
An Efficient Algorithm for Low Power Pass Transistor Logic Synthesis
�

Rupesh S. Shelar, Sachin S. Sapatnekar
Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455.

Email:
�
rupesh,sachin � @ece.umn.edu

Abstract

In this paper, we address the problem of power dissi-
pation minimization in combinational circuits implemented
using pass transistor logic (PTL). We transform the problem
of power reduction in PTL circuits to that of BDD decompo-
sition and solve the latter using the max-flow min-cut tech-
nique. We use transistor level power estimates to guide the
BDD decomposition algorithm. We present the results ob-
tained by running our algorithm on a set of MCNC bench-
mark circuits, and show on an average of 47% power reduc-
tion over these circuits; the comparison with the previously
proposed low power pass transistor logic synthesis algo-
rithms shows an average improvement of over 23% over the
best previously published approach.

1 Introduction

Power dissipation is becoming a critical problem in mod-
ern day deep sub-micron circuits, especially in case of cir-
cuits that are used in portable battery-operated devices. The
problem of power optimization at various levels of abstrac-
tion has been addressed by numerous researchers. At the
logic level, power optimizations include techniques such as
gated clocks and precomputation; the latter include the use
of the observability don’t cares to disable the clock signal
at the input registers [1]. Using a similar approach, Ruan et
al. propose bipartitioned codec architecture in which out-
put values are encoded using the minimum number of bits,
and then decoded using the decoder in the next clock cy-
cle, or computed conditionally [2, 3]. A limitation of the
precomputation scheme [1] is the addition of extra logic to
the circuit, while the bipartitioning codec approach may not
be always optimal. Among the recently popular logic fami-
lies, pass transistor logic (PTL) is promising for low power
applications as compared to conventional static CMOS be-
cause of its lower transistor count, lower capacitances due
to the possible use of NMOS transistor as pass transistors
and therefore, good performance and lower power dissipa-
�
This work was supported in part by SRC under award 99-TJ-692.

tion [4, 5]. For power optimization of PTL circuits, Lind-
gren et al. propose the use of sifting [6] which reduces
switching activity in BDD mapped PTL circuits [7]. An-
other approach by Tavares et al. proposes employing split
cofactors based on the Shannon expansion at the root of
BDD’s, with the variable corresponding to root node be-
ing used as a control input to disable the inverters [8]; the
disabled inverters cannot make low-to-high transition, re-
sulting in reduced switching activity. This approach differs
from an approach of independent of cofactors by Alidina
et al. in disabling inverters rather than disabling registers
and also in algorithm as [1] uses area-efficient co-factors
while [8] uses the power-efficient cofactors.

In this paper, we propose a BDD decomposition tech-
nique to minimize the power dissipation in combinational
logic under the assumption that all primary inputs and pri-
mary outputs are registered. We use the switching proba-
bility estimation technique proposed in [7] to estimate the
switching probabilities in PTL circuits and also take into
account the capacitance driven by each node in the PTL cir-
cuit, unlike [7] which uses a linear fanout model. Unlike the
previous approaches [1, 8], which use a single variable to
disable the inputs of independent co-factors, we decompose
the logic function using the max-flow min-cut technique to
find the cut in the BDD that minimizes the power dissipa-
tion; the cut yields a subset of variables used as inputs to
select logic that is used to disable the part of the circuit
that does not perform useful computation in a given clock
cycle. Our decomposition-based implementation model is
more flexible than the bipartitioning codec architecture pro-
posed in [3] and allows us to find optimum decomposition;
optimality of decomposition is ensured due to the use of
Ford-Fulkerson algorithm [9] to find the min-cut.

The organization of the rest of the paper is as follows.
In Section 2, we describe the power estimation technique
used for PTL circuits. In Section 3, we illustrate the BDD
decomposition and propose an algorithm for minimizing the
power dissipation in Section 4. In Section 5, we discuss the
experimental results obtained using the algorithm, followed
by concluding remarks in Section 6.

1

2 Power Model

1

b

c

b

0

a

 f

a

b bb’

a’

c’c

(a) (b)

Figure 1. Correspondence between a BDD
node and its PTL implementation (a) BDD for
f=ab+c(ab’+a’b), (b) Corresponding PTL Im-
plementation.

Figure 1(a) shows the BDD for the function f =
ab+c(ab’+a’b), while Figure 1(b) shows the corresponding
PTL implementation in which every node in the BDD is
translated into a 2-input multiplexer. Given the probabili-
ties for the inputs, the switching probability of a function�

can be expressed in terms of the probabilities of its co-
factors,

���
and

� �
, where � is an input. Equations (1) and

(2) express the probability of
�

being 1 and 0, respectively,
while switching probability is given by Equation (3).

�
	���
��������
	 �
���������	�����
��������
	 �
� !�"�#�
	�� �
$��� (1)

�
	���
� !�����
	 �
���������	�����
� %�����
	 �
� !�"�#�
	�� �

 %� (2)

�
	��'&)(+*-,/.)0%*-1�2!���43#�#�
	���
����"�#�
	/�5

 %� (3)

The switching probabilities for the nodes in BDD shown
in Figure 1 computed assuming uniform input probabili-
ties (i.e., ��6879�;:�<=�>�$68?@�A:B<C�D��6)EF�;:�<=�HGJI K)
are shown inside the corresponding nodes in Figure 2(a).
The triplet (�MLON�P)� � P)�) associated with each node corre-
sponds to the switching probability, the probability of the
node being evaluated to 1, and the probability of node be-
ing evaluated to 0, respectively. For instance, the nodes in
Figure 2(a) corresponding to the nodes labeled ‘b’ shown
in Figure 1(a), have the switching probability � LON �RQ+S�T , a
probability of being evaluated to 1, � � , of QUSBV , and a proba-
bility of being evaluated to 0, � , of :�SBV . The capacitances
driven by each node can be computed by examining the PTL
implementation. For instance, the node labeled ‘c’ shown in
Figure 1(a) drives four source capacitances (W L) of NMOS
transistors. The capacitance driven by each node is shown
in Figure 2(b), where WYX is the input capacitance of an in-
verter. Once the switching probabilities and capacitances
are known, the dynamic power can be obtained by using the
following formula, where, ZM[\[is supply voltage,

�
is the

2C +Cs i

3C 3C

4Cs

ss

2C2Cs s

(a) (b)

(3/8,3/4,1/4)

(1/2,1/2,1/2)

(1/2,1/2,1/2)

(0,1,0) (0,0,1)

(3/8,3/4,1/4)

Figure 2. Power estimation in PTL circuits (a)
Switching probability estimation, (b) Capaci-
tance estimation.

clock frequency,] LON and W LON are switching probabilities
and capacitances, respectively.

]_^B`ba�c � 6ed"f�gih [\j L] LON W LON < Zlk[\[� (4)

3 Decomposition for Low Power
Figure 3 shows a general combinational logic circuit

with registered inputs and outputs. Assuming PTL im-
plementation of the combinational logic, we observe that
switching activity occurs in the entire PTL network dur-
ing every clock cycle, although parts of the PTL network
may not perform useful computation. This can be observed
from a property of BDD’s that for any assignment of in-
puts, only one path from root to terminal node is active, so
that the PTL implementation of this path performs useful
computation for a given assignment, while the rest of the
PTL network still dissipates power because of the switch-
ing of its inputs. Therefore, reduction in power dissipa-
tion can be achieved if we disable the part of the PTL net-
work that does not perform useful work. Figure 4 shows

.

.

.
.
.
.

R
E
G

R

S
T
E

I

R
E
G

R

S
T
E

ICombinational

Logic

I

I n

1
f

f

1

m

Clock

Inputs
Outputs

Figure 3. Combinational logic with registered
inputs and outputs

the decomposition-based implementation model in which
a subset of inputs is used to generate latch enable signals
for the input registers. The enable signals constitute the ‘se-
lect logic’ block while the other combinational logic blocks,

2

Wnm � through Wnmpo , are PTL implementations of logic de-
rived from original BDD’s, as explained in the following
subsection. Multiplexers are used to select the outputs from
the block that performs useful computation in a given clock
cycle. In this case, we observe that only the select logic
and multiplexers are active all the time while other combi-
national blocks are not. Greater power reduction can be
achieved if select logic and multiplexers dissipate small
power and if the combinational blocks Wnm � through Wnmpo
are active with small probabilities. In this case, the total
power dissipation in the combinational logic is given by
Equation (5), where � X is the probability of combinational
block Wnm X being active and]�q�r * is the power dissipation
in combinational block Wnm X .
]�s j�t h�u"v �]�w jyxzj�te{|r h�} X t �]$~#� � j L"�@d oX
�� � Xe] q�r * (5)

While the above equation is similar to the equation used
in [3], Equation (5) is more general in the sense that � is
allowed to take any value, unlike [3], where � is restricted
to 2, in the bipartitioning codec architecture.

.

.

.
.
.
.

R
E
G

R

S
T
E

I

M
U
X

.

.

.

.

.

.

I

I
j

I

I
j

.

.

.

..

. Select
Logic

1

k

f1

mf

.

.

.

R
E
G.

LE

R
E
G.

n
..

.

n

Clock

CL

CLk

1

LE = Latch Enable, CL = Combinational Logic

LE

I

I

I 1 I k

 ...

Figure 4. Decomposition model for implemen-
tation

3.1 Example
Consider the optimized BDD on 6 inputs for the carry

output function for a 3-bit adder as shown in Figure 5(a). If
we map the BDD to PTL using the implementation model of
Figure 3, then the entire PTL network will dissipate power
in each clock cycle. On the other hand, if we take a cut
across the BDD containing the shaded nodes as shown in
Figure 5(a), then we can decompose the BDD into smaller
BDD’s and build the original function using multiplexers
and PTL implementation of these BDD’s.

The process of decomposition can be explained as fol-
lows. To generate the BDD’s for select logic we introduce
dummy terminal nodes Z � , Z k , Z�� as shown in Figure 5(b)
and encode them using scheme such as minimum-bit en-
coding or one-hot encoding. This is similar to the BDD
decomposition proposed in [10] for performance oriented
PTL synthesis. Figure 5(c) shows the select functions ob-
tained by one-hot encoding, i.e., to generate ^ � , we setZ � ��:iP Z k ��G�P Z � ��G . Similarly, BDD’s for ^ k , ^ � are

c3 O1 O2

(a)

c3

a0

b0

b1

b2

1 0

a1a1

a2a2

(b)

 1

a0

b0

a1

a0 a0

b0b0

(c)

a0

b0

a1’ a1’’

O3

V1 V2 V3

Figure 5. (a)BDD for carry function for 3-bit
adder, (b) Introducing dummy nodes in the
original BDD, (c) BDD’s for select logic after
one-hot encoding of dummy nodes

obtained. Functions ^ � , ^ k and ^ � are used as latch en-
ables for the registers and also as select inputs for the mul-
tiplexer to select among three combinational logic blocks
whose BDD’s are shown in Figure 6. As shown in Figure 6,

b1

b2

1 0

a2a2a2

b2

01 0

a2

b2

1

g
1

g
2

g
3

Figure 6. BDD’s for functions in combina-
tional logic blocks

BDD’s do not share the nodes with the same functionality;
such nodes are duplicated, which may cause an area over-
head. The decomposed implementation for the carry output
function excluding ‘select logic’ is shown in Figure 7. In
this case, total power dissipation in combinational logic can
be computed as follows: probabilities of ^ P ^ � P ^ k being
evaluated to 1 are computed using uniform probability as-
sumption at the primary inputs, which can be relaxed for the
known input probabilities.

] t � �] h!�%� h'�\� h'� �] 	 �\� ��� u � � ���
	 h �
$���] q�r ����
	 h �
����] q�r � ���
	 h �
$���] q�r � (6)
]$t � �] h � � h � � h � �] 	 �\� ��� u � � ��G�I�:�3�K]$q�r ���G�I�K]$q�r � ��G�I Q+��K]�q�r � (7)

It is easily seen that the power dissipation in the combina-

3

LE

LE

LE

M
U
X

o1

o1

o2

o2

o3

o3

g

g

g
3

2

1

c3

a2
b2

a2
b2

b1

a2
b2

Figure 7. Decomposed implementation of
Carry function

tional logic varies depending on the cut and that there are a
large number of candidate cuts in a given BDD. Our objec-
tive is to find a cut in such that power given by Equation (5)
is minimized. We propose an algorithm to find an optimum
cut in the following section.

4 Algorithm
We represent a BDD as a directed acyclic graph (DAG)

where the nodes are identical to the nodes of BDD, and the
edges are identical to the edges of BDD edges, and are as-
signed a direction corresponding to variable ordering, from
a lower indexed variable to higher indexed variable. As ex-
plained in section 2, the switching probability of a node de-
pends on its cofactors and probability information of the
input variable at that node. The power dissipation at each
node can be computed by traversing a graph in depth-first
search (DFS) manner. Similarly, the probability of node be-
ing selected as well as the power dissipation in select logic
can be computed using DFS. The total power dissipation of
PTL implementation of a function rooted at a given node is
just the sum of power dissipation of its cofactors and power
dissipation at that node1.

The cost of each node is calculated as the sum of the
power dissipation in select logic and product of probabil-
ity of node being selected and power dissipation at that
node. The cost estimation for the BDD shown in Figure 1
(a) is shown in Figure 8; the probability and capacitance
estimations have already been shown in Figures 2 (a) and
2 (b), respectively. In Figure 8, we use W X �H�;� W L
and choose ����:5G for the sake of simplicity. The triplet
(� L jyxzj�te{ P] P] L jyxzj�te{) associated with each node in Figure 8
corresponds to probability of the node being selected, power
dissipation in the PTL network rooted at given node in terms
of switching capacitance and power dissipation in the select
logic. As an example, Figure 8 lists the three node cuts2,

1In this analysis, signal correlations are ignored. While this may lead
to some inaccuracies, it is generally considered as an acceptable approxi-
mation. This technique can be substituted by any other technique for prob-
ability computation that considers correlation.

2Note that cuts have been enumerated for illustrative purposes only and
that our algorithm finds the minimum cut without any such enumeration.

(1,0,49Cs)
2 8

N 1

N 2 N 3

N 4

N 6

N 1

N 5

(1,49Cs, 0)
4

4

(

Cut A : { }

 Cut C: { }

Cut B : {N 2

N
3N, }

6N,4N,2

4

(1,0,49Cs)
2 8

22

1,2Cs,
2

33Cs)
8

8 8
(1,25Cs,12Cs)(1,25Cs,12Cs)

Figure 8. Estimating the cost of nodes

namely Cut A, Cut B, Cut C containing one, two and three
nodes, respectively. The cost of a cut is simply the sum of
the cost of each node in the cut. After evaluating the cost
of each node, the DAG can be converted into a flow net-
work. Ford-Fulkerson algorithm [9] is then used to find the
minimum cut that corresponds to the implementation with
minimum power dissipation. In case of Figure 8, the mini-
mum cut is Cut B with the cost � � q L� , while the cost of Cut
A and Cut C is �%� q L� and k'� � q L��� . The pseudo-code of the
overall algorithm is as shown in Figure 9.

Input: �������8�"� = Digraph corresponding to given

BDD, � = Nodes, � = Edges.

Output: i¡y¢�£ = Optimum cut-set.

Steps:

/* Estimate the power dissipation using DFS.*/

1. PowerEstimate(G);

/* Estimate the select probability.*/

2. EstimateSelectProbability(G);

/* Estimate power dissipated in select logic.*/

3. EstimateSelectLogicPower(G);

4. For ¤5¥y� Do /* Estimate the cost. */¤ ->Cost = ¤ ->SelectLogicPower +¤ ->SelectProbability ¦R¤ ->PowerDissipation;
/* Convert to a flow network.*/

5. �¨§�© ª�« = CreateFlowNetwork(���/���|�"�);
/* Find an optimum cut.*/

6. Ford-Fulkerson(�¬§�© ª�«
�y���e ¡e¢5£);
Figure 9. Pseudocode for Algorithm to find
optimum cut

Once the cut is determined, the vertices in the cut are
replaced by dummy terminal nodes, which can be assigned
unique codes to generate select logic, and also to generate
the combinational logic blocks as illustrated in section 3.
The following proposition states the time complexity of our
algorithm.

Proposition 4.1 The algorithm shown in Figure 9 takes­ 6)® � < time to find an optimum cut, where ® is the number
of nodes in the original BDD.

4

Proof 4.1 The Step 1 to Step 5 take
­ 6)®¯< time since Step

1, 2 and 3 used depth-first search that takes
­ 6%° Z °±�°³²´°5< time on a graph, where Z is a set of nodes and ²

is a set of edges. In case of BDD’s, all nodes, except
the terminal nodes, have two fanout edges, and therefore,­ 6'° Z °��µ°�²´°�<b� ­ 6)®¶< . The Step 6 takes

­ 6%° Z °�°³²´° k <
for Edmond-Karp implementation of Ford-Fulkerson algo-
rithm [9]. Therefore, the algorithm takes

­ 6)® � < time to
find minimum cut in the worst case.

Comment: Although time complexity of our algorithm is­ 6)® � < , a tighter upper bound can be obtained since we
have observed that algorithm took less than a second in case
of most of the MCNC benchmarks on Sun Ultra-60 machine
and we also observed that the actual run times do not in-
crease cubically. This is because the nodes that are not in
the min-cut have higher costs as we move away from the
cut and therefore, number of flow augmentations performed
by Edmonds-Karp implementation are far less than

­ 6)® k < .
Since the Ford-Fulkerson algorithm takes

­ 6)®¯< time for
each augmentation, this more accurately reflects the trend
of run times for the circuits in the MCNC suite.

One can observe that each cut corresponds to implemen-
tation with power dissipation equal to the cost of cut, and
since the Ford-Fulkerson algorithm cut results in minimum
cut, the decomposed implementation obtained by the algo-
rithm in Figure 9 is the implementation that has the mini-
mum power dissipation under our approximations. Specif-
ically, some of the inverters in the select logic can be relo-
cated and new inverters can be added or removed leading to
inaccuracies in the capacitance estimation. However, these
inaccuracies tend to be small since the area occupied by the
select logic in the implementation is small as compared to
the other combinational logic blocks. In this work, we have
not taken into account area overhead due to node duplica-
tion and register duplication. This can be rectified and the a
similar algorithmic framework can be used to trade off area
and power of the decomposed implementation.

5 Experimental Results
The above algorithm has been implemented as a C++

program. The BDD package CUDD [11] was used for gen-
erating BDD’s, along with sifting [6] for variable ordering
for all our experiments. We assume the use of NMOS tran-
sistors as pass transistors and use of inverters after every
three pass transistors in series. The size of each transistor
was assumed to be G�I�K�·�S�GJI 3�K�· ; capacitances are measured
using area and perimeter coefficients for source and drain
junctions for TSMC GJI 3�K�· CMOS process [12]. The pri-
mary inputs were assumed to have 50% probability of being
at either 0 or 1 throughout the experiments; the supply volt-
age and clock frequency was assumed to be 2.5V and 1GHz,
respectively. We estimated the power dissipation in combi-
national logic for both the undecomposed and decomposed

implementations of several MCNC benchmark circuits, as
shown in Table 1. In the Table 1, Columns 2 through

Example # of Regular Decomposed ReductionCPU time
I/O Power(mWatt)Power(mWatt) (%) Seconds

alu2 10/6 1.48 .447 69.9 5.3
alu4 14/8 4.14 3.48 15.86 45

9symml 9/1 0.12 0.05 52.45 0.09
rd53 5/3 0.11 0.05 54.64 0.06
rd73 7/3 0.22 0.1 51.81 0.15
rd84 8/4 0.31 0.14 54.11 0.28
comp 32/3 0.90 0.41 53.76 1.59
5xp1 7/10 0.29 0.21 27.36 0.29

cordic 23/2 0.28 0.14 50.52 1.6
parity 16/1 0.21 0.1 51.59 0.17

cm162a 14/5 0.15 0.07 51.26 0.1
inc 7/9 0.39 0.18 52.63 0.42

t481 16/1 0.16 0.09 38.12 0.7
z4ml 7/4 0.135 0.82 39.25 0.07
f51m 8/8 0.35 0.18 47.86 0.48

misex1 8/7 0.16 0.1 35.52 0.11
c8 28/18 0.21 0.14 35.0 0.54

ex4p 128/28 3.72 1.23 66.78 19.28
i8 133/81 4.11 1.97 51.95 69.99

Average 47.35

Table 1. Comparison of regular implemen-
tation with our decomposition-based imple-
mentation.

6 show number of inputs/outputs, the power dissipation of
a regular implementation, the power dissipation of decom-
posed implementation, the power reduction and CPU time
on Sun Ultra-60 machine, respectively. The CPU time in-
cludes time for generation of BDD’s, variable ordering, es-
timation and decomposition. The various benchmarks used
here include variety of circuits, from arithmetic logic units
to random logic. We observe significant power reductions
in all of the cases, with an average reduction of 47.35%. We
also observe that the power reduction is more significant in
case of the circuits like ex4p, alu2, 9symml for which the
number of outputs are relatively small as compared to num-
ber of inputs. On the other hand, in case of 5xp1, misex1
the reduction in power dissipation is relatively lower, and
the number of outputs are relatively larger as compared to
number of inputs. This correlation can be explained by ob-
serving that in case of circuits with a large number of out-
puts, the number of combinational logic blocks that may
remain active in a given clock cycle is likely to be larger,
resulting in a lower potential for power reduction.

Table 2 shows a comparison of our algorithms with pre-
viously proposed algorithms [7, 8] for reducing power dis-
sipation in PTL circuits. The experimental results reported
in [7,8] are based on the same assumption of uniform prob-

5

Example Power Reduction(%)
Our [7] [8]

9symml 52.45 - 18.4
alu2 69.9 - 43.0

cordic 50.5 - 44.6
cm162a 51.26 - 39.4

f51m 47.85 - 32.6
parity 51.59 - 4.00
t481 38.13 - 10.2
z4ml 39.25 - 19.50
5xp1 27.36 6.25 -
inc 52.63 0 -

duke2 20.83 13.08 -
Average 45.61 6.44 26.46

Table 2. Comparison of our decomposition-
based implementation with the methods of
Lindgren et al. [7] and Tavares et al. [8].

ability of primary inputs and both report switching activity
reductions and not the actual power reductions. However,
we assume that the switching activity reductions reported
in [7, 8] are translated to the same power reductions when
the BDD’s are mapped onto PTL. In case of [7], power dis-
sipation reductions are considered with respect to the mini-
mum size BDD and we use the same minimum size BDD as
the BDD to be decomposed by our algorithm. Column 2 in
Table 2 shows the power reductions by our algorithm while
Columns 3 and 4 shows the power reductions obtained by
the algorithms proposed in [7,8]. The ‘-’ entry in Column 3
and Column 4 means that results were not available for the
particular example in [7, 8]. We observe that our algorithm
performs better in all the cases. As compared to the average
power reduction of 26.46% by algorithm in [8] over the first
8 benchmarks, our algorithm obtains an average of 50.11%
power reductions over the same benchmarks. Over the last 3
benchmarks, our algorithm obtains an average power reduc-
tion of 33.6%, as compared to the average power reduction
of 6.44% obtained by [7].

6 Conclusion
In this paper, we have presented an efficient algorithm

based on BDD decomposition for low power pass transistor
logic synthesis. The results of our algorithm are encourag-
ing since they show an average power reduction of 47.35%
over a variety of MCNC benchmark circuits. The power
reductions obtained by our algorithm, averaged over the
MCNC benchmarks, are 23.65% and 27.16% higher than
the power reductions obtained by previously proposed low
power pass transistor logic synthesis algorithms [7] and [8],
respectively. Therefore, our algorithm can serve as a vi-
able alternative for low power pass transistor logic synthe-

sis. The same framework of our algorithm can be used to
consider area-power trade-offs in the decomposed imple-
mentations by considering the costs of node duplication and
register duplication.

Acknowledgment
The first author would like to thank Michel Berkelaar

of Magma Design Automation for valuable suggestions on
PTL synthesis and other useful interactions.

References

[1] M. Alidina et al. Precomputation-Based Sequential Logic
Optimization for Low Power. In Proc. ICCAD, pages 74–81,
Nov. 1994.

[2] S.-J. Ruan et al. A Bipartition-Codec Architecture to Reduce
Power in Pipelined Circuits. In Proc. ICCAD, pages 84–90,
Nov. 1999.

[3] S.-J. Ruan et al. A Bipartition-Codec Architecture to Re-
duce Power in Pipelined Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems ,
20(2):343–349, Feb. 2001.

[4] K. Yano et al. A 3.8ns CMOS 16 x 16 multiplier using com-
plementary pass transistor logic. IEEE Journal of Solid State
Circuits, 25(2):388–395, Apr. 1990.

[5] K. Yano, Y. Sasaki, and K. Rikino. Top-Down Pass-
Transistor Logic Design. IEEE Journal of Solid-State Cir-
cuits, 31(6):792–803, June 1996.

[6] R. Rudell. Dynamic Variable Ordering for Ordered Binary
Decision Diagrams. In Proc. ICCAD, pages 42–47, Nov.
1993.

[7] P. Lindgren, M. Kerttu, M. Thornton, and R. Drechsler. Low
Power Optimization Technqiue for BDD Mapped Circuits.
In Proc. ASP-DAC, pages 615–621, Jan. 2001.

[8] R. Tavares and M. Berkelaar. Reducing Switching Activity
in Pass Transistor Circuits. In Proc. IWLS, Jun. 1999.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. Prentice-Hall India, New Delhi, 1998.

[10] R. S. Shelar and S. S. Sapatnekar. Recursive Bipartition-
ing of BDD’s for Performance Driven Pass Transistor Logic
Synthesis. In Proc. ICCAD, Nov. 2001. (To Appear).

[11] F. Somenzi. CUDD: CU Decision Diagram package, Release
2.3.0. http://vlsi.colorado.edu/ fabio/CUDD/.

[12] MOSIS Parametric Test Results for TSMC¸i¹ º5»³¼
CMOS Runs. http://www.mosis.org/cgi-

bin/cgiwrap/umosis/swp/params/tsmc-025/t04r-params.txt.

6

