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Chapter 8  Fast Convolution

• Introduction
• Cook-Toom Algorithm and Modified Cook-Toom

Algorithm
• Winograd Algorithm and Modified Winograd Algorithm
• Iterated Convolution
• Cyclic Convolution
• Design of Fast Convolution Algorithm by Inspection
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Introduction
• Fast Convolution: implementation of convolution algorithm using fewer

multiplication operations by algorithmic strength reduction

• Algorithmic Strength Reduction: Number of strong operations (such as
multiplication operations) is reduced at the expense of an increase in the
number of weak operations (such as addition operations). These are best suited
for implementation using either programmable or dedicated hardware

• Example: Reducing the multiplication complexity in complex number
multiplication:

– Assume (a+jb)(c+dj)=e+jf, it can be expressed using the matrix form, which
requires 4 multiplications and 2 additions:

– However, the number of multiplications can be reduced to 3 at the expense of 3
extra additions by using:
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– Rewrite it into matrix form, its coefficient matrix can be decomposed as
the product of a 2X3(C), a 3X3(H)and a 3X2(D) matrix:

• Where C is a post-addition matrix (requires 2 additions), D is a pre-addition
matrix (requires 1 addition), and H is a diagonal matrix (requires 2 additions to
get its diagonal elements)

– So, the arithmetic complexity is reduced to 3 multiplications and 3
additions (not including the additions in H matrix)

• In this chapter we will discuss two well-known approaches to the design of
fast short-length convolution algorithms: the Cook-Toom algorithm (based
on Lagrange Interpolation) and the Winograd Algorithm (based on the
Chinese remainder theorem)
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Cook-Toom Algorithm

• A linear convolution algorithm for polynomial multiplication based on
the Lagrange Interpolation Theorem

• Lagrange Interpolation Theorem:

Let nββ ,....,0  be a set of 1+n  distinct points, and let )( if β , for i 

= 0, 1, …, n  be given. There is exactly one polynomial )( pf  of degree n or less 

that has value )( if β when evaluated at iβ  for i = 0, 1, …, n. It is given by: 
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• The application of Lagrange interpolation theorem into linear
convolution

Consider an N-point sequence { }110 ,...,, −= Nhhhh

and an L-point sequence { }110 ,...,, −= Lxxxx . The linear

convolution of h  and x  can be expressed in terms of polynomial

multiplication as follows: )()()( pxphps ⋅=  where
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The output polynomial )( ps  has degree 2−+ NL  and has
1−+ NL

 different points.
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• (continued)

)( ps  can be uniquely determined by its values at 1−+ NL

different points. Let { }210 ,...,, −+ NLβββ  be 1−+ NL

different real numbers. If )( is β  for { }2,...,1,0 −+= NLi  are

known, then )( ps  can be computed using the Lagrange interpolation
theorem as:

∏
∏

∑
≠

≠
−+

= −

−
=

ij
ji

ij
jNL

i
i

p
sps

)(

)(
)()(

2

0 ββ

β
β

It can be proved that this equation is the unique solution to compute linear

convolution for )( ps  given the values of )( is β , for

{ }2,...,1,0 −+= NLi .
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• Cook-Toom Algorithm (Algorithm Description)

• Algorithm Complexity
– The goal of the fast-convolution algorithm is to reduce the multiplication

complexity. So, if βi `s (i=0,1,…,L+N-2) are chosen properly, the
computation in step-2  involves some additions and multiplications by
small constants

– The multiplications are only used in step-3 to compute s(βi). So, only
L+N-1 multiplications are needed

1. Choose 1−+ NL  different real numbers 210 ,, −+⋅⋅⋅ NLβββ  

2. Compute )( ih β  and )( ix β , for { }2,,1,0 −+⋅⋅⋅= NLi  

3. Compute )()()( iii xhs βββ ⋅= , for { }2,,1,0 −+⋅⋅⋅= NLi  
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– By Cook-Toom algorithm, the number of multiplications is reduced from
O(LN) to L+N-1 at the expense of an increase in the number of additions

– An adder has much less area and computation time than a multiplier. So,
the Cook-Toom algorithm can lead to large savings in hardware (VLSI)
complexity and generate computationally efficient implementation

• Example-1: (Example 8.2.1, p.230) Construct a 2X2 convolution algorithm using
Cook-Toom algorithm with β={0,1,-1}
– Write 2X2 convolution in polynomial multiplication form as

s(p)=h(p)x(p), where

– Direct implementation, which requires 4 multiplications and 1 additions,
can be expressed in matrix form as follows:
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• Example-1 (continued)
– Next we use C-T algorithm to get an efficient convolution implementation

with reduced multiplication number

– Then, s(β0), s(β1), and s(β2) are calculated, by using 3 multiplications,  as

– From the Lagrange Interpolation theorem, we get:
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• Example-1 (continued)
– The preceding computation leads to the following matrix form

– The computation is carried out as follows (5 additions, 3 multiplications)
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– (Continued): Therefore, this algorithm needs 3 multiplications and 5
additions (ignoring the additions in the pre-computation ), i.e., the number
of multiplications is reduced by 1 at the expense of 4 extra additions

– Example-2, please see Example 8.2.2 of Textbook (p.231)

• Comments
– Some additions in the preaddition or postaddition matrices can be

shared. So, when we count the number of additions, we only count one
instead of two or three.

– If we take h0, h1 as the FIR filter coefficients and take x0, x1 as the signal
(data) sequence, then the terms H0, H1 need not be recomputed each
time the filter is used. They can be precomputed once offline and stored.
So, we ignore these computations when counting the number of
operations

– From Example-1, We can understand the Cook-Toom algorithm as a
matrix decomposition. In general, a convolution can be expressed in
matrix-vector forms as
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– Generally, the equation can be expressed as

• Where C is the postaddition matrix, D is the preaddition matrix, and H is a
diagonal matrix with Hi, i = 0, 1, …, L+N-2 on the main diagonal.

– Since T=CHD, it implies that the Cook-Toom algorithm provides a way
to factorize the convolution matrix T into multiplication of 1 postaddition
matrix C, 1 diagonal matrix H and 1 preaddition matrix D, such that the
total number of multiplications is determined only by the non-zero
elements on the main diagonal of the diagonal matrix H

– Although the number of multiplications is reduced, the number of
additions has increased. The Cook-Toom algorithm can be modified in
order to further reduce the number of additions

xDHCxTs ⋅⋅⋅=⋅=
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Modified Cook-Toom Algorithm

• The Cook-Toom algorithm is used to further reduce the number of
addition operations in linear convolutions

• Now consider the modified Cook-Toom Algorithm

Define 
2

2)()(' −+
−+−= NL

NL pSpsps .  Notice that the 

degree of )(ps  is 2−+ NL  and 2−+NLS  is its highest order 

coefficient. Therefore the degree of )(' ps  is 3−+ NL . 
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• Modified Cook-Toom Algorithm

1. Choose 2−+ NL  different real numbers 310 ,, −+⋅⋅⋅ NLβββ

2. Compute )( ih β  and )( ix β , for { }3,,1,0 −+⋅⋅⋅= NLi

3. Compute )()()( iii xhs βββ ⋅= , for { }3,,1,0 −+⋅⋅⋅= NLi

4. Compute 
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• Example-3 (Example 8.2.3, p.234) Derive a 2X2 convolution algorithm using the
modified Cook-Toom algorithm with β={0,-1}

– and

• Which requires 2 multiplications (not counting the h1x1

multiplication)
– Apply the Lagrange interpolation algorithm, we get:

Consider the Lagrange interpolation for 
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• Example-3 (cont’d)
– Therefore,
– Finally, we have the matrix-form expression:

– Notice that

– Therefore:
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• Example-3 (cont’d)
– The computation is carried out as the follows:

– The total number of operations are 3 multiplications and 3 additions.
Compared with the convolution algorithm in Example-1, the number of
addition operations has been reduced by 2 while the number of
multiplications remains the same.

• Example-4 (Example 8.2.4, p. 236 of Textbook)
• Conclusion: The Cook-Toom Algorithm is efficient as measured by the

number of multiplications. However, as the size of the problem increases, it is
not efficient because the number of additions increases greatly if β takes
values other than {0, ±1, ±2, ±4}. This may result in complicated pre-addition
and post-addition matrices. For large-size problems, the Winograd algorithm is
more efficient.
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Winograd Algorithm
• The Winograd short convolution algorithm: based on the CRT (Chinese

Remainder Theorem) ---It’s possible to uniquely determine a nonnegative integer given
only its remainder with respect to the given moduli, provided that the moduli are relatively
prime and the integer is known to be smaller than the product of the moduli

• Theorem: CRT for Integers

Given [ ]cRc
imi =  (represents the remainder when c  is divided by im ), for 

ki ,...,1,0= , where im  are moduli and are relatively prime, then 
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• Theorem: CRT for Polynomials

• Example-5 (Example 8.3.1, p.239): using the CRT for integer, Choose
moduli m0=3, m1=4, m2=5. Then                            , and                     .
Then:

– where      and      are obtained using the Euclidean GCD algorithm. Given
that the integer c satisfying                  , let                    .
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• Example-5 (cont’d)
– The integer c can be calculated as

– For c=17,

• CRT for polynomials: The remainder of a polynomial with regard to modulus
        , where          , can be evaluated by substituting       by
   in the polynomial

• Example-6 (Example 8.3.2, pp239)
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• Winograd Algorithm
– 1. Choose a polynomial            with degree higher than the degree of  

               and factor it into k+1 relatively prime polynomials with real
coefficients, i.e.,

– 2. Let  . Use the Euclidean GCD algorithm to
solve     for               .

– 3. Compute:

– 4. Compute:

– 5. Compute            by using:
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• Example-7 (Example 8.3.3, p.240) Consider a 2X3 linear convolution as in
Example 8.2.2. Construct an efficient realization using Winograd algorithm
with

– Let:
– Construct the following table using the relationships

and

– Compute residues from     :
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• Example-7 (cont’d)

– Notice, we need 1 multiplication for    , 1 for         , and 4 for
– However it can be further reduced to 3 multiplications as shown below:

– Then:

psspxxhxhxhxxh

ppxxxphhps

sxxxhhpssxhps

)2(
1

)2(
02011011200

12010
)2(

)1(
021010

)1()0(
000

)0(

))(()(

)1mod()))((()(

))(()(,)(

2

+=−++−−=

++−+=

=+++===

)()0( ps )()1( ps )()2( ps
















−

−+
⋅

















+
−⋅








−

−
=









1

20

210

10

10

0

)2(
1

)2(
0

00
00

00

011

101

x
xx

xxx

hh
hh

h

s

s

[ ]
)mod(

)2()()1)((

)(mod)()()()(

234

23
2

)(3
2

)(23)0(

2

0

)()()()(

)2()1(

pppp

ppppppppps

pmpMpNpsps

pSpS

i

iiii

−+−

+−+++−+−−=

= ∑
=



25Chap. 8

• Example-7 (cont’d)
– Substitute            into         to obtain the following

table

– Therefore, we have
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• Example-7 (cont’d)
– Notice that

– So, finally we have:
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• Example-7 (cont’d)
– In this example,  the Winograd convolution algorithm requires 5

multiplications and 11 additions compared with 6 multiplications and 2
additions for direct implementation

• Notes:
– The number of multiplications in Winograd algorithm is highly dependent

on the degree of each             . Therefore, the degree of m(p) should be as
small as possible.

– More efficient form (or a modified version) of the Winograd algorithm
can be obtained by letting deg[m(p)]=deg[s(p)] and applying the CRT to
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Modified Winograd Algorithm

– 1. Choose a polynomial            with degree equal to the degree of  
and factor it into k+1 relatively prime polynomials with real coefficients,
i.e.,

– 2. Let  , use the Euclidean GCD algorithm to
solve     for               .

– 3. Compute:

– 4. Compute:
– 5. Compute            by using:

– 6. Compute
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• Example-8 (Example 8.3.4, p.243 ): Construct a 2X3 convolution algorithm
using modified Winograd algorithm with m(p)=p(p-1)(p+1)

– Let
– Construct the following table using the relationships

and

– Compute residues from     :
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• Example-8 (cont’d)
– Since the degree of               is equal to 1,               is a polynomial of

degree 0 (a constant). Therefore, we have:

– The algorithm can be written in matrix form as:
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• Example-8 (cont’d)
– (matrix form)

– Conclusion: this algorithm requires 4 multiplications and 7 additions
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Iterated Convolution

• Iterated convolution algorithm: makes use of efficient short-length
convolution algorithms iteratively to build long convolutions

• Does not achieve minimal multiplication complexity, but achieves a
good balance between multiplications and addition complexity

• Iterated Convolution Algorithm (Description)
– 1. Decompose the long convolution into several levels of short

convolutions
– 2. Construct fast convolution algorithms for short convolutions
– 3. Use the short convolution algorithms to iteratively (hierarchically)

implement the long convolution
– Note: the order of short convolutions in the decomposition affects the

complexity of the derived long convolution
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• Example-9 (Example 8.4.1, pp.245): Construct a 4X4 linear convolution
algorithm using 2X2 short convolution

– Let 
and

– First, we need to decompose the 4X4 convolution into a 2X2 convolution
– Define

– Then, we have:
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• Example-9 (cont’d)
– Therefore, the 4X4 convolution is decomposed into two levels of nested

2X2 convolutions
– Let us start from the first convolution                                         , we have:

– We have the following expression for the third convolution:

– For the second convolution, we get the following expression:

)(')(')(' 000 pxphps ⋅=

[ ]11001010
2

1100

10100000

)()(

)()('')(')('

xhxhxxhhppxhxh

pxxphhxhpxph

−−+⋅+++=

+⋅+=⋅≡⋅

[ ]33223232
2

3322

323211112

)()(

)()('')(')(')('

xhxhxxhhppxhxh

pxxphhxhpxphps

−−+⋅+++=

+⋅+=⋅≡⋅=

[ ]11001010

011001101

'''')''()''(

'''')(')(')(')(')('

xhxhxxhh

xhxhpxphpxphps

⋅−⋅−+⋅+=

⋅+⋅≡⋅+⋅=

: addition: multiplication
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• Example-9 (Cont’d)
• For                                      , we have the following expression:

– If we rewrite the three convolutions as the following expressions, then we can get
the following table (see the next page):

 

[ ])''()''( 1010 xxhh +⋅+

[ ] [ ]

)]()()()(
)()[(

)()()()(

)()()()()''()''(

31312020

32103210

3131
2

2020

312031201010

xxhhxxhh
xxxxhhhhp

xxhhpxxhh

xxpxxhhphhxxhh

+⋅+−+⋅+−
+++⋅++++

+⋅+++⋅+=

+++⋅+++=+⋅+

( ) ( ) 3
2

211010

3
2

2111

3
2

2100

''''

''

''

cppccxxhh

bppbbxh

appaaxh

++≡+⋅+

++≡

++≡

This requires 9 multiplications and 11 additions
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• Example-9 (cont’d)

– Therefore, the total number of operations used in this 4X4 iterated
convolution algorithm is 9 multiplications and 19 additions

0p  1p  2p  3p  4p  5p  6p  

1a  2a  3a   1b  2b  3b  
  1c  2c  3c    

  1b−  2b−  3b−    

  1a−  2a−  3a−    

 Total 8 additions here
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Cyclic Convolution
• Cyclic convolution: also known as circular convolution
• Let the filter coefficients be                                 , and the data

sequence be                                 .
– The cyclic convolution can be expressed as

– The output samples are given by

• where                 denotes

• The cyclic convolution can be computed as a linear convolution
reduced by modulo            . (Notice that there are 2n-1 different output
samples for this linear convolution). Alternatively, the cyclic
convolution can be computed using CRT with                          , which
is much simpler.
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• Example-10 (Example 8.5.1, p.246) Construct a 4X4 cyclic convolution
algorithm using CRT with
– Let
– Let
– Get the following table using the relationships

and

– Compute the residues
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• Example-10 (cont’d)

– Since

– or in matrix-form

– Computations so far require 5 multiplications
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• Example-10 (cont’d)
– Then

– So, we have
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• Example-10 (cont’d)
– Notice that:
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• Example-10 (cont’d)
– Therefore, we have
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• Example-10 (cont’d)
– This algorithm requires 5 multiplications and  15 additions
– The direct implementation requires 16 multiplications and 12 additions

(see the following matrix-form. Notice that the cyclic convolution matrix
is a circulant matrix)

• An efficient cyclic convolution algorithm can often be easily extended
to construct efficient linear convolution

• Example-11 (Example 8.5.2, p.249) Construct a 3X3 linear convolution
using 4X4 cyclic convolution algorithm
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• Example-11 (cont’d)
– Let the 3-point coefficient sequence be                          , and the 3-point

data sequence be
– First extend them to 4-point sequences as:

– Then the 3X3 linear convolution of h and x is

– The 4X4 cyclic convolution of h and x, i.e.            , is:
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• Example-11 (cont’d)
– Therefore, we have
– Using the result of Example-10 for            , the following convolution

algorithm for 3X3 linear convolution is obtained:
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• Example-11 (cont’d)
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• Example-11 (cont’d)
– So, this algorithm requires 6 multiplications and 16 additions

• Comments:
– In general, an efficient linear convolution can be used to obtain an

efficient cyclic convolution algorithm. Conversely, an efficient
cyclic convolution algorithm can be used to derive an efficient
linear convolution algorithm
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Design of fast convolution algorithm by
inspection
• When the Cook-Toom or the Winograd algorithms can not generate an

efficient algorithm, sometimes a clever factorization by inspection may
generate a better algorithm

• Example-12 (Example 8.6.1, p.250) Construct a 3X3 fast convolution
algorithm by inspection
– The 3X3 linear convolution can be written as follows, which requires 9

multiplications and 4 additions
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• Example-12 (cont’d)
– Using the following identities:

– The 3X3 linear convolution can be written as:

( ) ( )
( )( )

( )( ) 2211212121123

22110020202011022

1100101010011

xhxhxxhhxhxhs

xhxhxhxxhhxhxhxhs

xhxhxxhhxhxhs

−−++=+=
−+−++=++=

−−+⋅+=⋅+=

⋅























−−
−−

−−
=























000100

100110
010111

001011
000001

4

3

2

1

0

s

s
s

s
s

(continued on 
the next page)



50Chap. 8

• Example-12 (cont’d)

– Conclusion: This algorithm, which can not be obtained by using
the Cook-Toom or the Winograd algorithms, requires 6
multiplications and 10 additions
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