Chapter 7: Systolic Architecture Design

Keshab K. Parhi
• Systolic architectures are designed by using linear mapping techniques on regular dependence graphs (DG).
• Regular Dependence Graph: The presence of an edge in a certain direction at any node in the DG represents presence of an edge in the same direction at all nodes in the DG.
• DG corresponds to space representation → no time instance is assigned to any computation ⇒ t=0.
• Systolic architectures have a space-time representation where each node is mapped to a certain processing element (PE) and is scheduled at a particular time instance.
• Systolic design methodology maps an N-dimensional DG to a lower dimensional systolic architecture.
• Mapping of N-dimensional DG to (N-1) dimensional systolic array is considered.
• Definitions:
 - Projection vector (also called iteration vector), \(d = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \)

 Two nodes that are displaced by \(d \) or multiples of \(d \) are executed by the same processor.
 - Processor space vector, \(p^T = \begin{pmatrix} p_1 & p_2 \end{pmatrix} \)
 Any node with index \(I^T=(i,j) \) would be executed by processor:
 \[
p^T I = \begin{pmatrix} p_1 & p_2 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix}
 \]
 - Scheduling vector, \(s^T = (s_1 s_2) \). Any node with index \(I \) would be executed at time, \(s^T I \).
 - Hardware Utilization Efficiency, \(HUE = 1/|S^T d| \). This is because two tasks executed by the same processor are spaced \(|S^T d| \) time units apart.
 - Processor space vector and projection vector must be orthogonal to each other \(\Rightarrow p^T d = 0 \).
If A and B are mapped to the same processor, then they cannot be executed at the same time, i.e., $S^T I_A \neq S^T I_B$, i.e., $S^T d \neq 0$.

Edge mapping: If an edge e exists in the space representation or DG, then an edge $p^T e$ is introduced in the systolic array with $s^T e$ delays.

A DG can be transformed to a space-time representation by interpreting one of the spatial dimensions as temporal dimension. For a 2-D DG, the general transformation is described by $i' = t = 0$, $j' = p^T I$, and $t' = s^T I$, i.e.,

\[
\begin{pmatrix}
 i' \\
 j' \\
 t'
\end{pmatrix} =
T
\begin{pmatrix}
 i \\
 j \\
 t
\end{pmatrix} =
\begin{pmatrix}
 0 & 0 & 1 \\
 p' & 0 & \\
 s' & 0 & \\
\end{pmatrix}
\begin{pmatrix}
 i \\
 j \\
 t
\end{pmatrix}
\]

$j' \Rightarrow$ processor axis
$t' \Rightarrow$ scheduling time instance
FIR Filter Design B₁(Broadcast Inputs, Move Results, Weights Stay)

\[d^T = (1, 0), p^T = (0, 1), s^T = (1, 0) \]

- Any node with index \(I^T = (i, j) \)
 - is mapped to processor \(p^T I = j \).
 - is executed at time \(s^T I = i \).
- Since \(s^T d = 1 \) we have \(HUE = 1/|s^T d| = 1 \).
- Edge mapping: The 3 fundamental edges corresponding to weight, input, and result can be mapped to corresponding edges in the systolic array as per the following table:

<table>
<thead>
<tr>
<th>e</th>
<th>(p^T e)</th>
<th>(s^T e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt(1, 0)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>i/p(0, 1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>result(1, -1)</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
Block diagram of B_1 design

Low-level implementation of B_1 design
Space-time representation of B_1 design
Design \(B_2 \) (Broadcast Inputs, Move Weights, Results Stay)

\[
d^T = (1 \ -1), \ p^T = (1 \ 1), \ s^T = (1 \ 0)
\]

- Any node with index \(I^T = (i, j) \)
 - is mapped to processor \(p^T I = i+j \).
 - is executed at time \(s^T I = i \).
- Since \(s^T d = 1 \) we have \(HUE = \frac{1}{|s^T d|} = 1 \).
- Edge mapping:

<table>
<thead>
<tr>
<th>e</th>
<th>(p^T e)</th>
<th>(s^T e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt(1 0)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>i/p(0 1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>result(1 -1)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Block diagram of B_2 design

$\ldots \quad x_3 x_2 x_1 x_0$

Low-level implementation of B_2 design
Applying space-time transformation we get:

\[j' = p^T(i \ j)^T = i + j \]
\[t' = s^T(i \ j)^T = i \]

Space-time representation of B₂ design
Design F (Fan-In Results, Move Inputs, Weights Stay)

\[d^T = (1 0), \ p^T = (0 1), \ s^T = (1 1) \]

- Since \(s^T d = 1 \) we have \(\text{HUE} = 1 / |s^T d| = 1 \).

- Edge mapping:

<table>
<thead>
<tr>
<th>(e)</th>
<th>(p^T e)</th>
<th>(s^T e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(wt(1 0))</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(i/p(0 1))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\text{result}(1 -1))</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Block diagram of F design
Low-level implementation of F design

Space-time representation of F design
Design R_1 (Results Stay, Inputs and Weights Move in Opposite Direction)

$$d^T = (1, -1), \ p^T = (1, 1), \ s^T = (1, -1)$$

➢ Since $s^T d = 2$ we have HUE = $1/|s^T d| = \frac{1}{2}$.

➢ Edge mapping:

<table>
<thead>
<tr>
<th>e</th>
<th>$p^T e$</th>
<th>$s^T e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt(1 0)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>i/p(0 -1)</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>result(1 -1)</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Block diagram of R_1 design
Low-level implementation of R_1 design

Note: R_1 can be obtained from B_2 by 2-slow transformation and then retiming after changing the direction of signal x.
Design R_2 and Dual R_2 (Results Stay, Inputs and Weights Move in Same Direction but at Different Speeds)

$$d^T = (1 -1), p^T = (1 1),$$

$$R_2 : s^T = (2 1); \text{ Dual } R_2 : s^T = (1 2);$$

Since $s^Td=1$ for both of them we have $HUE = 1/|s^Td| = 1$ for both.

Edge mapping:

<table>
<thead>
<tr>
<th></th>
<th>R_2</th>
<th>Dual R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e</td>
<td>p^Te</td>
</tr>
<tr>
<td>$wt(1, 0)$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$i/p(0,1)$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>result(1, -1)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Note : The result edge in design dual R_2 has been reversed to Guarantee $s^Te \geq 0$.
Design W_1 (Weights Stay, Inputs and Results Move in Opposite Directions)

$d^T = (1 \ 0), p^T = (0 \ 1), s^T = (2 \ 1)$

- Since $s^T d = 2$ for both of them we have $HUE = 1/|s^T d| = \frac{1}{2}$.
- Edge mapping:

<table>
<thead>
<tr>
<th>e</th>
<th>p^Te</th>
<th>s^Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt(1 0)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>i/p(0 -1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>result(1 -1)</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
Design W_2 and Dual W_2 (Weights Stay, Inputs and Results Move in Same Direction but at Different Speeds)

$$d^T = (1 \ 0), \ p^T = (0 \ 1),$$

$$W_2 : s^T = (1 \ 2); \ Dual \ W_2 : s^T = (1 \ -1);$$

Since $s^Td = 1$ for both of them we have $HUE = 1/|s^Td| = 1$ for both.

Edge mapping:

<table>
<thead>
<tr>
<th>W_2</th>
<th></th>
<th>Dual W_2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Relating Systolic Designs Using Transformations:
 - FIR systolic architectures obtained using the same projection vector and processor vector, but different scheduling vectors, can be derived from each other by using transformations like edge reversal, associativity, slow-down, retiming and pipelining.

• Example 1: R_1 can be obtained from B_2 by slow-down, edge reversal and retiming.
• **Example 2:**

Derivation of design F from B₁ using cutset retiming
Selection of s^T based on scheduling inequalities:

For a dependence relation $X \rightarrow Y$, where $I_x^T = (i_x, j_x)^T$ and $I_y^T = (i_y, j_y)^T$ are respectively the indices of the nodes X and Y. The scheduling inequality for this dependence is given by,

$$S_y \geq S_x + T_x$$

where T_x is the computation time of node X. The scheduling equations can be classified into the following two types:

- **Linear scheduling**, where

 $$S_x = s^T I_x = (s_1 s_2) (i_x j_x)^T$$
 $$S_y = s^T I_y = (s_1 s_2) (i_y j_y)^T$$

- **Affine Scheduling**, where

 $$S_x = s^T I_x + \gamma_x = (s_1 s_2) (i_x j_x)^T + \gamma_x$$
 $$S_y = s^T I_y + \gamma_y = (s_1 s_2) (i_y j_y)^T + \gamma_y$$

So scheduling equation for affine scheduling is as follows:

$$s^T I_x + \gamma_y \geq s^T I_x + \gamma_x + T_x$$
Each edge of a DG leads to an inequality for selection of the scheduling vectors which consists of 2 steps.

- **Capture all fundamental edges.** The reduced dependence graph (RDG) is used to capture the fundamental edges and the regular iterative algorithm (RIA) description of the corresponding problem is used to construct RDGs.

- **Construct the scheduling inequalities according to**

 \[s^T I_x + \gamma_y \geq s^T I_x + \gamma_x + T_x \]

 and solve them for feasible \(s^T \).
• **RIA Description:** The RIA has two forms
 ⇒ The RIA is in standard input RIA form if the index of the inputs are the same for all equations.
 ⇒ The RIA is in standard output RIA form if all the output indices are the same.

• For the FIR filtering example we have,

 \[
 W(i+1, j) = W(i, j) \\
 X(i, j+1) = X(i, j) \\
 Y(i+1, j-1) = Y(i, j) + W(i+1, j-1)X(i+1, j-1)
 \]

 The FIR filtering problem cannot be expressed in standard input RIA form. Expressing it in standard output RIA form we get,

 \[
 W(i, j) = W(i-1, j) \\
 X(i, j) = X(i, j-1) \\
 Y(i, j) = Y(i-1, j+1) + W(i, j)X(i, j)
 \]
The reduced DG for FIR filtering is shown below.

Example:

\[T_{\text{mult}} = 5, \quad T_{\text{add}} = 2, \quad T_{\text{com}} = 1 \]

Applying the scheduling equations to the five edges of the above figure we get:

- \(W \rightarrow Y : e = (0 \ 0)^T, \ \gamma_x - \gamma_w \geq 0 \)
- \(X \rightarrow X : e = (0 \ 1)^T, \ s_2 + \gamma_x - \gamma_x \geq 1 \)
- \(W \rightarrow W : e = (1 \ 0)^T, \ s_1 + \gamma_w - \gamma_w \geq 1 \)
- \(X \rightarrow Y : e = (0 \ 0)^T, \ \gamma_y - \gamma_x \geq 0 \)
- \(Y \rightarrow Y : e = (1 \ -1)^T, \ s_1 - s_2 + \gamma_y - \gamma_y \geq 5 + 2 + 1 \)

For linear scheduling \(\gamma_x = \gamma_y = \gamma_w = 0 \). Solving we get, \(s_1 \geq 1, \ s_2 \geq 1 \) and \(s_1 - s_2 \geq 8 \).
Taking \(s^T = (9 \ 1) \), \(d = (1 \ -1) \) such that \(s^T d \neq 0 \) and \(p^T = (1,1) \) such that \(p^T d = 0 \) we get \(HUE = 1/8 \). The edge mapping is as follows:

<table>
<thead>
<tr>
<th>e</th>
<th>(p^T e)</th>
<th>(s^T e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(wt(1\ 0))</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>(i/p(0\ 1))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(result(1\ -1))</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Systolic architecture for the example
Matrix-Matrix multiplication and 2-D Systolic Array Design

\[
\begin{align*}
C_{11} &= a_{11}b_{11} + a_{12}b_{21} \\
C_{12} &= a_{11}b_{12} + a_{12}b_{22} \\
C_{21} &= a_{21}b_{11} + a_{22}b_{21} \\
C_{22} &= a_{21}b_{12} + a_{22}b_{22}
\end{align*}
\]

The iteration in standard output RIA form is as follows:

\[
\begin{align*}
a(i,j,k) &= a(i,j-1,k) \\
b(i,j,k) &= b(i-1,j,k) \\
c(i,j,k) &= c(i,j,k-1) + a(i,j,k) b(i,j,k)
\end{align*}
\]
Applying scheduling inequality with $T_{\text{mult-add}} = 1$, and $T_{\text{com}} = 0$ we get $s_2 \geq 0$, $s_1 \geq 0$, $s_3 \geq 1$, $\gamma_c - \gamma_a \geq 0$ and $\gamma_c - \gamma_b \geq 0$. Take $\gamma_a = \gamma_b = \gamma_c = 0$ for linear scheduling.

Solution 1:
$s^T = (1,1,1)$, $d^T = (0,0,1)$, $p_1 = (1,0,0)$, $p_2 = (0,1,0)$, $P^T = (p_1 \ p_2)^T$
• Solution 2:
 \[s^T = (1, 1, 1), \quad d^T = (1, 1, -1), \quad p_1 = (1, 0, 1), \]
 \[p_2 = (0, 1, 1), \quad p^T = (p_1 \ p_2)^T \]

<table>
<thead>
<tr>
<th></th>
<th>(e)</th>
<th>(p^T e)</th>
<th>(s^T e)</th>
<th></th>
<th>(e)</th>
<th>(p^T e)</th>
<th>(s^T e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. 1</td>
<td></td>
<td></td>
<td></td>
<td>Sol. 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a(0, 1, 0))</td>
<td>((0, 1))</td>
<td>(1)</td>
<td></td>
<td>(a(0, 1, 0))</td>
<td>((0, 1))</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(b(1, 0, 0))</td>
<td>((1, 0))</td>
<td>(1)</td>
<td></td>
<td>(b(1, 0, 0))</td>
<td>((1, 0))</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(C(0, 0, 1))</td>
<td>((0, 0))</td>
<td>(1)</td>
<td></td>
<td>(C(0, 0, 1))</td>
<td>((1, 1))</td>
<td>(1)</td>
</tr>
</tbody>
</table>