Chapter 5: Unfolding

Keshab K. Parhi

- Unfolding \equiv Paralle [Processing

$$
\mathcal{A}_{0} \rightarrow \mathcal{B}_{0}=>\mathcal{A}_{2} \rightarrow \mathcal{B}_{2}=>\mathcal{A}_{4} \rightarrow \mathcal{B}_{4}=>\ldots
$$

$$
\mathcal{A}_{1} \rightarrow \mathcal{B}_{1}=>\mathcal{A}_{3} \rightarrow \mathcal{B}_{3}=>\mathcal{A}_{5} \rightarrow \mathcal{B}_{5}=>\ldots
$$

$$
2 \text { nodes 子 } 2 \text { edges }
$$

$$
\mathcal{T}_{\infty}=(1+1) / 2=1 u t
$$

2-unfolded

- In a'g'unfolded system each delay is J-slow=>if input to a delay element is the signal $\chi(k \mathcal{I}+m)$, the output is $\chi((\mathcal{K}-1) \mathcal{I}+m)=\chi(k \mathcal{I}+m-\mathcal{I})$.
- Algoritim for unfolding:
$>$ For each node \mathcal{U} in the original $\mathcal{D F} \mathcal{G}$, drawg node $\mathcal{U}_{0}, \mathcal{U l}_{1}$, $\mathcal{U}_{2}, \ldots, \mathcal{U}_{g_{-1}}$.
$>$ For each edge $\mathcal{U} \rightarrow \mathcal{V}$ with w delays in the original $\mathcal{D F} \mathcal{G}$, drawthe g edges $\mathcal{U}_{i} \rightarrow \mathcal{V}_{(i+w)^{\circ} \text { 河 with }\lfloor(i+w) / \mathcal{I}\rfloor \text { delays for } i}$ $=0,1, \ldots$ g-1.

$$
\begin{gathered}
\mathrm{U} \xrightarrow{37 \mathcal{D}} \mathrm{~V} \\
\begin{array}{c}
w=37 \\
\Rightarrow\lfloor(i+w) / 4\rfloor=9, i=0,1,2 \\
=10, i=3
\end{array}
\end{gathered}
$$

$>$ Unfolding of an edge with w delays in the original $\mathcal{D F} \mathcal{G}$ produces g-wedges with no delays and wedges with 1delay in I unfolded $\mathcal{D F} \mathcal{G}$ for $w<\mathcal{I}$.
$>$ Unfolding preserves precedence constraints of a $\operatorname{DS} P$ program.

Properties of unfolding:
$>$ Unfolding preserves the number of delays in a $\mathcal{D F} \mathcal{G}$.
This can be stated as follows:

$$
\lfloor w / g\rfloor+\lfloor(w+1) / g\rfloor+\ldots+\lfloor(w+g-1) / g\rfloor=w
$$

$>$ g-unfolding of a loop $\left\{\right.$ with w_{l} delays in the original $\mathcal{D F} \mathcal{G}$ Leads to $\operatorname{gcd}\left(w_{l}, g\right)$ loops in the unfolded $\mathcal{D F} \mathcal{G}$, and each of these $\operatorname{gcd}\left(w_{l}, g\right)$ Coops contains $w_{l} \operatorname{gcd}\left(w_{l}, I\right)$ delays and $I / g c d\left(w_{l}, g\right)$ copies of each node that appears in l.
$>$ Unfolding a $\mathcal{D F G}$ with ite ration bound \mathcal{T}_{∞} results in a g. unfolded $\mathfrak{D F} \mathcal{G}$ with iteration bound $\mathcal{I} \mathcal{T}_{\infty}$.

- Applications of $\mathcal{I n f o l d i n g ~}$
$>$ Sample Pe riod Reduction
- Paralle LProcessing
- Sample Period Reduction
$>$ Case $1: \mathcal{A}$ node in the $\mathcal{D F G}$ faving computation time greater than \mathcal{T}_{∞}.
$>$ Case 2:Iteration bound is not an integer.
$>$ Case 3:Longest node computation is larger than the iteration bound \mathcal{T}_{∞}, and \mathcal{T}_{∞} is not an integer.

Case 1:

$>$ The original $\mathcal{D F G}$ cannot have sample period equal to the iteration bound because a node computation time is more than iteration bound

$>$ If the computation time of a node ' U ', $t_{u^{\prime}}$, is greater than the iteration bound \mathcal{T}_{∞}, then $\left\lceil t_{u} / \mathcal{T}_{\infty}\right\rceil$ - unfolding should be used.
\rightarrow In the example, $t_{u}=4$, and $\mathcal{T}_{\infty}=3$, so $\lceil 4 / 3\rceil$ - unfolding i.e., 2 . unfolding is used.

- Case 2 :
$>$ The original $\mathcal{D F G}$ cannot have sample period equal to the iteration bound because the iteration bound is not an integer.

$>$ If a criticallloop bound is of the form t_{l} / w_{l} where t_{l} and w_{l} are mutually co-prime, then w-unfolding should be used.
$>$ In the example $t_{l}=60$ and $w_{l}=45$, then t_{l} / w_{l} should be written as 4/3 and 3-unfolding should be used.
- Case 3 : In this case the minimum unfolding factor that allows the ite ration period to equal the iteration bound is the min value of g sucfithat $g \mathcal{T}_{\infty}$ is an integer and is greater than the longest node computation time.
- Parallel Processing:
$>$ Word-Level ParallelProcessing
$>$ Bit Level Parallelprocessing
*Bit-serial processing
- Bit-parallel processing
- Digit-serial processing

Chap. 5

- Bit-Level Parallel Processing

$$
a_{3} a_{2} a_{1} a_{0} \longrightarrow \text { Bit-seriat } \rightarrow b_{3} b_{2} b_{1} b_{0}
$$

- The following assumptions are made when unfolding an edge $\mathcal{U} \rightarrow \mathcal{V}$:
$>$ The wordlength \mathcal{W} is a multiple of the unfolding factor g, i.e. $\mathcal{W}=\mathcal{W}$ 'g.
$>$ All edges into and out of the switch have no delays.
- With the above two assumptions an edge $\mathcal{U} \rightarrow \mathcal{V} c a n$ be unfolded as follows:
$>$ Write the switcfing instance as

$$
\mathcal{W} \mathscr{l}+u=g(\mathcal{W} \mathscr{l}+\lfloor u / g\rfloor)+(u \% g)
$$

$>$ Draw an edge with no delays in the unfolded graph from the node $\mathcal{U}_{u \%_{g},}$ to the node $\mathcal{V}_{u \%_{j} g}$, which is switched at time instance ($\mathcal{W} \mathscr{T}+\lfloor u / g\rfloor)$.

Example:

$$
4 \mathscr{L}+0,2
$$

To unfold the $\mathcal{D F G}$ by $\mathcal{I}=3$, the switching instances are as follows

$$
\begin{aligned}
& 12 \mathcal{L}+1=3(4 \mathcal{L}+0)+1 \\
& 12 \mathcal{L}+7=3(4 \mathcal{L}+2)+1 \\
& 12 \mathcal{L}+9=3(4 \mathcal{\ell}+3)+0 \\
& 12 \mathcal{L}+11=3(4 \mathcal{L}+3)+2
\end{aligned}
$$

- Unfolding a $\mathcal{D F G}$ containing an edge faving a switcfind a positive number of delays is done by introducing a dummy node.

- If the word-length, \mathcal{W}, is not a multiple of the unfolding factor, g, then expand the switching instances with periodicity $\mathfrak{l c}_{\mathrm{c}}(\mathcal{W}, \mathcal{I})$
- Example: Consider $\mathcal{W}=4, \mathcal{I}=3$. Then lcm $(4,3)=12$. For this case, $4 \mathfrak{\{}=12 \mathfrak{\{}+\{0,4,8), 4 \mathfrak{l}+1=12 \mathfrak{\{}+\{1,5,9\}$, $4 \mathfrak{l}+2=12 \mathfrak{\{}+\{2,6,10\}, 4 \mathfrak{l}+3=12 \mathfrak{\{}+\{3,7,11\}$. Alf ne w s witching instances are now multiples of $\mathcal{I}=3$.

