
Chapter 6: Folding

Keshab K. Parhi

2

• Folding is a technique to reduce the silicon area by time-
multiplexing many algorithm operations into single functional
units (such as adders and multipliers)

• Fig(a) shows a DSP program : y(n) = a(n) + b(n) + c(n) .
• Fig(b) shows a folded architecture where 2 additions are
 folded or time-multiplexed to a single pipelined adder
 One output sample is produced every 2 clock cycles ⇒ input
 should be valid for 2 clock cycles.
• In general, the data on the input of a folded realization is
 assumed to be valid for N cycles before changing, where N
 is the number of algorithm operations executed on a single
 functional unit in hardware.

Chap. 6 3

Folding Transformation :

•Nl + u and Nl + v are respectively the time units at which l-th
 iteration of the nodes U and V are scheduled.
• u and v are called folding orders (time partition at which the
 node is scheduled to be executed) and satisfy 0 ≤ u,v ≤ N-1.
• N is the folding factor i.e., the number of operations folded to
 a single functional unit.
• Hu and Hv are functional units that execute u and v respectively.
• Hu is pipelined by Pu stages and its output is available at Nl + u + Pu.
• Edge U→V has w(e) delays ⇒ the l-th iteration of U is used by
 (l + w(e)) th iteration of node V, which is executed at N(l + w(e))
 + v. So, the result should be stored for :
 DF(U→V) = [N(l + w(e)) + v] – [Nl + Pu + u]
 ⇒ DF(U→V) = Nw(e) - Pu + v – u (independent of l)

Chap. 6 4

• Folding Set : An ordered set of N operations executed by the
same functional unit. The operations are ordered from 0 to N-
1. Some of the operations may be null. For example, Folding
set S1={A1,0,A2} is for folding order N=3. A1 has a folding
order of 0 and A2 of 2 and are respectively denoted by (S1|0)
and (S2|2).

• Example: Folding a retimed biquad filter by N = 4.

Addition time = 1u.t., Multiplication time = 2u.t., 1 stage pipelined
adder and 2 stage pipelined multiplier(i.e., PA=1 and PM=2)

The folding sets are S1 = {4, 2, 3, 1} and S2 = {5, 8, 6, 7}

Chap. 6 5

Folding equations for each of the 11 edges are as follows:
DF(1→2) = 4(1) – 1 + 1 – 3 = 1 DF(1→5) = 4(1) – 1 + 0 – 3 = 0
DF(1→6) = 4(1) – 1 + 2 – 3 = 2 DF(1→7) = 4(1) – 1 + 3 – 3 = 3
DF(1→8) = 4(2) – 1 + 1 – 3 = 5 DF(3→1) = 4(0) – 1 + 3 – 2 = 0
DF(4→2) = 4(0) – 1 + 1 – 0 = 0 DF(5→3) = 4(0) – 2 + 2 – 0 = 0
DF(6→4) = 4(1) – 2 + 0 – 2 = 0 DF(7→3) = 4(1) – 2 + 2 – 3 = 1
DF(8→4) = 4(1) – 2 + 0 – 1 = 1

Chap. 6 6

• Retiming for Folding :
– For a folded system to be realizable DF(UàV) ≥ 0 for all

edges.
– If D’F(UàV) is the folded delays in the edge UàV for

the retimed graph then D’F(UàV) ≥ 0.
So,

Nwr(e) – PU + v – u ≥ 0 … where wr(e) = w(e) + r(V) - r(U)
⇒ N(w(e) + r(V) – r(U)) - PU + v – u ≥ 0
⇒r(U) – r(V) ≤ DF(UàV) /N
⇒r(U) – r(V) ≤ DF(UàV) /N (since retiming values are
 integers)

7

• Register Minimization Technique : Lifetime analysis is used for
register minimization techniques in a DSP hardware.

• A ‘data sample or variable’ is live from the time it is produced
through the time it is consumed. After that it is dead.

• Linear lifetime chart : Represents the lifetime of the variables in a
linear fashion.

• Example :

Note : Linear lifetime chart uses the convention that the variable is not
live during the clock cycle when it is produced but live during the clock
cycle when it is consumed.

Chap. 6 8

• Due to the periodic nature of DSP programs the lifetime chart can
be drawn for only one iteration to give an indication of the # of
registers that are needed. This is done as follows :
Ø Let N be the iteration period
Ø Let the # of live variables at time partitions n ≥ N be the # of

live variables due to 0-th iteration at cycles n-kN for k ≥ 0. In
the example, # of live variables at cycle 7 ≥ N (=6) is the sum
of the # of live variables due to the 0-th iteration at cycles 7
and (7 - 1×6) = 1, which is 2 + 1 = 3.

• Matrix transpose example :

Matrix
Transposer

i | h | g | f | e | d | c | b | a i | f | c | h | e | b | g | d | a

Chap. 6

8à1212088i
7à99-257h
6à66-426g
5à1111275f
4à88044e
3à55-213d
2à1010462c
1à77231b
0à44000a
LifeToutTdiffTzloutTinSample

vTo make the system causal
 a latency of 4 is added to
 the difference so that
 Tout is the actual output
 time.

Chap. 6 10

• Circular lifetime chart : Useful to represent the periodic
nature of the DSP programs.

• In a circular lifetime chart of periodicity N, the point
marked i (0 ≤ i ≤ N - 1) represents the time partition i and all
time instances {(Nl + i)} where l is any non-negative integer.

• For example : If N = 8, then time partition i = 3 represents
time instances {3, 11, 19, …}.

• Note : Variable produced during
 time unit j and consumed during
 time unit k is shown to be alive
 from ‘j + 1’ to ‘k’.
• The numbers in the bracket in
 the adjacent figure correspond
 to the # of live variables at each
 time partition.

Chap. 6 11

Forward Backward Register Allocation Technique :

Note : Hashing is done to avoid conflict during backward
 allocation.

Chap. 6 12

Steps for Forward-Backward Register allocation :
• Determine the minimum number of registers using lifetime

analysis.
• Input each variable at the time step corresponding to the

beginning of its lifetime. If multiple variables are input in a
given cycle, these are allocated to multiple registers with
preference given to the variable with the longest lifetime.

• Each variable is allocated in a forward manner until it is dead
or it reaches the last register. In forward allocation, if the
register i holds the variable in the current cycle, then
register i + 1 holds the same variable in the next cycle. If (i +
1)-th register is not free then use the first available forward
register.

• Being periodic the allocation repeats in each iteration. So
hash out the register Rj for the cycle l + N if it holds a
variable during cycle l.

• For variables that reach the last register and are still alive,
they are allocated in a backward manner on a first come first
serve basis.

• Repeat steps 4 and 5 until the allocation is complete.

Chap. 6 13

• Example : Forward backward Register Allocation

Chap. 6 14

• Folded architecture for matrix tranposer :

15

• Register minimization in folded architectures :
Ø Perform retiming for folding
Ø Write the folding equations
Ø Use the folding equations to construct a lifetime table
Ø Draw the lifetime chart and determine the required

number of registers
Ø Perform forward-backward register allocation
Ø Draw the folded architecture that uses the minimum

number of registers.

3à48
5à67
4à46
2à25
1à14
3à33

--2
4à91

TinàToutNode

•Example : Biquad Filter
ØSteps 1 & 2 have already been done.
ØStep 3:The lifetime table is then
 constructed. The 2nd row is empty as
 DF(2àU) is not present.

Note : As retiming for folding ensures
causality, we need not add any latency.

Chap. 6 16

ØStep 4 : Lifetime chart is
 constructed and registers
 determined.

ØStep 5 : Forward-backward
 register allocation

Chap. 6 17

ØFolded architecture is drawn with minimum # of registers.

