set V' in the input core graph G(V, E,\) and
the set of added switches, V. We assume that the maximum
number of switches that can be used in each 3D tier [ equals



to the number of cores in that tier, although it is easy to relax
this restriction. The edge set E’ is constructed as follows: we
connect cores in a tier [ only to the switches in the same tier
[ and adjacent tiers [ — 1,7 + 1 and the switches from all the
3D tiers form a complete graph. A custom NoC topology is a
subgraph of the routing graph, G'.

The 3D NoC synthesis problem can be viewed as a multi-
commodity flow (MCF) problem. For a core graph G(V, E, \)
and a corresponding routing graph G'(V', E’) (correspond-
ing to a flow network), let c(u,v) be the capacity of edge
(u,v) € E'. The capacity c¢(u,v) equals to the product of the
operating frequency f and data link width W. Each commod-
ity K; = (s;,t;,d;),i = 1,--+ , k corresponds to the weight
(traffic flow) along edge e, ;, in the core graph from source
s; to destination ¢;, and d; = A(es, ¢,) is the demand for com-
modity 7. Therefore, there are k¥ = |F| commodities in the
core graph. Let the flow of commodity 7 along edge (u,v) be
fi(u,v). Then the MCF problem is to find the optimal assign-
ment of flow which satisfies the constraints:

Capacity constraints: 25:1 filu,v) < c(u,v)
ZwEV’,u;ﬁsi,tm fi(u’w) =0
where Vo, u f;(u,v) = —f;(v,u)

Yowev filsi,w) =32 ey filw, ti) = d;

Flow conservation:

Demand satisfaction:

Superficially, this idea seems similar to [23], where an MCF
formulation is proposed. However, that work is directed to
2D NoC synthesis with a single objective of minimizing NoC
power, modeled as a linear function of the flow variables
fi(u,v). The corresponding Linear Programming (LP) prob-
lem is solved using an approximation algorithm. Our more
general formulation integrates more objectives and more accu-
rate modeling for NoC components. In fact, most components
of our objective function are nonlinear or, as in case of network
latency, unavailable in closed form, rendering an LP-based ap-
proach impossible.

We choose to apply an SAL-based flow allocation approach
that is particularly suitable for (see Section V-A for details)
solving the MCF problems where the objective function is in
such a form. The SAL procedure yields the NoC topology and
the paths for all the traffic flows in the core graph. In this op-
timization, we assume single-path routing for each traffic flow
in the core graph, but conceptually, the SAL method can easily
be extended to deal with the multipath routing problem.

After the 3D NoC synthesis step, the actual switches and
links in the synthesized 3D NoC architecture are fed back to
the floorplanner to update the floorplan of the cores and used
switches, and the refined floorplan information is used to obtain
more accurate power and delay estimates. The process contin-
ues iteratively: with the refined floorplan, a new SAL based 3D
NoC synthesis procedure is invoked to find a better synthesis
solution, and so on.

The specific optimization objectives used in various steps of
our approach are as follows:

e For NoC topology construction, we optimize a linear com-
bination of the network power, average network latency
and TSV count, with constraints on bandwidth.

e For the initial floorplanning step (Section V-C), we op-
timize a linear combination of chip temperature and
weighted inter-core distance.

e For subsequent steps that floorplan the cores and switches,
we optimize a linear combination of design area, link
power, link delay and chip temperature.

V. TECHNICAL DETAILS

In this section, we present the major elements in our 3D NoC
synthesis algorithm.

A. Simulated Allocation Algorithm

Simulation Allocation (SAL) [25,26] is a stochastic frame-
work for finding near-optimal solutions for the multicommod-
ity traffic flow problems. It has been shown to be simpler, but
often faster and more efficient, than other stochastic algorithms
such as simulated annealing and evolutionary algorithms. The
details of the SAL framework used in our work are described
in Algorithm 1.

In the core graph G(V, E, \), let

e P; be the number of available paths for traffic demand
K’i = (5i7 tiv dl)7

24 be the amount of traffic flow realizing the traffic K; =
(s;,ti,d;) allocated to path p in routing graph G’,

o = {x; i =1,2,---,k,p=12,---,F} be the
allocation state,

lz| = 32, >, Tip be the total allocated traffic flow, and

e H =", d; be the total amount of traffic flow.

Note that since we consider single-path routing for each
commodity, at most k paths, one per commodity, will have
nonzero flows. Therefore, even though the number of paths
can be exponentially large, it is never necessary to enumerate
P;; storing the allocation state x does not impose a significant
memory overhead.

Algorithm 1 Simulated Allocation (SAL) (adapted from [26])

1: n=0; counter = 0; x = 0; F*st = 4 0;

2: repeat

3. if random(0,1) < ¢(]z|) then
4 allocate(x);

5:  else

6: disconnect(x);

7. endif

8: if || = H then

9: n=n+1;

10: counter = counter + 1;
11: if F(z) < F®s! then
12: Fbest = F(z);

13: wbest =

14: counter = 0;

15: end if

16:  end if

17: until n = N or counter = M

The SAL algorithm may start with a given partial allocation
state xo or the with the zero state (z;, = 0). In each step,
it chooses, with state-dependent probability ¢(|z|), between
allocation(x), i.e., adding the traffic flow for one non-allocated
commodity to the current state x, and disconnect(x), i.e., re-
moving the traffic flow for one allocated commodity from cur-
rent state x. After a sequence of such moves, from time to time,
the algorithm will reach a full allocation state, yielding a feasi-
ble solution for the considered problem. The procedure termi-
nates when the number of visited full allocation states reaches
a user-specified limit N or no better solution is found within
M visited full allocation states.

Procedure allocation(x) selects one currently non-allocated
commodity, K; = (s;, t;, d;), at random and allocates it to one




of the allowable paths that have enough residual capacity to
support K;. The path for allocating K; is chosen to be the
minimum cost path p with respect to the cost function for the
NoC topology construction step. Then we add flow z;, = d;
to the current state x and reduce the capacities of the links on
the selected path p in the routing graph by d;. When routing
commodity £;, several new links and switches from the routing
graph may be added to the NoC topology and the sizes of the
switches on the path p may need to be adjusted accordingly.

Procedure disconnect(x) selects an allocated commodity
K; = (si,ti,d;) at random and removes the corresponding
flow z;, from current state . We then increase the capacities
of the links on the path p by d;. If some links/switches become
unused in the resulting solution, such links/switches are also
removed from the NoC topology. The sizes of the switches on
the path p may need to be adjusted accordingly.

Function ¢(+y), defined for 0 < « < H, has the properties:

q(0) =1
q(H) =0
3<q(y) <1, 0<y<H
According to [26], if
1
q(\x|):qo>§ for 0<vy< H

then the expected average number of steps (allocations and dis-
connections) required to reach a full allocation state starting
from state x is no greater than

(H —|=[)/(2q0 — 1)

For instance, if qg = % then a full allocation state will be
reached from the zero allocation state in only 3H steps.

B. Analytical Switch Modeling for NoCs

Accurate delay models for switches are required as an in-
put to our 3D NoC synthesis problem. We utilize the analyt-
ical delay model presented in [27], which includes the effects
of queueing delay and network contention. The model con-
siders first-come-first-serve input buffered switches and targets
wormhole flow control under deterministic routing algorithms.

Let .S be the packet size and H the service time for a header
flit passing through switch ¢. The service time of a packet pass-
ing through switch ¢, excluding the queueing delay, is

S—Ww
f-w

T=H+ (1

where W is the data link width and f is the operating fre-
quency. For switch ¢, let

e p be the total number of ports.

e ), be the traffic arrival rate at port j.

e N; be the average number of packets in the buffers of in-
put port j, and N = [Ny, Na, ..., N,|T.

e cj; be the probability that packets of input ports j and
k compete for the same output port, and C; be the row
vector C; = [cj1, Cja, - - -, Cjp)-

e R be the residual service time seen by the incoming pack-
ets, defined as follows: if another packet n is being served
when packet m arrives, then R is the remaining time be-
fore packet n leaves the switch.

Then we can write the equilibrium condition for the switch as:

(I - TAC)N = AR 2)
VYhCI‘C A = diag{)\l, )\2, ey )\p}, C = [Cl, Cg, ey CP}T,
R=([R,R,...,Rlixp)T.

The switch model described by Equation (2) provides a
closed form expression for the average number of packets at
each input port of the switch 4, given the traffic arrival rate (A),
the packet contention probabilities (C'), switch design speci-
fications (H, W) and packet size S. For further details, the
reader is referred to [27].

C. 3D Floorplanning

An initial step of thermally-aware floorplanning is applied
to assign the cores into 3D tiers under thermal considerations,
and to optimize the positions of the cores so that highly com-
municating cores are placed close to each other. In our im-
plementation, we use the 3D thermally-aware floorplanner tool
in [28] based on B*-tree floorplan model. The floorplanner uses
a built-in thermal analysis technique based on the HS3D [28]
tool. Of course, any other similar tools can also be integrated
into our program.

For each edge e,, ,,; which connects two cores, v; and v;, the
edge weight of e,,, ,; 1s set to be the product of edge bandwidth
A(€y;,0;) and the distance d;; between v; and v;. Our cost
function is a weighted sum of the chip temperature and the sum
of these edge weights. Therefore, we use the floorplanner to
find a good initial floorplan of cores that favors our next step of
3D NoC synthesis.

During initial floorplanning, we only consider the commu-
nicating cores, since no switches have been introduced at this
time. Once a full allocation of traffic flows is found, the topol-
ogy of the NoC is determined, including the switches that are
used to route traffic. We then invoke the floorplanner to find a
refined floorplan of cores and NoC switches, under an objective
function that is a linear combination of design area, link power,
link delay and chip temperature.

D. Switch Location Estimation and Path Cost Estimation

When routing a flow from source s to destination d, our ob-
jective is to find a minimum cost path in the routing graph.
While the initial solution considers the physical locations of
only the cores, as flow allocation proceeds, new switches will
be included in the NoC topology and their physical positions
must be estimated to compute the link power and delay.

We estimate the switch locations in the following way: for
a newly added switch ¢, the switch is initially placed at the
centroid of the source and destination nodes of switch ¢ in the
routing graph. Given these initial estimates of the positions of
the newly added switches, we apply Dijkstra’s shortest path al-
gorithm on the routing graph to find the minimum cost path for
the traffic flow, which is required by allocation(z). When the
3D NoC synthesis step is complete, we feed the actual switches
and links in the synthesized architecture to the floorplanner to
update the switch locations, for more accurate power and delay
estimation. Since the floorplanner is stochastic, it is possible
for the new floorplan to be vastly different from the one that
was used to generate the NoC topology, negating the assump-
tions used to build the topology. To avoid this, we add a penalty
to the objective function of the floorplanner to ensure that the
blocks do not move far away from their initial locations, and
optimize the precise locations of the switches, which were ini-
tially placed in (possibly illegal) centroid locations.



VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We have implemented 3D-SAL-FP, our SAL-based 3D NoC
synthesis algorithm with floorplan feedback, in C++. All ex-
periments were conducted on an Intel Pentium 4 CPU 3.20GHz
machine with 2G memory running Linux.

The design parameters are set as: 900MHz clock frequency,
512-bit packets, 4-flit buffers and 32-bit flits. We use Orion
[29] to estimate the power dissipation of the switches. The
link power and delay are modeled based on the equations from
Pavlidis et al. [8], and the delay of switches are estimated using
the model described in Section V-B. All switches and links are
evaluated under a 45nm technology.

Several parameters affect the efficiency and performance of
the SAL algorithm (Section V-A). In our implementation,
we found that a constant function ¢(y) = ¢0, where g0 €
[0.75,0.90], can produce good solutions. The user-specified
iteration limit N is empirically set to be three times of k, the
number of commodities in the core graph, and M is set to be
50. We find that the best solutions are often obtained within &
full visited allocation states for all the benchmarks.

B. Impact of each strategy applied in our algorithm

Our algorithm 3D-SAL-FP improves upon the previous algo-
rithms in [14, 15] by: 1) using a more sophisticated traffic flow
routing algorithm (SAL), 2) adding a feedback loop of floor-
planning and NoC synthesis to refine the NoC architecture, 3)
using a more accurate switch delay model including the effects
of queueing delay and network contention. To show the sep-
arate impact of these techniques on the NoC design, we have
implemented three other 3D NoC synthesis algorithms.

The first algorithm, based on the work by Murali et al. [15],
has two stages: 3D NoC synthesis and floorplanning of the
synthesized NoC architecture. At the 3D NoC synthesis stage,
simple delay model (average hop count) is used to approximate
the average network latency and the traffic flows are routed
in fixed order (in the order of decreasing flow rate). In the
next stage, we move on to find the floorplan of cores and used
switches in the NoC architecture. We refer to this algorithm as
the Baselinel algorithm. The second algorithm differs from
Baselinel in that it applies an improved traffic flow routing
strategy (SAL) in the 3D NoC synthesis stage. We refer to this
algorithm as the Baseline2 algorithm. The third algorithm im-
proves upon Baseline2 by feeding back the results of floorplan-
ning stage to refine the NoC synthesis. The process continues
iteratively: after the 3D NoC synthesis step, the actual switches
and links in the synthesized solution is fed back to the floor-
planner to refine the floorplan of the cores and used switches;
with the refined floorplan, a new NoC synthesis procedure is
invoked to find a better synthesis solution, and so on. We refer
to this algorithm as the Baseline3 algorithm. Our 3D-SAL-FP
differs from Baseline3 in that it use the accurate switch delay
model (described in Section V-B ) to incorporate the queueing
delay and network contention issues.

We then applied these four algorithms to design 3D applica-
tion specific NoC topologies. We compared these algorithms
on both a set of existing published benchmarks and several
large synthetic 3D benchmarks. Since large standard bench-
marks are not available, we use the method proposed in [14]
to generate the large synthetic 3D benchmarks. This method
is based on the NoC-centric bandwidth version of Rent’s rule
proposed by Greenfield et al. [30]. For the small published
benchmarks, two 3D tiers are used, where each tier contains
one layer of devices and multiple layers of interconnect. For

all of the large synthetic benchmarks, four 3D tiers are used.

The corresponding results are shown in Tables I and II. For
each algorithm, we report the following: the network power
(in mW, including switch power and link power), the average
network latency (in ns, evaluated by the accurate delay model),
the number of TSVs and the maximum chip temperature (in
°C).

We can observe that using the improved traffic flow rout-
ing algorithm, the Baseline2 algorithm outperforms Baselinel,
achieving 23% power saving for the published benchmarks,
10% reduction in chip temperature and better network perfor-
mance. The corresponding numbers for synthetic benchmarks
is 21% in power saving and 9% in chip temperature reduction.
Furthermore, Baseline3 uses the feedback from the floorplan-
ning step to improve upon Baseline2, and shows 34% reduc-
tion in the power dissipation for both published and synthetic
benchmarks, about 20% reduction in chip temperature and 10%
reduction in average network latency. Finally, with more accu-
rate delay model, 3D-SAL-FP improves upon Baseline3, with
26% reduction in average network latency for published bench-
marks and 44% for the synthetic benchmarks. Since the objec-
tive function for these algorithms is a linear combination of
several metrics, the use of different sets of weighting factors
can result in different Pareto-optimal solutions. For a fair com-
parison, we have used identical weighting factors for all four
algorithms discussed here. In the solutions shown here, 3D-
SAL-FP performs significantly better than Baseline3 in reduc-
ing the delay, and is slightly better on average (and sometimes
worse on specific examples) in terms of power and temperature.
By altering the weights, other tradeoff points may be identified.

C. Delay and Power Reduction Potential in 3D NoCs

In this section, we further investigate the benefits that 3D cir-
cuits can bring to the NoC architecture design. The benchmark
B3, with 69 cores and 136 flows, was selected and our 3D-
SAL-FP algorithm was applied to synthesize this benchmark
with different numbers of 3D tiers, from 1 to 4. The I-tier case
is the design that uses conventional 2D technology. The results
are shown in Table III. For each case, we list the following
results: the design footprint, the network power, the maximum
path length, the maximum total link delay, the maximum net-
work latency, the average network latency, the total number of
TSVs, the maximum chip temperature and the CPU time.

As we can see from Table III, as the number of 3D tiers in-
creases, the footprint size continues to decrease, together with
the maximum length of the path to route the packets. The re-
duced path length further brings down the maximum link de-
lay and the total link power at the cost of increased number of
TSVs and higher chip temperature. The switch power depends
on the specific network traffic and the sizes of the switches de-
termined by the customized NoC architectures and does not
change much as the number of 3D tiers increases.

VII. CONCLUSION

We have proposed an efficient algorithm, 3D-SAL-FP, to
synthesize application-specific 3D NoC architectures. Our al-
gorithm utilizes a stochastic approach called simulated alloca-
tion to reduce the dependency of NoC design results on flow
ordering. We also use accurate delay model for switches in
NoCs which consider the queueing delay and network con-
tention. Finally, our algorithm performs the floorplanning of
cores/switches and NoC topology synthesis in an integrated
iterative loop, attempting to find the optimal solution for the
problem of application-specific NoC design. Experimental re-



TABLE I

COMPARISON OF THREE ALGORITHMS ON SEVERAL SMALL PUBLISHED BENCHMARKS

Ben |Cores|Flows Baselinel Baseline2 Baseline3 3D-SAL-FP
s|rlows Power Del. #of T Power Del. #of T Power Del. #of T Power Del. #of T
Switch|Link|Total| ~© & |TSVs| ' ™e® [Switch[Link| Total| ~© & |TSVs| ™e® [Switch|[Link|Total| = & |TSVs|  ™® [Switch[Link|Total| —© & |[TSVs| ma®
PIP 8 8 54 5[5 ]38 8 664 [ 44 4 148 [ 3.7 6 [ 60.6 39 4 143136 7 58.2 38 4 1427132 6 [ 551
MWD | 12 13 94 8 [102] 4.1 10 | 72.8 74 7 | 81| 40 9 | 66.5 65 6 | 71 | 3.8 [ 12 | 62.5 65 6 | 71 | 3.5 9 | 623
VOPD | 12 15 99 11110 7.3 | 14 | 67.8 82 1092 72 7 64.5 73 10| 83 [ 6.9 7 594 72 9 | 81 | 5.1 9 | 509
MEPG4| 12 26 165 | 15 [ 180 [ 103 | 14 | 70.8 | 108 | IS5 [ 123 ] 10.1 | 13 | 64.7 88 12 [ 100 9.0 | 14 | 58.2 90 13 [103] 63 | 14 | 59.6
IMP 27 96 612 [ 90 [ 702 | 94 | 42 | 788 | 413 | 99 [512| 8.0 | 44 | 65.2 | 335 | 87 [422| 7.8 | 42 | 5577 | 346 | 79 |425| 6.4 | 40 | 56.9
1 1 1 0.77] 0.95 0.90 0.66 0.91 0.82 0.66| 0.74 0.80
TABLE II
COMPARISON OF THREE ALGORITHMS ON LARGE SYNTHETIC BENCHMARKS
Ben|Cores | Flows Baselinel Baseline2 Baseline3 3D-SAL-FP
) ) Power Delay]. 7oT [T Power Delay]. 7oT [T Power Delay]. 7oT [T Power Delay]. 70T [T
Switch[Link[Total| ~© Y | TSVs| " ™** [Switch[Link[Total| - > |TSVs|  ™** [Switch[Link[Total| - > |TSVs|  ™** [Switch[Link[Total| - = |TSVs| ™a®
BI| 56 | 196 | 1033 [291 [1324] 16.3 | 119 | 157.8 | 956 |[302[1258] 16.0 | 132 | 145.4 | 808 |[209[1017] 15.0 [ 139 | 128.3 | 785 [214[999 | 6.7 | 132 [133.2
B2 | 80 96 783 [ 128 [ 911 [ 7.9 | 117 [133.5] 561 |[118[689 | 7.9 | 116 [119.6| 490 | 99 [ 589 | 7.6 | 124 [ 107.1 | 494 | 96 [ 590 | 4.6 | 126 | 107.5
B3] 69 | 136 | 866 [210[1076] 13.1 | 122 [ 150.6 | 494 [243[ 737 [ 12.0 | 95 [134.4] 509 [165[674 | I1.5 | 105 | 1182 504 [141[645| 9.4 | 116 [118.0
B4 114 | 396 | 3128 [827[3955] 15.9 | 196 | 166.4 | 2230 | 888 [3118[ 15.5 | 214 | 151.6 | 1826 [ 643 [2469] 13.9 | 192 | 128.6 | 1721 [ 632]2353| 7.3 | 208 [ 137.0
B5 | 124 | 266 | 1827 | 848 [2675] 13.0 | 254 | 135.0 | 1517 | 686 2203 11.8 | 264 | 125.2| 1352 | 432 [1784] 114 | 256 | 1044 | 1338 | 468 |1806] 0.1 | 241 | 102.7
1 1 1 0.79 | 0.94 0.91 0.66 | 0.89 0.79 0.65| 0.56 0.80
TABLE III
COMPARISON OF THE IMPACT OF DIFFERENT NUMBERS OF 3D TIERS ON NOC ARCHITECTURE DESIGN FOR BENCHMARK B3
Footprint Network Power  |Maximum Path| Maximum Link | Maximum Network | Average Network| # of T Time
Layers PINYSWitch] Link | Total Length Delay Latency Latency TSVs maw
2
(mm?) |(mW)|(mW)|(mW) (mm) (ns) (ns) (ns) COY| (s
1 216.8 | 510.5 | 288.4 | 798.9 22.1 6.45 14.40 12.42 0 |43.8(858
2 110.3 | 505.8 | 189.2 | 695.0 17.0 4.95 12.28 9.56 86 | 63.7 [83.9
3 72.0 | 510.7 | 164.8 | 675.5 11.9 3.50 11.51 9.49 94 196.2 |87.3
4 56.1 504.8 | 141.0 | 645.8 9.2 2.68 11.32 9.44 116 |118.0| 87.4
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