Chapter 17: Low-Power Design

Keshab K. Parhi and Viktor Owall

VLSI Digital Signal Processing Systems

- Technology trends:
 - 200-300M chips by 2010 (0.07 micron CMOS)
- Challenges:
 - Low-power DSP algorithms and architectures
 - Low-power dedicated / programmable systems
 - Multimedia & wireless system-driven architectures
 - Convergence of Voice, Video and Data
 - LAN, MAN, WAN, PAN
 - Telephone Lines, Cables, Fiber, Wireless
 - Standards and Interoperability

Power Consumption in DSP

- Low performance portable applications:
 - Cellular phones, personal digital assistants
 - Reasonable battery lifetime, low weight
- High performance portable systems:
 - Laptops, notebook computers
- Non-portable systems:
 - Workstations, communication systems
 - DEC alpha: 1 GHz, 120 Watts
 - Packaging costs, system reliability

Power Dissipation

Two measures are important • Peak power (Sets dimensions)

$$P_{\text{peak}} = V_{\text{DD}} \times i_{\text{DDmax}}$$

• Average power (Battery and cooling) $P_{av} = \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$

CMOS Power Consumption

$$P_{tot} = P_{dyn} + P_{sc} + P_{leakage} =$$
$$= \alpha f C_L V_{DD}^2 + V_{DD} I_{sc} + I_{leakage} V_{DD}$$

 α = probability for switching

Dynamic Power Consumption

Energy charged in a capacitor $E_{C} = CV^{2}/2 = C_{L}V_{DD}^{2}/2$

Energy E_c is also discharged, i.e.

$$\mathbf{E}_{\rm tot} = \mathbf{C}_{\rm L} \, \mathbf{V}_{\rm DD}^2$$

Power consumption

$$P = C_L V_{DD}^2 f$$

7

Off-Chip Connections have High Capacitive Load

Reduced off Chip Data Transfers by System Integration Ideally a Single Chip Solution

Reduced Power Consumption

Increased Switching Activity due to Glitching

Clock Gating and Power Down

Carry Ripple

Transitions due to carry propagation

Fig. 17.3 Circuit delay as a function of supply voltage.

Chapter 1

Delay as function of Threshold

Fig. 17.4 Circuit delay as a function of supply voltage for varying threshold voltages. Chapter 17

Dual V_T Technology

Reduced $V_{DD} \alpha$ Increased delay Low $V_T \alpha$ Faster but Increased Leakage

Low V_{T} in critical path

Low Power Gate Resizing

- Systematic capture and elimination of slack using fictitious entities called *Unit Delay Fictitious Buffers*.
- Replace unnecessary fast gates by slower lower power gates from an underlying gate library.
- Use a simple relation between a gate's speed and power and the UDF's in its fanout nets. Model the problem as an *efficiently solvable ILP* similar to retiming.
- In Proceedings of ARVLSI'99 Georgia Tech.

Dual Supply Voltages for Low Power

- Components on the Critical Path exhibit no slack but components off the critical path exhibit excessive slack.
- A high supply voltage VDDH for critical path components and a low supply voltage VDDL for non critical path components.
- Throughput is maintained and power consumption is lowered.

V. Sundararajan and K.K. Parhi, "Synthesis of Low Power CMOS VLSI Circuits using Dual Supply Voltages", Prof. of ACM/IEEE Design Automation Conference, pp. 72-75, New Orleans, June 1999

Dual Supply Voltages for Low Power

- Systematic capture and elimination of slack using fictitious entities called *Unit Delay Fictitious Buffers*.
- Switch unnecessarily fast gates to to lower supply voltage VDDL thereby saving power, critical path gates have a high supply voltage of VDDH.
- Use a simple relation between a gate's speed/power and supply voltage with the UDF's in its fanout nets. Model the problem as an *approximately solvable ILP*.

Dual Threshold CMOS VLSI for Low Power

- Systematic capture and elimination of slack using fictitious entities called *Unit Delay Fictitious Buffers*.
- Gates on the critical path have a low threshold voltage VTL and unnecessarily fast gates are switched to a high threshold voltage VTH.
- Use a simple relation between a gate's speed /power and threshold voltage with the UDF's in its fanout nets. Model the problem as an *efficiently approximable 0-1 ILP*.

Critical Path = 8, UDF's in Boxes

Experimental Results

• Table :ISCAS'85 Benchmark Ckts Resizing (20 Sizes) Dual VDD Dual

				(5v, 2.4v)		Vt
Ckt	#Gates	Power	CPU(s)	Power	CPU(s)	Power
		Savings		Savings		Savings
C1908	880	15.27%	87.5	49.5%	739.05	84.92%
c2670	1211	28.91%	164.38	57.6%	1229.37	90.25%
c3540	1705	37.11%	312.51	57.7%	1743.75	83.36%
c5315	2351	41.91%	660.56	62.4%	4243.63	91.56%
c6288	2416	5.57%	69.58	62.7%	7736.05	61.75%
c7552	3624	54.05%	1256.76	59.6%	9475.1	90.90%

V. Sundararajan and K.K. Parhi, "Low Power Synthesis of Dual Threshold Voltage CMOS VLSI Circuits" Proc. of 1999 IEEE Int. Symp. on Low-Power Electronics and Design, pp. 139-144, San Diego, Aug. 1999

HEAT: Hierarchical Energy Analysis Tool

- Salient features:
 - Based on stochastic techniques
 - Transistor-level analysis
 - Effectively models glitching activity
 - Reasonably fast due to its hierarchical nature

Theoretical Background

- Signal probability:
 - $S=T_{clk}/T_{gd}$, where T_{clk} :clock period T_{gd} : smallest gate delay
- Transition probability:

• Conditional probability:

State Transition Diagram Modeling

$$node_{2}(n+1) = (1 - x_{1}(n)) + x_{1}(n) \cdot x_{2}(n) \cdot node_{2}(n)$$
$$node_{3}(n+1) = (1 - x_{1}(n)) + (1 - x_{2}(n))$$

The HEAT algorithm

- Partitioning of systems unit into smaller sub-units
- State transition diagram modeling
- Edge energy computation (HSPICE)

- Computation of steady-state probabilities (MATLAB)
- Edge activity computation
- Computation of average energy

Performance Comparison

J. Satyanarayana and K.K. Parhi, "Power Estimation of Digital Datapaths using HEAT Tool", IEEE Design and Test Magazine, 17(2), pp. 101-110, April-June 2000

Finite field arithmetic -- Addition and Multiplication

$$A = a_{m-1}\alpha^{m-1} + \dots + a_{1}\alpha + a_{0}$$

$$B = b_{m-1}\alpha^{m-1} + \dots + b_{1}\alpha + b_{0}$$

$$A + B = (a_{m-1} + b_{m-1})\alpha^{m-1} + \dots + (a_{1} + b_{1})\alpha + (a_{0} + b_{0})$$

$$A \cdot B = (a_{m-1}\alpha^{m-1} + \dots + a_{1}\alpha + a_{0})(b_{m-1}\alpha^{m-1} + \dots + b_{1}\alpha + b_{0}) \mod(p(x))$$

Polynomial addition over GF(2) one's complement operation --> XOR gates Polynomial multiplication and modulo operation

(modulo primitive polynomial p(x))

Programmable finite field multiplier

Finite field arithmetic-programmable finite field multipliers

Programmability:-primitive polynomial p(x) -field order m

How to achieve programmability:-control circuitry

-zero, pre & post padding

Polynomial multiplication Polynomial modulo operation Array-type multiplication Fully parallel multiplication Digit-serial/parallel multiplication

L. Song and K. K. Parhi, "Low-energy digit-serial/parallel finite field multipliers", Journal of VLSI Signal Processing, 19(2), pp. 149-166, June 1998

Data-path architectures for low energy RS codecs

• Advantages of having two separate sub-arrays

- Example: Vector-vector multiplication over GF(2m)

$$\begin{bmatrix} A_0 & A_1 & \dots & A_{n-1} \end{bmatrix} \begin{vmatrix} B_0 & | \\ B_1 \\ \dots & | \\ B_{n-1} \end{vmatrix} = (A_0 B_0 + \dots + A_{n-1} B_{n-1}) \mod (p(x))$$

Assume energy(parallel multiplier)=Eng

Energy(MAC8x8)=0.25 Eng Energy(DEGRED7)=0.75 Eng Total Energy(parallel)=Eng*n Total Energy(MAC-D7)=0.25Eng*n+0.75Eng

$$s = \frac{Eng \cdot (n - (0.25n + 0.75))}{Eng \cdot n} \cong 75\%$$

Data-path architectures for lowpower RS encoder

- Data-paths
 - One parallel finite field multiplier
 - Digit-serial multiplication: MACx and DEGREDy

Data-path architectures for low energy RS codecs

- Data-path:
 - one parallel finite field multiplier
 - Digit-serial multiplication: MACx and DEGREDy

L. Song, K.K. Parhi, I. Kuroda, T. Nishitani, "Hardware/Software Codesign of Finite Field Datapath for Low-Energy Reed-Solomon Codecs", IEEE Trans. on VLSI Systems, 8(2), pp. 160-172, Apr. 2000

Low power design challenges

- System Integration
- Application Specific architectures for Wireless/ADSL/Security
- Programmable DSPs to handle new application requirements
- Low-Power Architectures driven by Interconnect, Crosstalk in DSM technology
- How Far are we away from PDAs/Cell Phones for wireless video, internet access
 ^{Chapter 17} and e-commerce?

34