Chapter 15: Numerical Strength Reduction

Keshab K. Parhi

- Sub-expression elimination is a numerical transformation of the constant multiplications that can lead to efficient hardware in terms of area, power and speed.
- Sub-expression can only be performed on constant multiplications that operate on a common variable.
- It is essentially the process of examining the shift and add implementations of the constant multiplications and finding redundant operations.
- Example: $a \times x$ and $b \times x$, where a = 001101 and
 - b = 011011 can be performed as follows:
 - $a \times x = 000100 \times x + 001001 \times x$
 - $b \times x = 010010 \times x + 001001 \times x = (001001 \times x) << 1 + (001001 \times x).$
 - The term $001001 \times x$ needs to be computed only once.
 - So, multiplications were implemented using 3 shifts and 3 adds as opposed to 5 shifts and 5 adds.

Multiple Constant Multiplication(MCM)

- The algorithm for MCM uses an iterative matching process that consists of the following steps:
- Express each constant in the set using a binary format (such as signed, unsigned, 2's complement representation).
- Determine the number of bit-wise matches (nonzero bits) between all of the constants in the set.
- Choose the best match.
- Eliminate the redundancy from the best match. Return the remainders and the redundancy to the set of coefficients.
- Repeat Steps 2-4 until no improvement is achieved.

Example:	Constant	Value	Unsigned		
	а	237	11101101		
	b	182	10110110		
	С	93	01011101		

Binary representation of constants

Constant	Unsigned			
Rem. of a	10100000			
b	10110110			
Rem. of c	00010000			
Red. of a,c	01001101			

Updated set of constants 1st iteration

Constant	Unsigned
Rem. of a	0000000
Rem. of b	00010110
Rem. of c	00010000
Red. of a,c	01001101
Red. of Rem a,b	10100000

Updated set of constants 2^{nd} iteration $_4$

Chap. 15

Linear Transformations

• A general form of linear transformation is given as:

where, T is an m by n matrix, y is length-m vector and x is a length-n vector. It can also be written as:

$$y_i = \sum_{j=1}^n t_{ij} x_j, i = 1, ..., m$$

- The following steps are followed:
 - Minimize the number of shifts and adds required to compute the products t_{ij}x_j by using the iterative matching algorithm.
 - Formation of unique products using the sub-expression found in the 1st step.
 - Final step involves the sharing of additions, which is common among the y_i's. This step is very similar to the MCM problem.

Example:

$$T = \begin{bmatrix} 7 & 8 & 2 & 13 \\ 12 & 11 & 7 & 13 \\ 5 & 8 & 2 & 15 \\ 7 & 11 & 7 & 11 \end{bmatrix}$$

- •The constants in each column multiply to a common variable. For Example x_1 is multiplied to the set of constants [7, 12, 5, 7].
- Applying iterative matching algorithm the following table is obtained.

Column 1	Column 2	Column 3	Column 4
0101	1000	0010	1001
0010	1011	0111	0100
1100			0010

Next, the unique products are formed as shown below:

$$p_{1} = 0101^{*}x_{1}, p_{2} = 0010^{*}x_{1}, p_{3} = 1100^{*}x_{1}$$
$$p_{4} = 1000^{*}x_{2}, p_{5} = 1011^{*}x_{2},$$
$$p_{6} = 0010^{*}x_{3}, p_{7} = 0111^{*}x_{3}$$
$$p_{8} = 1001^{*}x_{4}, p_{9} = 0100^{*}x_{4}, p_{10} = 0010^{*}x_{4}$$

• Using these products the y_i's are as follows:

$$\begin{array}{l} y_1 = p_1 + p_2 + p_4 + p_6 + p_8 + p_9; \\ y_2 = p_3 + p_5 + p_7 + p_8 + p_9; \\ y_3 = p_1 + p_4 + p_6 + p_8 + p_9 + p_{10}; \\ y_4 = p_1 + p_2 + p_5 + p_7 + p_8 + p_{10}; \end{array}$$

• This step involves sharing of additions which are common to all y_i 's. For this each y_i is represented as k bit word ($1 \le k \le 10$), where each of the k products formed after the 2nd step represents a particular bit position. Thus,

y₁ = 1101010110, y₂ = 0010101110, y₃ = 1001010111, y₄ = 1100101101.

• Applying iterative matching algorithm to reduce the number of additions required for y_i's we get:

$$y_{1} = p_{2} + (p_{1} + p_{4} + p_{6} + p_{8} + p_{9});$$

$$y_{2} = p_{3} + p_{9} + (p_{5} + p_{7} + p_{8});$$

$$y_{3} = p_{10} + (p_{1} + p_{4} + p_{6} + p_{8} + p_{9});$$

$$y_{4} = p_{1} + p_{2} + p_{10} + (p_{5} + p_{7} + p_{8});$$

The total number of additions are reduced from 35 to 20.

Polynomial Evaluation

Evaluating the polynomial:

$$X^{13} + X^7 + X^4 + X^2 + X$$

- Without considering the redundancies this polynomial evaluation requires 22 multiplications.
- Examining the exponents and considering their binary representations:

1 = 0001, 2 = 0010, 4 = 0100, 7 = 0111, 13 = 1101.

• x^7 can be considered as $x^4 \times x^2 \times x^1$. Applying sub-expression sharing to the exponents the polynomial can be evaluated as follows:

 $X^8 \times (X^4 \times X) + X^2 \times (X^4 \times X) + X^4 + X^2 + X$

 The terms x², x⁴ and x⁸ each require one multiplication as shown below:

 $X^2 = X \times X$, $X^4 = X^2 \times X^2$, $X^8 = X^4 \times X^4$

• Thus, we require 6 instead of 22 multiplications.

Sub-expression Sharing in Digital Filters

• Example of common sub-expression elimination within a single multiplication :

 $y = 0.10\overline{1}000101^*x.$

This may be implemented as:

$$y = (x >> 1) - (x >> 3) + (x >> 7) - (x >> 9).$$

Alternatively, this can be implemented as,

$$x2 = x - (x >> 2)$$

Y = (x2 >> 1) + (x2 >> 7)

which requires one less addition.

 In order to realize the sub-expression elimination transformation, the N-tap FIR filter:

$$y(n) = c_0 x(n) + c_1 x(n-1) + ... + c_0 x(n-N+1)$$

must be implemented using transposed directform structure also called <u>data-broadcast filter</u> <u>structure</u> as shown below:

- Represent a filter operation by a table (matrix) $\{x_{ij}\}$, where the rows are indexed by delay i and the columns by shift j, i.e., the row i is the coefficient c_i for the term x(n-i), and the column 0 in row i is the msb of c_i and column W-1 in row i is the lsb of c_i , where W is the word length.
- The row and column indexing starts at 0.
- The entries are 0 or 1 if 2's complement representation is used and {1, 0, 1} if CSD is used.
- A non-zero entry in row i and column j represents x(n-i) >> j. I t is to be added or subtracted according to whether the entry is +1 or -1.

This filter has 8 non-zero terms and thus requires 7 additions. But, the sub-expressions $x1 + x1[-1] \gg 1$ occurs 4 times in shifted and delayed forms by various amounts as circled. So, the filter requires 4 adds.

$$\label{eq:x2} \begin{array}{l} x2 = x1 - x1[-1] >> 1 \\ y = x2 - (x2 >> 4) - (x2[-1] >> 3) + (x2[-1] >> 8) \\ \mbox{An alternative realization is :} \end{array}$$

$$x2 = x1 - (x1 >> 4) - (x1[-1] >> 3) + (x1[-1] >> 8) y = x2 - (x2[-1] >> 1).$$

Chap. 15

Example:

 $y(n) = \overline{1.0101000010} \times (n) + 0.\overline{10001010101} \times (n-1)$

+ 0.10010000010*x(n-2) + 1.000001010000*x(n-4) The substructure matching procedure for this design is as follows:

• Start with the table containing the coefficients of the FIR filter. An entry with absolute value of 1 in this table denotes add or subtract of x1. I dentify the best sub-expression of size 2.

Chap. 15

 Remove each occurrence of each sub-expression and replace it by a value of 2 or -2 in place of the first (row major) of the 2 terms making up the sub-expression.

-1		2	1						2	
				-2		-1		-1		-2
	-2									
					1		-1			

 Record the definition of the sub-expression. This may require a negative value of shift which will be taken care of later.

x3 = x1 - x1[-1] >> (-1)

• Continue by finding more sub-expressions until done.

-1		3					2	
				-3				-2
	-2							
					1	-1		

5. Write out the complete definition of the filter.

$$\begin{aligned} x2 &= x1 - x1[-1] >> (-1) \\ x3 &= x2 + x1 >> 2 \\ y &= -x1 + x3 >> 2 + x2 >> 10 - x3[-1] >> 5 - x2[-1] >> 11 \\ -x2[-2] >> 1 + x1[-3] >> 6 - x1[-3] >> 8. \end{aligned}$$

 If any sub-expression definition involves negative shift, then modify the definition and subsequent uses of that variable to remove the negative shift as shown below:

$$\begin{aligned} x2 &= x1 >> 1 - x1[-1] \\ x3 &= x2 + x1 >> 3 \\ y &= -x1 + x3 >> 1 + x2 >> 9 - x3[-1] >> 4 - x2[-1] >> 10 \\ - x2[-2] + x1[-3] >> 6 - x1[-3] >> 8. \end{aligned}$$

3-tap FIR filter with sub-expression sharing for 3-tap FIR filter with coefficients $c_2 = 0.11010010$, $c_1 = 0.10011010$ and $c_0 = 0.00101011$. This requires 7 shifts and 9 additions compared to 12 shifts and 11 additions.

3-tap FIR filter with sub-expression sharing requiring 8 additions as compared to 9 in the previous implementation.

Using 2 most common sub-expressions in CSD representation

 x – x >> 2 and x + x >> 2 are the 2 most common subexpressions in CSD representation.

An FIR filter using the term sharing, where the two most common sub-expressions in CSD numbers 101 and 101, together with isolated 1 are shared among all filter coefficients.

(b)

3-tap FI R filter with coefficients $c_2 = 0.1010101010101$, $c_1 = 0.10010100101$ and $c_0 = 0.10101010000$. 2 additions in the dotted square in (a) are shared in (b). Filter requires only 7 additions and 7 shifts as opposed to 12 adds and 12 shifts in standard multiplierless implementation. Chap. 15 21