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• Folding is a technique to reduce the silicon area by time-
multiplexing many algorithm operations into single functional
units (such as adders and multipliers)

• Fig(a) shows a DSP program : y(n) = a(n) + b(n) + c(n) .
• Fig(b) shows a folded architecture where 2 additions are 
  folded or time-multiplexed to a single pipelined adder 
  One output sample is produced every 2 clock cycles ⇒ input 
  should be valid for 2 clock cycles.
• In general, the data on the input of a folded realization is 
  assumed to be valid for N cycles before changing, where N 
  is the number of algorithm operations executed on a single 
  functional unit in hardware.
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Folding Transformation :

•Nl + u and Nl + v are respectively the time units at which l-th
  iteration of the nodes U and V are scheduled.
• u and v are called folding orders (time partition at which the 
  node is scheduled to be executed) and satisfy 0 ≤ u,v ≤ N-1.
• N is the folding factor i.e., the number of operations folded to
   a single functional unit.
• Hu and Hv are functional units that execute u and v respectively.
• Hu is pipelined by Pu stages and its output is available at Nl + u + Pu.
• Edge U→V has w(e) delays ⇒ the l-th iteration of U is used by
  (l + w(e)) th iteration of node V, which is executed at N(l + w(e))
  + v. So, the result should be stored for :
                    DF(U→V) = [N(l + w(e)) + v] – [Nl + Pu + u] 
               ⇒  DF(U→V) = Nw(e) - Pu + v – u     ( independent of l )
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• Folding Set : An ordered set of  N operations executed by the
same functional unit. The operations are ordered from 0 to N-
1. Some of the operations may be null. For example,  Folding
set S1={A1,0,A2} is for folding order N=3. A1 has a folding
order of 0 and A2 of 2 and are respectively denoted by (S1|0)
and (S2|2).

• Example: Folding a retimed biquad filter by N = 4.

Addition time = 1u.t., Multiplication time = 2u.t., 1 stage pipelined
adder and 2 stage pipelined multiplier(i.e., PA=1 and PM=2)

The folding sets are S1 = {4, 2, 3, 1} and S2 = {5, 8, 6, 7}
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Folding equations for each of the 11 edges are as follows: 
DF(1→2) = 4(1) – 1 + 1 – 3 = 1      DF(1→5) = 4(1) – 1 + 0 – 3 = 0
DF(1→6) = 4(1) – 1 + 2 – 3 = 2         DF(1→7) = 4(1) – 1 + 3 – 3 = 3
DF(1→8) = 4(2) – 1 + 1 – 3 = 5         DF(3→1) = 4(0) – 1 + 3 – 2 = 0
DF(4→2) = 4(0) – 1 + 1 – 0 = 0       DF(5→3) = 4(0) – 2 + 2 – 0 = 0
DF(6→4) = 4(1) – 2 + 0 – 2 = 0       DF(7→3) = 4(1) – 2 + 2 – 3 = 1
DF(8→4) = 4(1) – 2 + 0 – 1 = 1



Chap. 6 6

• Retiming for Folding :
– For a folded system to be realizable DF(UàV) ≥ 0 for all

edges.
– If D’F(UàV) is the folded delays in the edge UàV for

the retimed graph then D’F(UàV) ≥ 0.
So,

Nwr(e) – PU + v – u ≥ 0  … where wr(e) = w(e) + r(V) - r(U)
⇒ N(w(e) + r(V) – r(U) ) - PU + v – u ≥ 0
⇒r(U) – r(V) ≤ DF(UàV) /N
⇒r(U) – r(V) ≤ DF(UàV) /N         (since retiming values are
                                                               integers)
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• Register Minimization Technique : Lifetime analysis is used for
register minimization techniques in a DSP hardware.

• A ‘data sample or variable’ is live from the time it is produced
through the time it is consumed. After that it is dead.

• Linear lifetime chart : Represents the lifetime of the variables in a
linear fashion.

• Example :

Note : Linear lifetime chart uses the convention that the variable is not
live during the clock cycle when it is produced but live during the clock 
cycle when it is consumed.
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• Due to the periodic nature of DSP programs the lifetime chart can
be drawn for only one iteration to give an indication of the # of
registers that are needed. This is done as follows :
Ø Let N be the iteration period
Ø Let the # of live variables at time partitions n ≥ N be the # of

live variables due to 0-th iteration at cycles n-kN for k ≥ 0. In
the example, # of live variables at cycle 7 ≥ N (=6) is the sum
of the # of live variables due to the 0-th iteration at cycles 7
and (7 - 1×6) = 1, which is 2 + 1 = 3.

• Matrix transpose example :

Matrix 
Transposer

i | h | g | f | e | d | c | b | a i | f | c | h | e | b | g | d | a 
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8à1212088i
7à99-257h
6à66-426g
5à1111275f
4à88044e
3à55-213d
2à1010462c
1à77231b
0à44000a
LifeToutTdiffTzloutTinSample

vTo make the system causal
    a latency of 4 is added to
    the difference so that
    Tout is the actual output
    time.
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• Circular lifetime chart : Useful to represent the periodic
nature of the DSP programs.

• In a circular lifetime chart of periodicity N, the point
marked i (0 ≤ i ≤ N - 1) represents the time partition i and all
time instances {(Nl + i)} where l is any non-negative integer.

• For example : If N = 8, then time partition i = 3 represents
time instances {3, 11, 19, …}.

• Note : Variable produced during
   time unit j and consumed during
   time unit k is shown to be alive 
   from ‘j + 1’ to ‘k’.
• The numbers in the bracket in 
   the adjacent figure correspond
   to the # of live variables at each
   time partition.
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Forward Backward Register Allocation Technique :

Note : Hashing is done to avoid conflict during backward 
           allocation.
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Steps for Forward-Backward Register allocation :
• Determine the minimum number of registers using lifetime

analysis.
• Input each variable at the time step corresponding to the

beginning of its lifetime. If multiple variables are input in a
given cycle, these are allocated to multiple registers with
preference given to the variable  with the longest lifetime.

• Each variable is allocated in a forward manner until it is dead
or it reaches the last register. In forward allocation, if the
register i holds the variable in the current cycle, then
register i + 1 holds the same variable in the next cycle. If (i +
1)-th register is not free then use the first available forward
register.

• Being periodic the allocation repeats in each iteration. So
hash out the register Rj for the cycle l + N if it holds a
variable during cycle l.

• For variables that reach the last register and are still alive,
they are allocated in a backward manner on a first come first
serve basis.

• Repeat steps 4 and 5 until the allocation is complete.
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• Example : Forward backward Register Allocation
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• Folded architecture for matrix tranposer :
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• Register minimization in folded architectures :
Ø Perform retiming for folding
Ø Write the folding equations
Ø Use the folding equations to construct a lifetime table
Ø Draw the lifetime chart and determine the required

number of registers
Ø Perform forward-backward register allocation
Ø Draw the folded architecture that uses the minimum

number of registers.

3à48
5à67
4à46
2à25
1à14
3à33

--2
4à91

TinàToutNode

•Example : Biquad Filter
ØSteps 1 & 2 have already been done.
ØStep 3:The lifetime table is then 
   constructed. The 2nd  row is empty as 
   DF(2àU) is not present.

Note : As retiming for folding ensures 
causality,  we need not add any latency.
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ØStep 4 : Lifetime chart is 
   constructed and registers 
   determined.

ØStep 5 : Forward-backward
   register allocation
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ØFolded architecture is drawn with minimum # of registers.


