Chapter 15: Numerical Strength Reduction

Keshab K. Parhi
• Sub-expression elimination is a numerical transformation of the constant multiplications that can lead to efficient hardware in terms of area, power and speed.
• Sub-expression can only be performed on constant multiplications that operate on a common variable.
• It is essentially the process of examining the shift and add implementations of the constant multiplications and finding redundant operations.
• Example: \(a \times x\) and \(b \times x\), where \(a = 001101\) and \(b = 011011\) can be performed as follows:
 - \(a \times x = 000100 \times x + 001001 \times x\)
 - \(b \times x = 010010 \times x + 001001 \times x = (001001 \times x) \ll 1 + (001001 \times x)\).
 - The term \(001001 \times x\) needs to be computed only once.
 - So, multiplications were implemented using 3 shifts and 3 adds as opposed to 5 shifts and 5 adds.
Multiple Constant Multiplication (MCM)

The algorithm for MCM uses an iterative matching process that consists of the following steps:

• Express each constant in the set using a binary format (such as signed, unsigned, 2’s complement representation).

• Determine the number of bit-wise matches (non-zero bits) between all of the constants in the set.

• Choose the best match.

• Eliminate the redundancy from the best match. Return the remainders and the redundancy to the set of coefficients.

• Repeat Steps 2-4 until no improvement is achieved.
Example:

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>237</td>
<td>11101101</td>
</tr>
<tr>
<td>b</td>
<td>182</td>
<td>10110110</td>
</tr>
<tr>
<td>c</td>
<td>93</td>
<td>01011101</td>
</tr>
</tbody>
</table>

Binary representation of constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rem. of a</td>
<td>10100000</td>
</tr>
<tr>
<td>b</td>
<td>10110110</td>
</tr>
<tr>
<td>Rem. of c</td>
<td>00010000</td>
</tr>
<tr>
<td>Red. of a,c</td>
<td>01001101</td>
</tr>
</tbody>
</table>

Updated set of constants

1st iteration

<table>
<thead>
<tr>
<th>Constant</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rem. of a</td>
<td>00000000</td>
</tr>
<tr>
<td>Rem. of b</td>
<td>00010110</td>
</tr>
<tr>
<td>Rem. of c</td>
<td>00010000</td>
</tr>
<tr>
<td>Red. of a,c</td>
<td>01001101</td>
</tr>
<tr>
<td>Red. of Rem a,b</td>
<td>10100000</td>
</tr>
</tbody>
</table>

Updated set of constants

2nd iteration
Linear Transformations

- A general form of linear transformation is given as:
 \[y = T^* x \]
 where, \(T \) is an \(m \) by \(n \) matrix, \(y \) is length-\(m \) vector and \(x \) is a length-\(n \) vector. It can also be written as:
 \[y_i = \sum_{j=1}^{n} t_{ij} x_j, \quad i = 1, \ldots, m \]

- The following steps are followed:
 - Minimize the number of shifts and adds required to compute the products \(t_{ij} x_j \) by using the iterative matching algorithm.
 - Formation of unique products using the sub-expression found in the 1st step.
 - Final step involves the sharing of additions, which is common among the \(y_i \)'s. This step is very similar to the MCM problem.
Example:

\[T = \begin{bmatrix} 7 & 8 & 2 & 13 \\ 12 & 11 & 7 & 13 \\ 5 & 8 & 2 & 15 \\ 7 & 11 & 7 & 11 \end{bmatrix} \]

- The constants in each column multiply to a common variable. For Example \(x_1 \) is multiplied to the set of constants \([7, 12, 5, 7]\).
- Applying iterative matching algorithm the following table is obtained.
• Next, the unique products are formed as shown below:

\[p_1 = 0101^*x_1, \quad p_2 = 0010^*x_1, \quad p_3 = 1100^*x_1, \]
\[p_4 = 1000^*x_2, \quad p_5 = 1011^*x_2, \]
\[p_6 = 0010^*x_3, \quad p_7 = 0111^*x_3, \]
\[p_8 = 1001^*x_4, \quad p_9 = 0100^*x_4, \quad p_{10} = 0010^*x_4. \]

• Using these products the \(y_i \)'s are as follows:

\[y_1 = p_1 + p_2 + p_4 + p_6 + p_8 + p_9; \]
\[y_2 = p_3 + p_5 + p_7 + p_8 + p_9; \]
\[y_3 = p_1 + p_4 + p_6 + p_8 + p_9 + p_{10}; \]
\[y_4 = p_1 + p_2 + p_5 + p_7 + p_8 + p_{10}; \]
• This step involves sharing of additions which are common to all \(y_i \)'s. For this each \(y_i \) is represented as \(k \) bit word (\(1 \leq k \leq 10 \)), where each of the \(k \) products formed after the \(2^{\text{nd}} \) step represents a particular bit position. Thus,

\[
\begin{align*}
y_1 &= 1101010110, \\
y_2 &= 0010101110, \\
y_3 &= 1001010111, \\
y_4 &= 1100101101.
\end{align*}
\]

• Applying iterative matching algorithm to reduce the number of additions required for \(y_i \)'s we get:

\[
\begin{align*}
y_1 &= p_2 + (p_1 + p_4 + p_6 + p_8 + p_9); \\
y_2 &= p_3 + p_9 + (p_5 + p_7 + p_8); \\
y_3 &= p_{10} + (p_1 + p_4 + p_6 + p_8 + p_9); \\
y_4 &= p_1 + p_2 + p_{10} + (p_5 + p_7 + p_8);
\end{align*}
\]

• The total number of additions are reduced from 35 to 20.
Polynomial Evaluation

Evaluating the polynomial:
\[x^{13} + x^7 + x^4 + x^2 + x \]

- Without considering the redundancies this polynomial evaluation requires 22 multiplications.
- Examining the exponents and considering their binary representations:

 \[1 = 0001, \ 2 = 0010, \ 4 = 0100, \ 7 = 0111, \ 13 = 1101. \]

- \(x^7 \) can be considered as \(x^4 \times x^2 \times x^1 \). Applying sub-expression sharing to the exponents the polynomial can be evaluated as follows:

\[x^8 \times (x^4 \times x) + x^2 \times (x^4 \times x) + x^4 + x^2 + x \]

- The terms \(x^2 \), \(x^4 \) and \(x^8 \) each require one multiplication as shown below:

\[x^2 = x \times x, \quad x^4 = x^2 \times x^2, \quad x^8 = x^4 \times x^4 \]

- Thus, we require 6 instead of 22 multiplications.
Sub-expression Sharing in Digital Filters

- Example of common sub-expression elimination within a single multiplication:

\[y = 0.10\overline{1000101}_2 x. \]

This may be implemented as:

\[y = (x \gg 1) - (x \gg 3) + (x \gg 7) - (x \gg 9). \]

Alternatively, this can be implemented as,

\[x_2 = x - (x \gg 2) \]

\[Y = (x_2 \gg 1) + (x_2 \gg 7) \]

which requires one less addition.
• In order to realize the sub-expression elimination transformation, the N-tap FIR filter:

\[y(n) = c_0 x(n) + c_1 x(n-1) + \ldots + c_0 x(n-N+1) \]

must be implemented using transposed direct-form structure also called data-broadcast filter structure as shown below:
• Represent a filter operation by a table (matrix) \(\{x_{ij}\} \), where the rows are indexed by delay \(i \) and the columns by shift \(j \), i.e., the row \(i \) is the coefficient \(c_i \) for the term \(x(n-i) \), and the column 0 in row \(i \) is the msb of \(c_i \) and column \(W-1 \) in row \(i \) is the lsb of \(c_i \), where \(W \) is the word length.

• The row and column indexing starts at 0.

• The entries are 0 or 1 if 2’s complement representation is used and \{1, 0, 1\} if CSD is used.

• A non-zero entry in row \(i \) and column \(j \) represents \(x(n-i) \gg j \). It is to be added or subtracted according to whether the entry is +1 or −1.
Example:

\[y(n) = 1.000100000 \times x(n) + 0.101010010 \times x(n-1) + 0.000100001 \times x(n-2) \]

This filter has 8 non-zero terms and thus requires 7 additions. But, the sub-expressions \(x_1 + x_1[-1] \gg 1\) occurs 4 times in shifted and delayed forms by various amounts as circled. So, the filter requires 4 adds.

\[
x_2 = x_1 - x_1[-1] \gg 1
\]

\[
y = x_2 - (x_2 \gg 4) - (x_2[-1] \gg 3) + (x_2[-1] \gg 8)
\]

An alternative realization is:

\[
x_2 = x_1 - (x_1 \gg 4) - (x_1[-1] \gg 3) + (x_1[-1] \gg 8)
\]

\[
y = x_2 - (x_2[-1] \gg 1).
\]
Example:

\[
y(n) = 1.01010000010 \times x(n) + 0.\overline{10001010101} \times x(n-1) \\
+ 0.\overline{10010000010} \times x(n-2) + 1.00000101000 \times x(n-4)
\]

The substructure matching procedure for this design is as follows:

- Start with the table containing the coefficients of the FIR filter. An entry with absolute value of 1 in this table denotes add or subtract of x1. Identify the best sub-expression of size 2.
• Remove each occurrence of each sub-expression and replace it by a value of 2 or -2 in place of the first (row major) of the 2 terms making up the sub-expression.

<table>
<thead>
<tr>
<th>-1</th>
<th>2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td>-2</td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• Record the definition of the sub-expression. This may require a negative value of shift which will be taken care of later.

\[x_3 = x_1 - x_1[-1] >> (-1) \]
• Continue by finding more sub-expressions until done.

<table>
<thead>
<tr>
<th>-1</th>
<th>3</th>
<th></th>
<th></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3</td>
<td></td>
<td></td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

5. Write out the complete definition of the filter.

\[
\begin{align*}
x_2 &= x_1 - x_1[-1] \gg (-1) \\
x_3 &= x_2 + x_1 \gg 2 \\
y &= -x_1 + x_3 \gg 2 + x_2 \gg 10 - x_3[-1] \gg 5 - x_2[-1] \gg 11 \\
&\quad -x_2[-2] \gg 1 + x_1[-3] \gg 6 - x_1[-3] \gg 8.
\end{align*}
\]
• If any sub-expression definition involves negative shift, then modify the definition and subsequent uses of that variable to remove the negative shift as shown below:

\[
x_2 = x_1 \gg 1 - x_1[-1]
\]
\[
x_3 = x_2 + x_1 \gg 3
\]
\[
y = -x_1 + x_3 \gg 1 + x_2 \gg 9 - x_3[-1] \gg 4 - x_2[-1] \gg 10 - x_2[-2] + x_1[-3] \gg 6 - x_1[-3] \gg 8.
\]
3-tap FIR filter with sub-expression sharing for
3-tap FIR filter with coefficients $c_2 = 0.11010010$, $c_1 = 0.10011010$ and $c_0 = 0.00101011$.
This requires 7 shifts and 9 additions compared to 12 shifts and 11 additions.
3-tap FIR filter with sub-expression sharing requiring 8 additions as compared to 9 in the previous implementation.
Using **2 most common sub-expressions** in CSD representation

- \(x - x \gg 2 \) and \(x + x \gg 2 \) are the 2 most common sub-expressions in CSD representation.

An FIR filter using the term sharing, where the two most common sub-expressions in CSD numbers 101 and \(\overline{101} \), together with isolated 1 are shared among all filter coefficients.
3-tap FIR filter with coefficients $c_2 = 0.10101010101$, $c_1 = 0.10010100101$ and $c_0 = 0.10101010000$. 2 additions in the dotted square in (a) are shared in (b). Filter requires only 7 additions and 7 shifts as opposed to 12 adds and 12 shifts in standard multiplierless implementation.