Chapter 7: Systolic Architecture Design

Keshab K. Parhi

- Systolic arcfitectures are designed by using linear mapping tecfiniques on regular de pendence grapfs ($\mathcal{D G}$).
- Regular Dependence Graph: The presence of anedge in a certain direction at any node in the $\mathcal{D G}$ represents presence of anedge in the same direction at all nodes in the $\mathcal{D G}$.
- $\mathcal{D G}$ corresponds to space representation \rightarrow no time instance is assigned to any computation $\Rightarrow t=0$.
- Systolic architectures fave a space-time representation where each node is mapped to acertain processing element(PE) and is scheduled at a particular time instance.
- Systolic design metfodology maps an \mathcal{N}-dimensional $\mathcal{D G}$ to a lower dimensional systolic architecture.
- Mapping of \mathfrak{N}-dimensional $\mathcal{D} \mathcal{G}$ to ($\mathcal{N}-1$) dimensional systolic array is considered.
- Definitions :

De Projection vector (also called iteration vector) $, d=\binom{d_{1}}{d_{2}}, ~(), ~$
Two nodes that are displaced by dor multiples of dare executed by the same processor.
$>$ Processor space vector, $\quad p^{T}=\left(\begin{array}{ll}p_{1} & p_{2}\end{array}\right)$
Any node with index $I^{\tau}=(i, j)$ would be executed by proc. essor;

$$
p^{T} I=\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)\binom{i}{j}
$$

$>$ Scheduling vector, $s^{\mathcal{T}}=\left(s_{1} s_{2}\right)$. Any node with index I would would be executed at time, $s^{T} I$.
$>\mathcal{H a r d}$ ware Utilization Efficiency, $\mathcal{H U E}=1 /\left|S^{T} d\right|$. This is Gecause two tasks executed by the same processor are spaced $\left|\mathcal{S}^{T} d\right|$ time units apart.
$>$ Processor space vector and projection vector must be Chap. 7 orthogonal to each other $\Rightarrow p^{T} d=0$.
$>$ If \mathcal{A} and \mathcal{B} are mapped to the same processor, then they cannot be executed at the same time, i.e., $\mathcal{S}^{\mathcal{T}} I_{\mathfrak{A}} \neq \mathcal{S}^{\tau} I_{\mathcal{B}^{\prime}}$, i.e., $\mathcal{S}^{T} d \neq 0$.
$>$ Edge mapping: If an edge e exists in the space representation or $\mathcal{D G}$, then an edge $p^{T} e$ is introduced in the systolic array with $s^{\mathcal{T}} e$ delays.
$>\mathcal{A} \mathcal{D} \operatorname{can}$ be transformed to a space-time representation by interpreting one of the spatial dimensions as temporal dimension. For a $2-\mathcal{D} \mathcal{D G}$, the general transformation is described by $i^{\prime}=t=0, j^{\prime}=p^{T} I$, and $t^{\prime}=s^{\mathcal{T}} I$, i.e.,

$$
\left(\begin{array}{l}
i^{\prime} \\
j^{\prime} \\
t^{\prime}
\end{array}\right)=T\left(\begin{array}{l}
i \\
j \\
t
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
& p^{\prime} & 0 \\
& s^{\prime} & 0
\end{array}\right)\left(\begin{array}{l}
i \\
j \\
t
\end{array}\right)
$$

$j^{\prime} \Rightarrow$ processor axis
$t^{\prime} \Rightarrow$ scheduling time instance
Chap. 7

FIR Filter $\mathcal{D e} \operatorname{sign} \mathcal{B}_{1}($ Broadcast Inputs, Move Results, Weights Stay)

$$
d^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 0
\end{array}\right), p^{\mathcal{T}}=\left(\begin{array}{ll}
0 & 1
\end{array}\right), s^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

$>$ Any node with index $I^{T}=(i, j)$
$>$ is mapped to processor $p^{\mathcal{T}} I=j$.
$>$ is executed at time $s^{T} I=i$.
$>$ Since $s^{\mathcal{T}} d=1$ we fiave $\mathcal{H C L E}=1 /\left|s^{T} d\right|=1$.
$>$ Edge mapping: The 3 fundamental edges corresponding to weight, input, and result can be mapped to corresponding edges in the systolic array as per the following table:

e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$w t\left(\begin{array}{ll}1 & 0\end{array}\right)$	0	1
$i / p\left(\begin{array}{ll}0 & 1\end{array}\right)$	1	0
$r e s u l t(1-1)$	-1	1

Processor axis
$\underline{\mathcal{B l o c k} \text { diagram of } \mathcal{B}_{1} \text { de sign }}$

processor 1
$\underline{\text { Low-levelimplementation of } \mathcal{B}_{1} \text { de sign }}$

Space-time representation of \mathcal{B}_{1} design
$\underline{\text { De sign } \mathcal{B}_{2} \text { (Broadcast Inputs, Move Weights, Results Stay) }}$

$$
d^{\mathcal{T}}=\left(\begin{array}{ll}
1 & -1
\end{array}\right), p^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right), s^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

$>$ Any node with index $I^{T}=(i, j)$
>is mapped to processor $p^{T} I=i+j$.
$>$ is executed at time $s^{T} I=i$.
$>$ Since $s^{\mathcal{T}} d=1$ we fave $\mathcal{H C L}=1 /\left|s^{\mathcal{T}} d\right|=1$.
$>$ Edge mapping :

e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$w t\left(\begin{array}{ll}1 & 0\end{array}\right)$	1	1
$i / p\left(\begin{array}{ll}0 & 1\end{array}\right)$	1	0
$r e s u l t(1-1)$	0	1

Block diagram of \mathcal{B}_{2} design
$\cdots X_{3} X_{2} X_{1} X_{0}$

Low-levelimplementation of \mathcal{B}_{2} design

- Applying space time transformation we get:

$$
\begin{gathered}
j^{\prime}=p^{\mathcal{T}}(i j)^{\mathcal{T}}=i+j \\
t^{\prime}=s^{\mathcal{T}}(i j)^{\mathcal{T}}=i
\end{gathered}
$$

Space-time representation of \mathcal{B}_{2} design
$\underline{\mathcal{D e s i g n} \mathcal{F}(\mathcal{F a n}-I n R e s u l t s, \mathcal{M o v e} \text { Inputs, Weights Stay) }}$

$$
d^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 0
\end{array}\right), p^{\mathcal{T}}=\left(\begin{array}{ll}
0 & 1
\end{array}\right), s^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

Since $s^{\mathcal{T}} d=1$ we fave $\mathcal{H} \mathcal{U E}=1 /\left|s^{\mathcal{T}} d\right|=1$.
$>$ Edge mapping:

e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$w t\left(\begin{array}{ll}1 & 0\end{array}\right)$	0	1
$i / p\left(\begin{array}{ll}0 & 1\end{array}\right)$	1	1
result $(1-1)$	-1	0

$\underline{B l o c k}$ diagram of \mathcal{F} design

Low-levelimplementation of \mathcal{F} design

Space-time representation of \mathcal{F} design

De sign $\mathcal{R}_{1}($ Results Stay, Inputs and Weights Move in Opposite \bar{D} irection)

$$
d^{\mathcal{T}}=(1-1), p^{\mathcal{T}}=(11), s^{\mathcal{T}}=\left(\begin{array}{ll}
1-1
\end{array}\right)
$$

$>$ Since $s^{T} d=2$ we have $\mathcal{H} \mathcal{H E}=1 /\left|s^{T} d\right|=1 / 2$.
\rightarrow Edge mapping:

e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$w t(10)$	1	1
$i / p(0-1)$	-1	1
$r e s u l t(1-1)$	0	2

Chap. 7
Block diagram of \mathcal{R}_{1} de sign

Low-levelimplementation of $\mathcal{R}_{\underline{1}}$ design
$\mathcal{N o t e}: \mathcal{R}_{1}$ can be obtaine d from \mathcal{B}_{2} by 2-slow transformation and then retiming after changing the direction of signal x.

De sign $\mathcal{R}_{\mathcal{L}}$ and $\mathcal{D u a l} \mathcal{R}_{\underline{2}}$ (Results S tay, Inputs and Weights Move in Same Direction but at Different Speeds)

$$
\begin{gathered}
d^{\mathcal{T}}=(1-1), p^{T}=(11), \\
\mathcal{R}_{2}: s^{\mathcal{T}}=\left(\begin{array}{ll}
2 & 1
\end{array}\right) ; \mathcal{D u a l}_{\mathcal{R}_{z}}: s^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 2
\end{array}\right) ;
\end{gathered}
$$

$>$ Since $s^{\mathcal{T}} d=1$ for both of them we have $\mathcal{H Z E}=1 /\left|\mathcal{s}^{\mathcal{T}} d\right|=1$ for both.
$>$ Edge mapping:

$\mathcal{R}_{\mathcal{L}}$			$\mathcal{D u a l} \mathcal{R}_{2}$		
e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$	e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$w t(1,0)$	1	2	$w t(1,0)$	1	1
$i / p(0,1)$	1	1	$i / p(0,1)$	1	2
$\operatorname{result}(1,-1)$	0	1	$\operatorname{result}(-1,1)$	0	1

\mathcal{N} ote: The result edge indesigndual R_has been reversed to Guarantee $\mathcal{s}^{\mathcal{T}} e \geq 0$.

De sign \mathcal{W}_{1} (Weights S tay, Inputs and Results Move in Opposite $\mathcal{D i r e c t i o n s)}$

$$
d^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 0
\end{array}\right), p^{\mathcal{T}}=\left(\begin{array}{ll}
0 & 1
\end{array}\right), s^{\mathcal{T}}=\left(\begin{array}{ll}
2 & 1
\end{array}\right)
$$

$>$ Since $s^{T} d=2$ for 6 oth of them we have $\mathcal{H} U E=1 /\left|s^{T} d\right|=1 / 2$.
$>$ Edge mapping :

e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$w t(10)$	0	2
$i / p(0-1)$	1	1
$r e s u l t(1-1)$	-1	1

Design \mathcal{W}_{2} and $\mathcal{D u a l} \mathcal{W}_{2}\left(\mathcal{W e}^{2}\right.$ eights S stay, Inputs and Results Move in Same Dire \bar{c} ion Gut at Different Speeds)

$$
d^{\mathcal{T}}=\left(\begin{array}{ll}
1 & 0
\end{array}\right), p^{\mathcal{T}}=\left(\begin{array}{ll}
0 & 1
\end{array}\right),
$$

$$
\mathcal{W}_{2}: s^{\mathcal{T}}=(12) ; \mathcal{D u a l} \mathcal{W}_{2}: s^{T}=(1-1)
$$

$>$ Since $s^{\mathcal{T}} d=1$ for both of them we have $\mathcal{H Z E}=1 /\left|\mathcal{S}^{\mathcal{T}} d\right|=1$ for both.
$>$ Edge mapping:

\mathcal{W}_{2}			Dual \mathcal{W}_{2}		
e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$	e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$w t(1,0)$	0	1	$w t(1,0)$	0	1
$i / p(0,1)$	1	2	$i / p(0,-1)$	-1	1
result $(1,-1)$	1	1	result $(1,-1)$	-1	2

- Relating Systolic Designs $\mathcal{O l}$ ing $\operatorname{Transformations:~}$
$>\mathcal{F I R}$ systolic architectures obtained using the same projection vector and processor vector, but different scheduling vectors, can be derived from each other by using transformations like edge reversal, associativity, slow-down, retiming and pipelining.
- Example 1: \mathcal{R}_{1} can be obtained from \mathcal{B}_{2} by slowdown, edge reversal and retiming.
- Example 2:

Derivation of design \mathcal{F} from \mathcal{B}_{1} using cutset retiming
$>$ Selection of $s^{\mathcal{T}}$ based on scheduling inequalities: For a dependence relation $X \rightarrow \mathcal{Y}$, where $I_{x}{ }^{T}=\left(i_{x}, j_{x}\right)^{\mathcal{T}}$ and $I_{y}{ }^{T}=$ $\left(i_{y}, j_{y}\right)^{T}$ are respective $[y$ the indices of the nodes X and \mathscr{Y}. The scheduling inequality for this dependence is given by,

$$
\mathcal{S}_{y} \geq \mathcal{S}_{x}+\mathcal{T}_{x}
$$

where \mathcal{T}_{x} is the computation time of node X. The scheduling equations can be classified into the following two types :
$>$ Line ar scheduling, where

$$
\begin{aligned}
& S_{\chi}=s^{\mathcal{T}} I_{\chi}=\left(s_{1} s_{2}\right)\left(i_{\chi} j_{\chi}\right)^{T} \\
& S_{y}=s^{\mathcal{T}} I_{y}=\left(\begin{array}{ll}
\left.s_{1} s_{2}\right)\left(i_{y} j_{y}\right.
\end{array}\right)^{\mathcal{T}}
\end{aligned}
$$

\rightarrow Affine Scheduling, where

$$
\begin{aligned}
& S_{\chi}=s^{\mathcal{T}} I_{\chi}+\gamma_{\chi}=\left(s_{1} s_{2}\right)\left(i_{\chi} j_{\chi}\right)^{\mathcal{T}}+\gamma_{\chi} \\
& S_{\chi}=s^{\mathcal{T}} I_{\chi}+\gamma_{y}=\left(s_{1} s_{2}\right)\left(i_{\chi} j_{\chi}\right)^{\mathcal{T}}+\gamma_{y}
\end{aligned}
$$

So scheduling equation for affine scheduling is as follows:

$$
s^{\mathcal{T}} I_{\chi}+\gamma_{y} \geq s^{\mathcal{T}} I_{\chi}+\gamma_{\chi}+\mathcal{T}_{\chi}
$$

Each edge of a $\mathcal{D G}$ leads to an inequality for selection of the scheduling vectors which consists of 2 steps.

- Capture all fundamentaledges. The reduced dependence graph ($\mathcal{R D G}$) is used to capture the fundamentaledges and the regular iterative algorithm ($\mathbb{R} I \mathcal{A}$) description of the corresponding problem is used to construct $R \mathcal{D} G s$.
- Construct the scheduling inequalities according to

$$
s^{\mathcal{T}} I_{\chi}+\gamma_{y} \geq s^{\mathcal{T}} I_{\chi}+\gamma_{\chi}+\mathcal{T}_{\chi}
$$

and solve them for feasible s^{T}.

- RIA Description: The RIA has two forms
\Rightarrow The RIA is in standard input RIA form if the index of the inputs are the same for allequations.
\Rightarrow The RIA is in standard output RIA form if all the output indices are the same.
- For the $\mathcal{F I R}$ filtering example we have,

$$
\begin{gathered}
\mathcal{W}(i+1, j)=\mathcal{W}(i, j) \\
x(i, j+1)=x(i, j) \\
\mathscr{y}(i+1, j-1)=\mathscr{Y}(i, j)+\mathcal{W}(i+1, j-1) x(i+1, j-1)
\end{gathered}
$$

The $\mathcal{F I R}$ filtering problem cannot be expressed in standard input RIA form. Expressing it in standard output RIA form we get,

$$
\begin{gathered}
\mathcal{W}(i, j)=\mathcal{W}(i-1, j) \\
X(i, j)=X(i, j-1) \\
\mathscr{Y}(i, j)=\mathscr{Y}(i-1, j+1)+\mathcal{W}(i, j) X(i, j)
\end{gathered}
$$

- The reduced $\mathcal{D G}$ for $\mathcal{F I R}$ filtering is shown below.

Example:

$$
\mathcal{T}_{\text {mult }}=5, \mathcal{T}_{\text {add }}=2, \mathcal{T}_{\text {com }}=1
$$

Applying the scheduling equations to the five edges of the above figure we get;
$\mathcal{W} \cdots>y: e=\left(\begin{array}{ll}0 & 0\end{array}\right)^{T}, \gamma_{x}-\gamma_{w} \geq 0$
$X \cdots>x: e=\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}, s_{2}+\gamma_{x}-\gamma_{x} \geq 1$
$\mathcal{W} \cdots>W: e=(10)^{T}, s_{1}+\gamma_{w}-\gamma_{w} \geq 1$
$x \cdots>y: e=\left(\begin{array}{ll}0 & 0\end{array}\right)^{T}, \gamma_{y}-\gamma_{x} \geq 0$
$y-\cdots>Y: e=(1-1)^{T}, s_{1}-s_{2}+\gamma_{y}-\gamma_{y} \geq 5+2+1$
For line ar scheduling $\gamma_{x}=\gamma_{y}=\gamma_{w}=0$. Solving we get, $s_{1} \geq 1$, $s_{2} \geq 1$ and $s_{1}-s_{2} \geq 8$.

Chap. 7

- Taking $s^{\mathcal{T}}=(91), d=(1-1)$ sucfithat $s^{\mathcal{T}} d \neq 0$ and $p^{\mathcal{T}}=(1,1)$ sucfithat $p^{\mathcal{T}} d=0$ we get $\mathcal{H C E}=1 / \mathcal{B}$. The edge mapping is as follows:

e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$w t\left(\begin{array}{ll}1 & 0\end{array}\right)$	1	9
$i / p\left(\begin{array}{ll}0 & 1\end{array}\right)$	1	1
$r e s u l t(1-1)$	0	8

Systolic architecture for the example

$$
\begin{aligned}
& \mathcal{C}_{11}=a_{11} b_{11}+a_{12} b_{21} \\
& C_{12}=a_{11} b_{12}+a_{12} b_{22} \\
& C_{21}=a_{21} b_{11}+a_{22} b_{21} \\
& \mathcal{C}_{22}=a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

The ite ration in standard output RIA form is as follows:

$$
\begin{gathered}
a(i, j, k)=a(i, j-1, k) \\
b(i, j, k)=b(i-1, j, k) \\
c(i, j, k)=c(i, j, k-1)+a(i, j, k) b(i, j, k)
\end{gathered}
$$

- Applying scheduling inequality with
$\mathcal{T}_{\text {mult-add }}=1$, and $\mathcal{T}_{\text {com }}=0$ we get
$s_{2} \geq 0, s_{1} \geq 0, s_{3} \geq 1, \gamma_{c}-\gamma_{a} \geq 0$
and $\gamma_{c}-\gamma_{b} \geq 0$. Take $\gamma_{a}=\gamma_{b}=\gamma_{c}=0$
for line ar scheduling.
- Solution 1:

$$
\begin{aligned}
& \mathcal{s}^{\mathcal{T}}=(1,1,1), d^{\mathcal{T}}=(0,0,1), p_{1}=(1,0,0), \\
& p_{2}=(0,1,0), \mathscr{P}^{T}=\left(p_{1} p_{2}\right)^{\mathcal{T}}
\end{aligned}
$$

Chap. 7

- Solution 2 :

$$
\begin{aligned}
& s^{\mathcal{T}}=(1,1,1), d^{\mathcal{T}}=(1,1,-1), p_{1}=(1,0,1) \\
& p_{2}=(0,1,1), \mathscr{P}^{\mathcal{T}}=\left(p_{1} p_{2}\right)^{\mathcal{T}}
\end{aligned}
$$

Sol. 1			Sol. 2		
e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$	e	$p^{\mathcal{T}} e$	$s^{\mathcal{T}} e$
$a(0,1,0)$	$(0,1)$	1	$a(0,1,0)$	$(0,1)$	1
$b(1,0,0)$	$(1,0)$	1	$6(1,0,0)$	$(1,0)$	1
$C(0,0,1)$	$(0,0)$	1	$C(0,0,1)$	$(1,1)$	1

Chap. 7

