
Hierarchical Random-walk Algorithms
for Power Grid Analysis ∗

Haifeng Qian Sachin S. Sapatnekar

Department of ECE Department of ECE
University of Minnesota University of Minnesota
Minneapolis, MN 55414 Minneapolis, MN 55414

qianhf@ece.umn.edu sachin@ece.umn.edu

Abstract— This paper presents a power grid an-

alyzer that combines a divide-and-conquer strategy

with a random-walk engine. A single-level hierar-

chical method is first described and then extended

to multi-level and “virtual-layer” hierarchy. Exper-

imental results show that these algorithms not only

achieve speedups over generic random-walk method,

but also are more robust in solving various types of

industrial circuits. For example, a 71K-node circuit is

solved in 4.16 seconds, showing a more than 4 times

speedup over the generic method; a 348K-node wire-

bond power grid, for which the performance of the

generic method degrades, is solved in 75.88 seconds.

I. Introduction

A reliable power grid is an important part of high-
performance VLSI design, and accurate and efficient anal-
ysis to check for signal integrity is becoming a critical issue
in nanometer designs.

Fig. 1. Part of a typical power grid model.

Fig. 1 shows a power grid model consisting of wire re-
sistances, wire capacitances, decoupling capacitors, VDD

pads, and current sources that represent the currents
drawn by logic gates or functional blocks. There are two
sub-problems to power grid analysis: DC analysis and

∗This research was supported in part by the SRC under contract
2003-TJ-1092, by the NSF under award CCR-0205227, and by an
IBM Faculty Award.

transient analysis. In this paper, the presentation will fo-
cus on DC analysis, but we will show how the method
can be applied to transient analysis by pointing out the
differences, where applicable. The DC analysis problem
is formulated as:

GX = E (1)

where G is the conductance matrix for the interconnected
resistors, X is the vector of node voltages, and E is a
vector of independent sources. Solving this set of linear
equations can become prohibitive for a modern-day power
grid with tens of millions of nodes. Several methods have
been proposed to overcome this and achieve an acceptable
time and space computational complexity by sacrificing
some accuracy [3][7].

A novel statistical algorithm based on the relationship
between random walks and electrical networks is proposed
in [4], and demonstrates an excellent accuracy-runtime
tradeoff. Its complexity is linear in circuit size, and it
has the feature of localizing computation, which makes
it especially useful when only part of the grid is to be
analyzed. The work in [4] addresses both the DC analysis
and RC network transient analysis problems.

In this paper, we combine the divide-and-conquer idea
of [7] with the generic random-walk method of [4], and
present a hierarchical random-walk method. We use test
results to show that it is faster and more robust than
generic random-walk method. In particular, it solves cer-
tain circuit types for which the performance of the generic
method is limited. This method also provides a frame-
work that can perform transient analysis of RLC models.

II. The Generic Random Walk Method for
Power Grid Analysis

For completeness, we now present a theoretical sum-
mary of [4], which is based on [1]. For a single node x in
the DC analysis of a VDD net, its voltage can be expressed
as follows:

Vx =
degree(x)∑

i=1

gi∑degree(x)
j=1 gj

Vi − Ix∑degree(x)
j=1 gj

(2)

where the nodes adjacent to x are labeled 1, 2, · · · ,
degree(x), Vx is the voltage at node x, Vi is the volt-
age at node i, gi is the conductance between node i and

node x, and Ix is the current load connected to node x.
For a power grid with N non-VDD nodes, there are N lin-
ear equations similar to the one above, one for each node.
Solving this set of equations gives the exact voltages.

A random walk “game” can be formulated similarly.
Given a finite undirected connected graph representing a
street map. A walker starts from one of the nodes, and
goes to an adjacent node k every day with probability
px,k for k = 1, 2, · · · , degree(x), where x is the current
node, and degree(x) is the number of edges connected to
node x. The sum of these probabilities is one. The walker
pays an amount mx to a motel for lodging everyday, until
he/she reaches one of the homes, which are a subset of
the nodes. If the walker reaches home, his/her journey is
complete and he/she will be awarded a certain amount of
money, m0. The problem is to find the gain function:

f(x) = E[total money earned |walk starts at node x] (3)

It is obvious that

f(one of the homes) = m0 (4)

For a non-home node x, assuming that the adjacent nodes
of x are labeled 1, 2, · · · , degree(x), the f variables satisfy

f(x) =
degree(x)∑

i=1

px,if(i)−mx (5)

For a random-walk problem with N non-home nodes,
there are N linear equations similar to the one above,
and the solution to this set of equations will give the ex-
act values of f at all nodes.

Equation (5) becomes identical to (2), and Equation
(4) reduces to the condition of perfect VDD nodes if

px,i =
gi∑degree(x)

j=1 gj

i = 1, 2, · · · , degree(x)

mx =
Ix∑degree(x)

j=1 gj

m0 = VDD f(x) = Vx (6)

In other words, for any DC power-grid analysis, a ran-
dom walk problem can be constructed that is mathemat-
ically equivalent. The work in [4] proposes to perform a
certain number of walks and uses the average money left
in those experiments as the approximated voltage, using
a convergence criterion base on the Central Limit The-
orem [6]. The calculations for ground net analysis are
analogous. When solving for multiple node voltages, each
calculated node becomes a new home in the game with
an award amount equal to its calculated voltage. This
operation improves both speed and accuracy [4].

For transient analysis of RC supply grids, the backward
Euler approximation with a timestep of h can be viewed as
replacing each capacitor by a resistor and a voltage source.
Thus the rules of the random walk game are changed to
accommodate the changes. Each node x has an additional
connection, and the walker could end the walk and be
awarded the amount Vx(t− h) with probability

Cx

h∑degree(x)
j=1 gj + Cx

h

where gj is as defined in Equation (2), and Cx is the ca-
pacitance between node x and ground. By a bookkeeping
technique proposed in [4], in follow-up timesteps after the
first transient step, random walks are no longer needed,
and computation can be done efficiently.

The above generic random-walk algorithm proposed in
[4] shows excellent performance for many circuits, but it
has been found that it could require large runtimes for
certain circuit types:

1. In wire-bond power grids, a small number of perfect
voltage sources are located on four sides of the top
metal layer, and a walk from a center node takes a
huge number of steps to terminate. In general, for a
large graph with very few homes, runtime is high.

2. In certain power grids, wire resistances in a metal
layer are significantly larger than the vias connecting
this layer to the next metal layer beneath it. Because
the random walker is more likely to choose a direction
with lower resistance, this structure forms a barrier
that makes it difficult for the walker to go up to the
top layer and reach a perfect voltage source. Fig. 2
illustrates this effect.

Fig. 2. The barrier effect. Grey rectangles represent high wire
resistances, white rectangles represent low via resistances, and
curves show the route of the random walker when he/she attempts
to approach the top metal layer.

In the next section, we will introduce the hierarchical
random-walk method that overcomes these problems nat-
urally, and speeds up solutions to all circuits.

III. Hierarchical Random Walks

A. Principles

Fig. 3. Hierarchical strategy in [7].

The hierarchical strategy in [7] is illustrated in Fig. 3.
The whole power grid is divided into a global net and
multiple local nets, and interfacing nodes are defined as

ports. From the global perspective, the behavior of a local
grid is completely described by the following equation.

Iports = AVports + S (7)

where Iports is the vector of currents flowing from the
global net into this local net, Vports is the vector of port
voltages, A is a square matrix, S is a constant vector.
The algorithmic flow of [7] is: first, macro-models, i.e.,
the A matrices and S vectors, are extracted from local
nets; next, the linear equation set of the global net is
solved and port voltages obtained; finally, local nets are
solved individually.

A.1. Constructing A and S

An exact method for calculating A and S is provided in
[7], and 0-1 integer linear programming is used to make A
sparse, at the expense of a bounded loss in accuracy. We
will now demonstrate a random walk approach to build
A and S, and to achieve sparsity naturally.

If we look at one port x, the current flowing from the
global net into the local net is

Ix = I1 + I2 + · · ·+ IN (8)

where the neighbors of x inside the local net are labeled
1, 2, · · · , N , and I1, I2, · · · , IN are the currents flowing
from port x to each of them.

Now consider node i, one of the neighbors of x: this
could be either an internal node or a port node. If node i
is a port node,

Ii = giVx − giVi (9)

where Vx and Vi are voltages at node x and node i respec-
tively, and gi is the conductance between x and i.

Lemma 1 If node i is an internal node, and we run M
random walks from node i, with the ports being the termi-
nals at which the walk ends, then the estimated Vi is in
the following form:

Vi = c1Vport 1 + c2Vport 2 + · · ·+ ckVport k − κ (10)

where κ is a constant, Vport j is the voltage at a port node,
and coefficients have the following format

cj =
number of walks ending at port j

M
(11)

satisfying the relationship

c1 + c2 + · · ·+ ck ≤ 1 (12)

which is an exact equality for DC analysis, but is a strict
inequality for transient analysis.

The proof of Lemma 1 comes from the procedure of
random-walk estimation. For each individual walk, the
money left in the end is composed of an award minus a
sequence of motel expenses. This award could be a port
voltage, if this walk ends at a port node; although the
value of this voltage is unknown at this time, we keep a

count for it. Alternatively, if this walk ends at a V (t− h)
connection of certain node during transient analysis, the
award is the corresponding V (t − h). After M walks,
we sum up all results and divide the sum by M . The
contribution of port voltage j is therefore given by equa-
tion (11), the percentage of walks that end at port j. Of
course, one of the k ports is x itself. The κ term in (10)
is the accumulated motel expenses divided by M , minus
the contribution of V (t− h)’s. In DC analysis, there are
no connections to V (t − h) sources, and each walk must
reach a port, therefore (12) is an exact equality. In tran-
sient analysis, due to the possibility of ending random
walks at the V (t− h) nodes, (12) is an inequality.

The current from port x to this internal node i is

Ii = giVport x − giVi

= gi(1− cport x)Vport x − gi

∑

port j 6=x

cjVport j

+giκ (13)

Equation (9) can be viewed as a special case of (13). Sub-
stituting equations (9) and (13) into (8), we obtain

Ix = α1Vport 1 + α2Vport 2 + · · ·+ αkVport k + γ

where αj = −
N∑

i=1

gicj(node i) for j 6=x

αx =
N∑

i=1

gi(1− cport x(node i))

γ =
N∑

i=1

giκ(node i) (14)

This is what we need: α1, α2, · · · , αk is a row in matrix
A, and the γ term is an element in vector S. By doing
this for every port node, we can construct A and S.

The sparsity of the A matrix is controlled by the num-
ber of random walk experiments, M . When equation (10)
is constructed, because of relationship shown in equation
(11), insignificant items are dropped, and this leads to
the sparsity of A. The larger M is, the more entries of
equation (10) are kept and the denser A is.

Lemma 2 The estimated A matrix is diagonally domi-
nant.

From equation (14), all weights of the port voltages are
negative except for αx. From equation (12), we get

1− cport x ≥
∑

port j 6=x

cj (15)

Applying this inequality and equation (14), we get

αx ≥
N∑

i=1

gi

∑

port j 6=x

cj(node i)

=
∑

port j 6=x

N∑

i=1

gicj(node i)

=
∑

port j 6=x

(−αj)

=
∑

port j 6=x

|αj | (16)

Thus we have proven Lemma 2. Equation (16) is an
equality for DC analysis, and a strict inequality for tran-
sient analysis. In general, A will not be symmetric even
though the exact A matrix has this property; however,
it is preferable to leave it this way in order to preserve
accuracy. As we will show in Section 3.A.2, this is not a
barrier to solving the global net.

A.2. Solving the global net

Now we move on to step 2, solving the global net based
on the extracted macromodels. In order to do so using
random walks, we interpret each macromodel as an imag-
inary circuit, by converting equation (14) as follows

Ix =
∑

port j 6=x

(−αj)(Vx − Vport j)

+(αx +
∑

port j 6=x

αj)Vx + γ

=
∑

port j 6=x

(−αj)(Vx − Vport j)

+(αx +
∑

port j 6=x

αj)(Vx − γ1) + γ2 (17)

There are many ways to split γ into γ1 and γ2. One of
them is very meaningful: γ1 is a weighted average of some
V (t − h)’s inside this local net, γ2 is a weighted sum of
some current-loads inside this local net, as shown below.

γ1 =

Cx

h
Vx(t− h) +

N∑

i=1

gi

M

∑

mc(i) ends

Vend(t− h)

Cx

h
+

N∑

i=1

gimc(i)
M

(18)

γ2 =
N∑

i=1

gi

M

∑
motel price (19)

where the neighbors of x inside the local net are labeled
1, 2, · · · , N , Cx is capacitance between port x and ground,
gi is conductance between x and i, and mc(i) is the num-
ber of walks from node i and ending at some V (t − h).
(18) and (19) can be proven by investigating the constant
items in (10) and (14). It is straightforward and is omit-
ted due to space limitations.

Equation (17) can be viewed as a circuit, in which
(−αj) conductance connects node x and node j, (αx +∑

port j 6=x αj) conductance connects node x to a volt-
age source with voltage equal to γ1, and an independent
current source γ2 flows out of node x. The connection
(αx+

∑
port j 6=x αj) only exists for transient analysis. This

is an imaginary circuit, because each resistor only exists
for one direction (corresponding to the asymmetry of the

computed A matrix), i.e., conductance from node x to
node j could be different from conductance from node j
to node x. Fig. 4 illustrates this imaginary circuit com-
posed of directed resistors.

Fig. 4. The imaginary circuit interpretation of a macromodel.

Based on this imaginary circuit interpretation, the
global net can be solved by running random walks from
each port nodes, and the port voltages may be obtained.

A.3. Solving the local nets

Next, we move on to step 3, solving the bottom layer
nodes in each local net, based on the port voltages com-
puted in step 2. The ports correspond to “homes” in
this random walk game, and each walk from bottom layer
typically ends within a reasonably small number of steps.

B. Benefits of Hierarchy

A partitioner is required by the approach in [7], but
is not necessary in our method. Given a power grid, we
choose a layer of vias as the border between the global net
and the local net, define the upper ends of these vias as
ports, and the lower ends as the internal neighbors of the
ports. In practice, we choose this layer of vias such that
the global net is roughly 10% of the entire circuit size.

The hierarchical method is faster than generic random-
walk algorithm. When solving the global net, each ran-
dom walk starts from a port and ends at a perfect volt-
age source; when solving the local net, each random walk
starts from a bottom layer node and ends at a port. In ei-
ther case, a walk has fewer steps than a walk in the generic
method that starts from a bottom layer node and has to
reach a perfect voltage source at the top metal layer. Al-
though we pay the overhead of building macromodels, the
overall savings dominate this cost.

The hierarchical method is more robust than the
generic random-walk algorithm. As illustrated in Fig. 2,
in certain power grids, a highly resistive metal layer forms
a barrier that makes it difficult for the walker to go up
to the top layer, and the runtime of generic method is
therefore very long. The hierarchical method solves these
circuits simply by defining ports right on this barrier. In
other words, instead of relying on the random walker to
pass this barrier, we cut a walk into two segments, and
preserve the barrier nature in the macromodel. This can
also be viewed as an extreme case of the speedup discussed
in the previous paragraph.

A more general problem of generic random walk is that,
in a large graph with very few homes, the runtime is high.

One example is wire-bond power grids. In the next sec-
tion, we will show how such graphs can be handled when
the idea of hierarchy evolves to the virtual-layer concept.

Finally, although mutual inductances are not directly
handled by the random-walk engine, if their effects are
limited to the top few metal layers, the hierarchical
method can abstract the lower metal layers into a macro-
model, and pass the global net, with 10% the size of the
original circuit, to a traditional direct solver that can han-
dle mutual inductances.

C. Variations of Hierarchy

A natural extension of the proposed algorithm is to use
multi-level hierarchy. Making use of all available vias,
we can build macromodel on top of macromodel. Af-
ter this bottom-up traversal, the circuit is reduced to a
global net, then port voltages are solved in a top-down
order, and the bottom layer voltages are obtained in the
end. Since single-level hierarchical method is better than
generic method, we expect the multi-level method to be
even faster and more robust. Test results in Section 4
show that the multi-level method has a similar accuracy-
runtime tradeoff as the single-level method.

Another extension of the proposed algorithm leads to
the concept of a “virtual-layer,” when we choose ports
such that the global net physically does not exist. In other
words, there are no direct connections between these ports
in the original circuit: this can be considered to be similar
in flavor to grid coarsening in [3]. When we abstract all
connections of these ports into a macromodel, this macro-
model provides imaginary connections between ports, and
the global net is totally composed of such virtual connec-
tions, as illustrated in Fig. 5.

Fig. 5. The original graph with ports marked, and the extracted
virtual layer.

For example, in a large graph where the number of
homes is very limited and all homes are located at periph-
ery, a random walk from a center node typically needs a
huge number of steps. We traverse the graph and mark
one port in every 10 nodes. Here the sampling rate is
1/10; this number cannot be too low, because we have
to guarantee that the virtual layer will be a connected
graph. Special arrangements need to be made such that
each home is surrounded by ports, because edges leading
to a home should not be abstracted into the macromodel.
Then all connections of these ports are abstracted into a
macromodel, except for those leading to a home. Thus
the virtual layer is constructed and the size is 10% of the
original graph. After solving it, we go back to the local
net, i.e., the original graph, and because there are solved

ports all over the graph, it can be solved efficiently.

IV. Experimental Results

In this section, we use three industrial benchmarks
to evaluate the proposed hierarchical algorithms for DC
analysis. Then, randomly generated circuits (whose struc-
ture is similar to real-life circuits) are used to test the
performance of transient analysis.

Our first benchmark is a 70729-node circuit, and the
voltage range of VDD bottom layer is 1.1324–1.1917V.
The second benchmark has 218947 nodes. The voltage
range of VDD bottom layer is 1.61248–1.79822V, that of
GND bottom layer being 0.000334–0.066505V. The third
benchmark is a wire-bond power grid with 347566 nodes.
It is GND net only, and the bottom layer has a voltage
range of 0.024347–0.110860. Computations are carried
out on a Linux workstation with 2.8GHz CPU frequency.

Fig. 6. An isolated low resistance forms a “trap.”

One implementation issue is shown in Fig. 6. If a sin-
gle low resistance is isolated by other high resistances,
because the random walker is more likely to choose the
direction with lower resistance, he/she could spend many
steps oscillating between node a and b. Our algorithm
employs a pre-processing step to detect such isolated low
resistances and use the Y-∆ transformation to remove
them without losing accuracy.

Fig. 7. Accuracy-runtime tradeoff curves for solving (a) the first
benchmark, using the generic random-walk method, the
single-level hierarchical method, and the multi-level hierarchical
method; (b) the second benchmark, using the single-level
hierarchical method and the multi-level hierarchical method.

Fig. 7(a) plots the tradeoff between average error and
runtime solving the first benchmark, and both hierarchi-
cal methods achieve roughly 3–4 times speedup over the
generic method, with the same average error.

Fig. 7(b) plots the tradeoff for the second benchmark.
Data for the generic random-walk method are omitted
because its runtime is unacceptably high for this circuit.
The reason has been discussed in Section 3: a highly re-
sistive metal layer on top of low-resistance vias forms a
barrier structure. This circuit shows an example of the
robustness introduced by hierarchical methods.

In practice, the user decides the tradeoff point by choos-
ing M values according to the needs of the analysis. Here
for runtime comparison purpose, we choose a reasonable
tradeoff point on each curve, and list these points in Ta-
ble I.

TABLE I
Runtime comparison. N is circuit size, E1 is average error,

E2 is max error, T is runtime, and NT is normalized
runtime, defined as runtime per thousand nodes. G denotes

the generic random-walk method, S denotes the
single-level hierarchical method, and M denotes the

multi-level hierarchical method.

Benchmark N E1(mV) E2(mV) T NT(sec)

G 1.1 9.8 17.40 sec 0.245

Industry1 S 71K 1.1 6.6 4.34 sec 0.061

M 1.1 9.4 4.16 sec 0.059

Industry2 S 219K 1.4 30.7 20.82 sec 0.095

M 1.4 35.3 30.12 sec 0.138

Industry3 348K 3.1 24.7 75.88 sec 0.22

Chip2 by the 2.7M N/A N/A 25 min 0.56

method of [7]

The runtime comparison is shown in Table I. The num-
bers for chip2 in [7] are listed as a baseline, noting that
our computer is approximately 3 times faster than those
used by [7], according to SPEC benchmarks [5]. Runtimes
reported by [7] show superlinear time complexity. Since
the time complexity of random-walk algorithms is linear
in circuit size (for circuits with similar structure) [4], as
power grid size increases, they will outperform [7] more.

The multi-level hierarchical method does not show a
runtime advantage over the single-level method for the
second benchmark. The reason is the overhead of building
multiple macromodels for relatively small circuits. How-
ever, we believe that the multi-level method is potentially
a more robust algorithm, and the third circuit is a case
where it provides visible benefits.

The third benchmark is a wire-bond power grid, a diffi-
cult circuit type to solve. Even after it is reduced to its top
metal layer only, there are still 80K nodes, yet there are
only 20 perfect voltage sources distributed on four sides
of the top metal layer. Thus it requires high runtime if
using the single-level method. We employ a two-level hi-
erarchical method, the top level being a virtual layer, as
discussed in Section 3.C. This scheme solves this bench-
mark in a reasonable amount of time, with acceptable
error. Results are listed in Table I, and the normalized
runtime is higher than solving other circuit types.

In order to evaluate the transient analysis, since we
were unable to obtain real-life RC/RLC power grid cir-
cuits, we randomly generated two circuits with realistic
parameters. The results of our approach and the generic
method are shown in Table II. CPU times are measured
for the timesteps that follow the initial DC analysis and
the first transient step. The solution for circuit 1 is com-
pared with HSPICE, while circuit 2 is too large to be

TABLE II
Transient analysis results. N is the circuit size, TS is the

number of timesteps, T is CPU time per timestep for
subsequent timesteps, E1 is the average error, E2 is the

max error, and P is the peak memory. G denotes the
generic random-walk method, and S denotes the

single-level hierarchical method.

Ckt N TS T(sec) E1(mV) E2(mV) P(MB)

#1 G 3700 500 2.6m 1.6 11.9 N/A

S 1.4m 2.0 13.7 N/A

#2 G 2.3M 1000 0.65 N/A N/A 680

S 0.64 N/A N/A 854

simulated in HSPICE. The runtimes are several times
faster than traditional direct solver runtimes reported in
[7], even after normalization by the speed factor of 3. The
space complexity is higher for the hierarchical method, be-
cause bookkeeping is needed not only for the bottom-layer
nodes, but also for building and solving the global net.
However, the peak memory of the hierarchical method is
still lower than that of traditional methods reported in
[7], in terms of memory consumption per million nodes.

V. Conclusion

A random-walk based hierarchical power grid analy-
sis algorithm is proposed in this paper. It is shown to
be faster and more robust than generic random-walk al-
gorithm, and shows good accuracy-runtime tradeoffs for
different types of power grids.

Acknowledgments

Our thanks go to Sani R. Nassif and Haihua Su for help
with the benchmark circuits.

References

[1] P. G. Doyle and J. L. Snell, Random Walks and Electric Net-
works, Mathematical Association of America, Washington DC,
1984.

[2] C. Ho, A. E. Ruehli, and P. Brennan, “The modified nodal
approach to network analysis,” IEEE Transactions on Circuits
and Systems, vol. CAS-22, no. 6, pp. 504-509, 1975.

[3] J. Kozhaya, S. R. Nassif, and F. N. Najm, “A multigrid-
like technique for power grid analysis,” IEEE Transactions on
Computer-Aided Design, vol. 21, no. 10, pp. 1148-1160, 2002.

[4] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Random Walks
in a Supply Network,” Proceedings of the ACM/IEEE Design
Automation Conference, pp. 93-98, 2003.

[5] SPEC CPU2000 Results, available at
http://www.specbench.org/cpu2000/results/cpu2000.html

[6] R. D. Yates and D. J. Goodman, Probability and Stochastic Pro-
cesses: A Friendly Introduction for Electrical and Computer
Engineers, John Wiley and Sons, New York, 1999.

[7] M. Zhao, R. V. Panda, S. S. Sapatnekar, and D. Blaauw, “Hier-
archical analysis of power distribution networks,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 21, no. 2, pp. 159 -168, Feb. 2002.

