Chapter 4: Retiming

Keshab K. Parhi

Retiming:
Moving around existing delays

- Does not alter the latency of the system
- Reduces the critical path of the system
- Node Retiming

-Cutset Retiming

Retiming

- Generalization of Pipelining
- Pipelining is Equivalent to Introducing Many delays at the Input followed by Retiming
- Retiming Formulation

Source node Destination node

$$
\omega^{\prime}=\omega+r(\mathcal{V}) \cdot r(\mathcal{U})
$$

- Properties of retiming
-The weight of the retimed path $p=V_{0} \cdots>\mathcal{V}_{1} \cdots>\ldots V_{k}$ is given by $\omega_{r}(p)=\omega(p)+r\left(\mathcal{V}_{k}\right)-r\left(\mathcal{V}_{0}\right)$
-Retiming does not change the number of delays in a cycle.
-Retiming does not alter the iteration bound in a $\mathcal{D F G}$ as the
number of delays in a cycle does not change
$-\mathfrak{A d d i n g}$ the constant value j to the retiming value of each node
does not alter the number of delays in the edges of the retimed grapt.
- Retiming is done to meet the following
- Clock period minimization
- Register minimization
- Retiming for clock period minimization
- Feasibility constraint

$$
\begin{array}{cll}
\omega(\mathcal{U l}, \mathcal{V}) \geq 0 \quad & \Rightarrow & \text { causality of the system } \\
\Rightarrow \omega(\mathcal{U}, \mathcal{V}) \geq r(\mathcal{U})-r(\mathcal{V}) & \text { (one inequality per edge) }
\end{array}
$$

- Critical Patf constraint
$r(\mathcal{U})-r(\mathcal{V}) \leq \mathcal{W}(\mathcal{U}, \mathcal{V})-1$ for all vertices $\mathcal{U l}$ and \mathcal{V} in the graph such that $\mathcal{D}(\mathcal{U}, \mathcal{V})>c$ where $c=$ target clock period. The two quantities $\mathcal{W}(\mathcal{U}, \mathcal{V})$ and $\mathcal{D}(\mathcal{U}, \mathcal{V})$ are given as:
$\mathcal{W}(\mathcal{U}, \mathcal{V})=\min \{w(p): \mathcal{U} \rightarrow \mathcal{V}\}$

(2)
- $\quad \mathcal{A l g o r i t h}$ to compute $\mathcal{W}(\mathcal{U}, \mathcal{V})$ and $\mathcal{D}(\mathcal{U l}, \mathcal{V})$:
- Let $\mathcal{M}=t_{\text {max }} n$, where $t_{\text {max }}$ is the maximum computation time of the nodes in \mathcal{G} and n is the \# of nodes in \mathcal{G}.
- Form a newgraph G'which is the same as Gexcept the edge weights are replaced by $w^{\prime}(e)=\mathcal{M} w(e)-t(u)$ for alledges $\mathcal{U} \rightarrow \boldsymbol{V}$.
- Solve for all pair shortest path problem on G'by using Floyd Warshall algorithm. Let $\mathcal{S}^{\prime}{ }_{\text {uv }}$ be the shortest path form $\mathcal{U l} \rightarrow$ V.
- If $\mathcal{U} \neq \mathcal{V}$, then $\mathcal{W}(\mathcal{U}, \mathcal{V})=\left\lceil\mathcal{S}^{\prime}{ }_{\text {uv }} / \mathcal{M}\right\rceil$ and $\mathcal{D}(\mathcal{U}, \mathcal{V})=\mathcal{M} \mathcal{W}(\mathcal{U}, \mathcal{V})$.

$$
\mathcal{S}^{\prime}{ }_{u v}+t(\mathcal{V}) \text {. If } \mathcal{U}=\mathcal{V}, \text { then } \mathcal{W}(\mathcal{U}, \mathcal{V})=0 \text { and } \mathcal{D}(\mathcal{U}, \mathcal{V})=t(\mathcal{U}) \text {. }
$$

- Ulsing $\mathcal{W}(\mathcal{U}, \mathcal{V})$ and $\mathcal{D}(\mathcal{U}, \mathcal{V})$ the feasibility and critical path constraints are formulated to give certain ine qualities. The inequalities are solved using constraint graphs and if a feasible solution is obtained then the circuit can be clocked with a period 'c'.
- Solving a system of inequalities: Given \mathfrak{M} inequalities in \mathcal{N} variables where eachine quality is of the form $r_{i}-r_{j} \leq \kappa$ for integer values of k.
$>$ Draw a constraint grapf
$>$ Draw the node ifor each of the \mathfrak{N} variables $r_{i}, I=1,2$, .., \mathcal{N}.
$>$ Draw the node $\mathfrak{N}+1$.
$>$ For each ine quality $r_{i}-r_{j} \leq K$, draw the edge $j \rightarrow i$ of lengtrk.
$>$ For each node $i, i=1,2, \ldots, n$, draw the edge $\mathcal{N}+1 \rightarrow i$ from the node $\mathcal{N}+1$ to node I with length 0.
$>$ Solve using a shortest path algorithm.
$>$ The system of inequalities have a solution iff the constraint grapf contains no negative cycles.
$>$ If a solution exists, one solution is where r_{i} is the minimum length path from the node $\mathcal{N}+1$ to node i.
- K-slow transformation
- Replace each \mathcal{D} by KD

Clock	
$\mathbf{0}$	$\mathrm{A} 0 \rightarrow \mathrm{~B} 0$
$\mathbf{1}$	$\mathrm{~A} 1 \rightarrow \mathrm{~B} 1$
$\mathbf{2}$	$\mathrm{~A} 2 \rightarrow \mathrm{~B} 2$

$$
\mathrm{T}_{\mathrm{iter}}=2 \mathrm{ut}
$$

After 2-slow transformation

Clock	
$\mathbf{0}$	$\mathrm{A} 0 \rightarrow \mathrm{~B} 0$
$\mathbf{1}$	
$\mathbf{2}$	$\mathrm{~A} 1 \rightarrow \mathrm{~B} 1$
$\mathbf{3}$	
$\mathbf{4}$	$\mathrm{~A} 2 \rightarrow \mathrm{~B} 2$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{clk}}=2 \mathrm{ut} \\
& \mathrm{~T}_{\mathrm{iter}}=2 \times 2 \mathrm{ut}=4 \mathrm{ut}
\end{aligned}
$$

*Input ne w samples every alternate cycles. *null operations account for odd clockcycles.
*Hardware utilized only 50% time

- Retiming 2-slowgrapf

$$
\begin{aligned}
& \mathcal{T}_{c l k}=1 u t \\
& \mathcal{T}_{i t e r}=2 \times 1=2 u t
\end{aligned}
$$

*Hardware \mathcal{H} tilization $=50 \%$
*Hardware can be fully utilized if two inde pendent operations are available.

2-Slow Lattice Filter (Fig. 4.7)

$\mathcal{A} 100$ stage Lattice Filter with critical path 2 multiplications and 101 additions Stage $1 \quad$ Stage 2 Stage 100

The 2-slow version

\mathcal{A} retimed version of the 2 slow circuit with critical path of 2 multiplications and 2 additions

$$
\begin{aligned}
& \text { If } \mathcal{T}_{m}=2 \text { u.t. and } \mathcal{T}_{a}=1 \text { u.t., then } \\
& \mathcal{T}_{\text {clk }}=6 \text { u.t., } \mathcal{T}_{\text {iter }}=2 X 6=12 \text { u.t. }
\end{aligned}
$$

In Original Lattice Filter, $\mathcal{T}_{\text {iter }}=105$ u.t.

$$
\text { Iteration Period Bound }=7 \text { u.t. }
$$

Other Applications of Retiming

- Retiming for Register Minimization (Section 4.4.3)
- Retiming for Folding (Chapter 6)
- Retiming for Power Reduction (Chap. 17)
- Retiming for Logic Synthesis (Beyond Scope of This Class)
- Multi-Rate/Multi-Dimensional Retiming (Denk/Parhi, Trans. VLSI, Dec. 98, Jun.99)

