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Abstract—Physical unclonable functions (PUFs) can store se-
cret keys in integrated circuits (ICs) by exploiting the uncon-
trollable randomness due to manufacturing process variations.
These PUFs can be used for authentication of devices and for
key generation in security applications. This paper presents a
rigorous statistical analysis of various types of multiplexer-based
(MUX-based) PUFs including the original MUX PUF, the feed-
forward MUX PUFs, the modified feed-forward MUX PUFs, and
multiplexer-demultiplexer (MUX/DeMUX) PUF. The modified
feed-forward MUX PUF structure is a new structure that is
introduced in this paper. Three types of feed-forward PUFs are
analyzed in this paper. These include feed-forward overlap, feed-
forward cascade and feed-forward separate. The performance
analysis quantifies inter-chip and intra-chip variations as a
function of the number of stages, the process variation variance,
the environmental noise variance, and the arbiter skew for
different PUFs. Three other metrics of performance are also
introduced and analyzed in this paper; these include reliability,
uniqueness and randomness. A PUF is more reliable if it has
less intra-chip variation. A PUF is more unique if the inter-
chip variation is closer to 50%. A PUF is more random if its
response bit is 0 or 1 with equal probability. Our statistical
analysis shows that the intra-chip variation is less dependent
on the number of stages, N, if N is greater than 10. However,
the inter-chip variation is dependent on N if N is less than 100.
It is shown that the feed-forward PUFs have higher intra-chip
variation than MUX PUFs; however, the modified feed-forward
PUFs have significantly lower intra-chip variation than the feed-
forward PUFs. It is shown that the modified feed-forward cascade
MUX PUF has the best uniqueness and randomness, while the
original MUX PUF has the best reliability. The analysis presented
in this paper can be used by the designer to choose an appropriate
PUF based on the application’s requirement. This eliminates the
need for fabrication and testing of many PUFs for selecting an
appropriate PUF.

Index Terms—Physical Unclonable Function, Multiplexer-
based Structures, Statistical Analysis, Feed-Forward MUX
PUF, Reliability, Randomness, Uniqueness, Intra-Chip Variation,
Inter-Chip Variation.

I. INTRODUCTION

Physical Unclonable Functions (PUFs) [1]–[3] are novel
security primitives which store secret keys in physical objects
by exploiting the uncontrollable randomness due to manufac-
turing process variations. PUFs generate signatures based on
the unique intrinsic uncontrollable physical features, which can
then be used for hardware authentication or the generation
of secret keys. Contrary to standard digital systems, PUFs
extract secrets from complex properties of a physical material
rather than storing them in a non-volatile memory. It is nearly
impossible to predict, clone or duplicate PUFs. Furthermore,
an adversary cannot easily mount an attack to counterfeit the
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secret information without changing the physical randomness.
Based on these advantages, PUFs can efficiently and reliably
generate volatile secret keys for cryptographic operations and
enable lightweight and cost-effective authentication of ICs.

The performance of a PUF depends on both process varia-
tions and environmental conditions. Designing a PUF that is
close to truly random in nature and that can operate reliably
over a wide range of operating conditions is still a challenge.
Some metrics have been introduced to evaluate the perfor-
mances of PUFs by analyzing the outputs of PUF instances.
These considered metrics include reliability, uniqueness, and
randomness. PUF reliability captures how efficient a PUF
is in reproducing the response bits of an IC chip. When
the same challenge is applied repetitively to a MUX-based
PUF, the responses are expected to be identical. Uniqueness
represents the ability of a PUF to uniquely distinguish a
particular chip among a group of chips of the same type.
When the same challenge sets are applied to different PUFs,
the output responses are expected to be different. Ideally, the
Hamming distances between the responses of different PUFs
should be 50%. Randomness indicates the unbiasedness of the
PUF response. However, these metrics need to be characterized
over a large population of chips to validate the effectiveness of
PUFs. This can involve a long and costly chip manufacturing
process followed by many measurements after the circuits
are fabricated. Furthermore, since the manufacturing process
variation and the environmental variation are uncontrollable,
it is hard to get a very accurate estimation of the performance
during the design stage. Note that security is another perfor-
mance metric of PUFs, which is not addressed in this paper.
A PUF is more secure, if an adversary finds it harder to break
in.

Knowledge about the circuit-level behavior such as pro-
cess variation pattern, variation of circuit parameters (e.g.,
delay, threshold voltage) over changing operating conditions
could help designers to predict the performance comparisons
among different PUF designs. Conducting the performance
comparison among detailed PUF designs before fabrication
would guarantee robust on-chip PUF performance. Monte-
Carlo simulations of netlists that take process and environment
variations into account can be used for this purpose. These
simulations can provide approximate results, which can be
used as indicators of the true performances of different PUFs.
An alternate approach to evaluate the performance of the
PUFs is by modeling the physical components of PUFs in
a statistical manner. A number of such efforts have been
developed in the literature. Statistical analysis on Coating
PUF has been presented in [4]. In [5], entropy analysis of
Optical PUF has been discussed. The statistical models of
Ring Oscillator PUF [6], [7] and MUX PUFs [8]–[10] have
also been studied in the literature. Additionally, the work
in [11] relates the statistical analysis of PUFs to circuit-
level optimization and architecture-level optimization, which
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leads to interesting results that could improve the design and
implementation of reliable and efficient PUFs.

The objective of this paper is to theoretically compare
the performances of different MUX-based PUFs to predict
the relative advantages of various MUX-based PUF designs.
In previous works, such as the efforts in [8]–[10], only the
statistical modeling with respect to the input-output mappings
of PUF structures was presented. However, theoretical per-
formances of PUFs based on these models were not studied.
Additionally, there seems little consensus about which PUF is
more suitable for a specific application or a particular device in
the existing literature. The work presented in this paper differs
from existing efforts in several respects. First, to the best of our
knowledge, this paper, for the first time, presents a systematic
statistical analysis of the performances of various MUX-based
PUFs. These include the original MUX PUF, feed-forward
MUX PUFs, and multiplexer-demultiplexer (MUX/DeMUX)
PUF. Moreover, the focus of our work is on the comparison
of performance of various MUX PUFs, which could help the
designer to select an appropriate PUF during the design stage.
Finally, instead of only modeling the structures of various
MUX-based PUFs, statistical analysis is performed to provide
a deeper insight into the nature of these PUFs. Equations about
the PUF performances are derived; these equations allow the
designer to estimate the PUF performance metrics theoreti-
cally. In addition, we also introduce a class of modified feed-
forward MUX PUFs obtained by modifying the standard feed-
forward path. These structures are also analyzed statistically. It
is shown that the modified feed-forward MUX PUFs have less
intra-chip variations than standard feed-forward MUX PUFs.

The rest of the paper is organized as follows. In Section
II, we introduce the background of MUX-based PUFs and
their applications. In Section III, we present several modified
feed-forward PUF structures by employing the proposed novel
modified feed-forward path. Section IV defines the metric
indicators of PUF performance. Section V describes statistical
modeling of the physical components in a MUX-based PUF,
and then presents the statistical analysis results of the original
MUX PUF. These results are also validated by comparing with
experimental results. In Section VI, we analyze the statistical
properties of feed-forward MUX PUFs and MUX/DeMUX
PUF from the perspectives of the defined performance indica-
tors. We summarize the performance comparisons of various
MUX-based PUFs in Section VII. Section VIII validates the
statistical analysis results by experimental results using SPICE
simulations. Finally, Section IX concludes the paper.

II. BACKGROUND

A. Silicon MUX PUF

There are several subtypes of PUFs, each with its own
applications and security features. A major type is the so-
called silicon PUFs, which exploit the delay variations of
circuit components to generate a unique signature for each IC.
Silicon PUFs can be integrated into chips very conveniently,
since these are implemented with standard digital logic and do
not require any special fabrication. The examples of Silicon
PUFs include: Multiplexer (MUX) PUF [12], Ring Oscillator
PUF [2], SRAM PUF [13] and Butterfly PUF [14].

A MUX PUF is an example of a ”Strong” PUF [15] that is
unclonable due to manufacturing process variations, and can
accommodate many possible challenge-response pairs (CRPs).

As illustrated in Fig. 1, in a MUX PUF, each challenge creates
two paths through the circuit that are excited simultaneously.
The output is generated according to the delay difference
between the two paths. A MUX PUF consists of N stages
of MUXs and one arbiter which connects the last stage of
the two paths. MUXs in each stage act as a switch to either
cross or straight propagate the rising edge signals, based
on the corresponding challenge bit. Each MUX should be
designed equivalently, while variations will be introduced
during manufacturing process. Finally, the arbiter translates
the analog timing difference into a digital value. For instance,
if the rising edge signal arrives at the top input of the arbiter
earlier than the signal arriving at the bottom input, the output
will be one; otherwise, if it reaches the bottom path first,
the output will be zero. The output response depends on the
applied challenge bits and will be permanent for each IC after
fabrication or only vary in a small range due to environmental
variations.

For transistors, manufacturing randomness exists due to
variations in transistor length, width, gate oxide thickness,
doping concentration density, body bias, metal width, metal
thickness, and ILD (inter-level dielectric) thickness, etc [16].
These manufacturing variations lead to a significant amount
of variability for the MUX-based PUFs, which are sufficient
to generate unique challenge-response pairs for each IC by
comparing the delays of two paths.
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Fig. 1. Silicon MUX Physical Unclonable Function.

B. Feed-Forward MUX PUF

In order to improve the security, a feed-forward structure
has been proposed in [17] to add non-linearity into the original
MUX PUF. In a feed-forward MUX PUF, the output of a
feed-forward arbiter (FF arbiter) from an intermediate stage is
used as a challenge to a subsequent stage. Fig. 2 shows one
basic structure of the feed-forward MUX PUF, which uses the
racing result of an intermediate stage as the select signal for
a later MUX stage. This structure increases the complexity of
numerical modeling attacks [18]. However, the reliability of
the PUF has been degraded since some select signals of the
MUXs may also be affected by environmental variations.
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Fig. 2. Feed-Forward MUX PUF Structure.
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C. MUX-based Reconfigurable PUFs

Based on the MUX PUF and its feed-forward variants,
we have proposed several novel reconfigurable PUFs [19],
[20], where the challenge-response pairs (CRPs) can be re-
configured. Reconfigurable PUFs satisfy the updatable key
requirement for PUF-based authentication systems. Further-
more, reconfigurability improves the security against modeling
attacks by limiting the amount of information leaked for
each configuration. Such architectures are classified into two
categories:

(a) CRP-Reconfigurable PUF: The challenge-response pairs
are reconfigured directly by adding some additional
configure circuits into the structure, but without con-
figuring the main PUF structure. This can be achieved
by pre-processing the challenge before applying to the
PUF or pre-processing the response before using it for
authentication.

(b) Logic-Reconfigurable PUF: The underlying logic of the
PUF circuit is reconfigured in these structures; therefore,
the challenge-response pairs are reconfigured.

Logic-Reconfigurable PUFs have better performance from
a security perspective, as reconfiguration leads to a d-
ifferent mathematical model of the PUF circuit, while
the CRP-Reconfigurable PUFs only update the CRPs. The
CRP-Reconfigurable PUFs are not studied in this paper.
The examples of Logic-Reconfigurable PUFs include Logic-
Reconfigurable Feed-Forward MUX PUF, and MUX/DeMUX
PUF.

1) Logic-Reconfigurable Feed-Forward MUX PUF:
In [19], [20], we had introduced three different types of feed-
forward MUX PUFs. These structures include Feed-Forward
Overlap (FFO), Feed-Forward Cascade (FFC), and Feed-
Forward Separate (FFS). These structures are classified by the
nature of interconnections of various feed-forward patterns in
these PUFs. We had also shown that the performance of a feed-
forward MUX PUF depends on locations and the number of
feed-forward paths (sometimes referred as feed-forward loops
in the literature [18]). The three feed-forward structures are
described below.

(a) Feed-Forward Overlap (FFO): this structure has at least
one stage overlap between two feed-forward paths as
illustrated in Fig. 3.

(b) Feed-Forward Cascade (FFC): the ending stage of a
feed-forward path will be the starting stage of another
feed-forward path. This is illustrated in Fig. 4.

(c) Feed-Forward Separate (FFS): different feed-forward
paths are separate; thus, no stage overlap exists between
the two feed-forward paths. This is illustrated in Fig. 5.
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Fig. 3. Feed-Forward MUX PUF Overlap Structure.

We have simulated these three feed-forward structures and
have shown that these structures satisfy different inter-chip and
intra-chip characteristics [19], [20]. Based on this property,
we have proposed a Logic-Reconfigurable Feed-forward MUX
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Fig. 4. Feed-Forward MUX PUF Cascade Structure.
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Fig. 5. Feed-Forward MUX PUF Separate Structure.

PUF, which can be configured to any of these three different
structures (i.e., FFO, FFC, and FFS) [19], [20].

2) MUX/DeMUX PUF: Another MUX-based Logic-
Reconfigurable PUF is the MUX/DeMUX PUF, which alters
the PUF logic by using DeMUX. DeMUX enables the circuit
to select the direction of the propagating signals, and makes
the original MUX PUF reconfigurable.

A basic structure is shown in Fig. 6. Instead of propagating
the rising edge signal successively, some stages can be skipped
by the DeMUX, which allows the challenge-response behavior
to be reconfigurable.
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Fig. 6. MUX/DeMUX PUF.

III. MODIFIED FEED-FORWARD MUX PUFS

A. Modified Feed-Forward Path
In this paper, we propose a novel modified feed-forward

MUX PUF structure shown in Fig. 7, which is motivated by
our statistical analysis results. In this structure, the output of
a feed-forward arbiter from an intermediate stage is input
as the challenge bit to two consecutive late MUX stages.
By employing this modified feed-forward path, the reliability
of the feed-forward PUF structure can be improved, while
the same level of security will be retained. This structure is
analyzed statistically in this paper.
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Fig. 7. Modified Feed-Forward MUX PUF Structure.

The complexity of the modified feed-forward MUX PUFs
can be further improved by using several modified feed-
forward paths in a PUF circuit. Note that if we want to
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maintain the length of challenge bits as N , we need to increase
the number of MUX stages to N +2M for the modified feed-
forward structure, compared to N +M of the standard feed-
forward PUF, where M represents the number of feed-forward
paths. Additionally, the design overhead will also include M
arbiters for both the standard feed-forward MUX PUF and the
modified feed-forward MUX PUF.

B. Different Types of Modified Feed-Forward MUX PUFs
Similar to the three types of the standard feed-forward MUX

PUFs as discussed in Section II.C.1, the modified feed-forward
MUX PUFs can also be classified as Modified Feed-Forward
Overlap (MFFO), Modified Feed-Forward Cascade (MFFC),
and Modified Feed-Forward Separate (MFFS) as shown in
Fig. 8, Fig. 9, and Fig. 10, respectively.
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Fig. 8. Modified Feed-Forward MUX PUF Overlap Structure.
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Fig. 9. Modified Feed-Forward MUX PUF Cascade Structure.
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These three different structures also have different inter-
chip and intra-chip behaviors, which are analyzed in Section
VI. Additionally, the modified feed-forward paths can also be
used in the Logic-Reconfigurable Feed-forward MUX PUF to
improve the reliability while retaining the high security.

IV. DEFINITION OF PUF PERFORMANCE

As discussed in Section I, Monte-Carlo simulation can be
used to provide performance indicators for different PUF
designs. For example, by simulating the three feed-forward
MUX PUF structures with the same parameter variations and
environmental conditions, we were able to conclude in [19],
[20] that the FFO structure is the most reliable among the
three feed-forward structures. In this paper, we focus on
analyzing the quantitative performance of various MUX-based
PUFs through statistical modeling of the delay variations and
environmental variations. Performance indicators ranging from
0 to 1 with 1 representing the best performance are generated
through a theoretical analysis. The notations used in this paper
are listed in Table I.

In this section, we introduce three PUF metrics to quantify
the performance of MUX-based PUFs. The relative perfor-
mance behaviors of the PUF structures are the main concern
of this paper rather than the absolute value of each indicator.

A. Reliability
Intra-chip variation is a measure of the reliability of PUF,

which is determined by comparing the digital signatures of
the PUF to the same challenge under different environmental
conditions.

Let Pintra represent the probability that a certain bit of a
response will flip when applying a randomly selected chal-
lenge multiple times. All the bits of a PUF response have the
same value of Pintra, since each bit is generated independently
by a same PUF instance (i.e., the effects of manufacturing
process variation and environmental variation for all the bits
are the same). As a result, Pintra can be used to represent the
intra-chip variation for the entire L-bit response. In particular,
the average Hamming distance (HD) between the responses
is used to measure the intra-chip variations of MUX-based
PUFs. The Pintra and the averaged HD are described by:

E(HDintra) = Pintra = E

(
1

m

m∑
i=1

HD(R,R′)

L
× 100%

)
,

(1)
where m is the number of HD comparisons, and R and
R′ represent two measurements of the PUF response under
different conditions. The expected value of HDintra is equal
to Pintra. If the responses are sampled sufficient number of
times, the averaged intra-chip variation would be close to the
value of Pintra.

As smaller intra-chip variation means better reliability, the
reliability indicator is defined as

Reliability = 1− Pintra. (2)

B. Uniqueness
Inter-chip variation is a measure of the uniqueness of PUF,

which is determined by comparing the digital signature of a
PUF to that of another. Similarly, we can also define Pinter as
the probability that the bits generated by the same challenge
for different PUF instances are different. Since uniqueness
is a measure of inter-chip performance, all possible chip-
combinations should be considered. Therefore, the average
inter-chip HD of K PUFs can be described as:

E(HDinter) = Pinter

=E

 2

(K − 1)K

K−1∑
i=1

K∑
j=i+1

HD(R(i), R(j))

L
× 100%

 .

(3)

It can also be seen that Pinter represents the expected value
of the inter-chip variation. Since Pinter = 50% represents the
best uniqueness for a PUF, the uniqueness indicator can be
defined by:

Uniqueness = 1− |2Pinter − 1|. (4)

C. Randomness
A MUX-based PUF is expected ideally to produce unbiased

0’s and 1’s. Randomness represents the ability of the PUF
to output 0 and 1 response with equal probability. One
measurement of the randomness can be expressed as:

Randomness = 1− |2P (R = 1)− 1|. (5)

Therefore, a randomness of 1 indicates unbiased PUF respons-
es.
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TABLE I. Notation Used in the Paper

Notation Explanation
N Number of MUX stages in a PUF instance
M Number of feed-forward paths
L Length of a response
Ci Challenge bit of the i-th MUX stage
Dt

i Delay of the top element of the i-th MUX stage
Db

i Delay of the bottom element of the i-th MUX stage
∆i Delay difference between top and bottom elements of the i-th MUX stage

∆Arb Skew effect of the arbiter
rN Delay difference of N stages
R Response

V. PERFORMANCE ANALYSIS OF THE ORIGINAL MUX
PUF

A. Physical Component Modeling of MUX-based PUFs
As shown in Fig. 1, a MUX PUF consists of a sequence of

MUXs and an arbiter. The rising edge signal excites the two
paths at the first stage simultaneously. The actual propagated
paths are determined by the external challenge bits. After the
last stage, the arbiter will generate the output bit by comparing
the arrival time of the two paths at its input. It has become
standard to model the MUX PUF via an additive linear delay
model [8], [9]. According to the efforts in the field of statistical
static timing analysis (SSTA) [16], the manufacturing process
variations for the parameters of transistors can be modeled as
Gaussian distributions. As a result, the variations of the delays
will also be approximately Gaussian.

Process variations are classified as follows: inter-die vari-
ations are the variations from die to die, while intra-die
variations correspond to variability within a single chip. Inter-
die variations affect all devices on the same chip similarly,
while intra-die variations affect different devices differently
on the same chip. A very widely used model for delay
spatial correlation is the ”grid model” [16], which assumes
perfect correlations among the devices in the same grid, high
correlations among those in nearby grids, and low or zero
correlations in faraway grids, since devices close to each other
are more likely to have similar characteristics than those placed
far away.

Additionally, experimental results in [12] have already
shown that the inter-chip variation for MUX PUF across the
wafers is similar to that within a single wafer, as the output
of the arbiter in silicon MUX PUF is only based on the
difference of two selected paths. Therefore, these die-to-die,
wafer-to-wafer, and lot-to-lot manufacturing variations will
have minimum effect on the output response.

Based on the facts discussed above, for simplicity, we can
model the delay of each single MUX as an independent
identically distributed (i.i.d.) random variable Di, modeled by
a Gaussian random variable N(µ, σ2), where µ represents the
mean and σ represents the standard deviation of the delay
of each MUX. Therefore, the total delay of the N stages is
modeled by N(Nµ,Nσ2). The delay difference between top
and bottom MUXs of the i-th stage will also follow a Gaussian
distribution, and can be expressed as:

∆i = Dt
i −Db

i ∼ N(0, 2σ2). (6)

For the original MUX PUF, the response is dependent on
the delay difference of the two selected paths. The sign of the
delay difference of each stage is determined by the external

challenge bits. Consequently, the delay difference after the last
stage can be modeled as

rN =

N∑
i=1

(−1)C
′
i∆i, (7)

where C ′i = ⊕Nj=i+1Cj and C ′N = 0. The output bit is
generated by

R = sign(rN ) =

{
1, rN ≥ 0

0, rN < 0
. (8)

It can be seen that the original MUX PUF forms an additive
linear model.

In a real PUF circuit, the arbiter would not be ideal. The
skew effect of the arbiters also affects the performance of
MUX-based PUFs by reducing the uniqueness, producing a
biased response, and even degrading the security. If we assume
that the threshold of the arbiter is ∆Arb, the response is given
by

R = sign(rN ) =

{
1, rN ≥ ∆Arb

0, rN < ∆Arb
, (9)

since the arbiter is preset to 0 and requires a setup time
constraint to switch to 1.

B. Probability Distribution of Output Delay Difference

Fig. 11 shows a scatter plot of output samples from the
simulations of 100-stage original MUX PUFs. Note that there
are overlaps between the regions of output 1’s and output 0’s,
which makes it difficult to estimate ∆Arb accurately. This
could be because the measured delay differences (measured
for each path at the 50% point in the transition) and the actual
delay differences that the arbiter operates at are different. Since
the delay difference can be modeled by N(0, 2Nσ2), we fit
a Gaussian distribution to the delay differences, as shown
in Fig. 12. The standard deviation

√
2Nσ2 of the generated

Gaussian distribution is 5.2936×10−11. It can be seen that the
skew effect of the arbiter leads to biased outputs with 32.8%
1’s and 67.2% 0’s.

Moreover, the average of the total delay of one path is
1.2667 × 10−8s in our simulation results. Therefore, the
percent of delay deviation of 100 stages is about 0.4%
(i.e., 5.2936×10−11

1.2667×10−8 ), which conforms with other published re-
sults of 65nm technology (e.g., [21]).
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C. Effect of Number of Stages
The probability that the output is equal to 1 can be derived

as:

P (R = 1) = P (

N∑
i=1

(−1)C
′
i∆i ≥ ∆Arb)

=

∫ ∞
∆Arb

1√
2πN2σ2

exp(
−x2

2N2σ2
)dx

=
1

2
− 1

2
erf(

∆Arb√
2N2σ2

). (10)

It can be seen that P (R = 1) is also dependent on the number
of stages in a MUX PUF. If we only consider the number of
stages N as a variable, the above equation can be rewritten as

P (R = 1) =
1

2
− 1

2
erf(

K√
N

), (11)

where K is a constant and is equal to ∆Arb√
4σ2

. Thus, although
the value of ∆Arb is unclear, we can still estimate the K based
on the experimental results:

K =
√
N × erfinv(1− 2P (R = 1)). (12)

In our simulations, the 50-stage MUX PUF structure is only
able to generate 1’s with probability 25.6%, which is very
close to the value of P (R = 1) = 26.4% that is calculated
theoretically from Equation (11).

D. Statistical Properties of the Original MUX PUF

1) Reliability: In order to analyze the reliability, we need to
consider the effect of environmental noise. As a usual practice,
we assume that the noise ni of the i-th stage follows a zero-
mean Gaussian distribution with variance σ2

n. Then, Pintra can
be described as:

Pintra =P [sign(

N∑
i=1

(−1)C
′
i∆i +

N∑
i=1

ni)

6= sign(

N∑
i=1

(−1)C
′
i∆i +

N∑
i=1

n′i)], (13)

where ni and n′i represent the noise under different environ-
mental conditions. As each individual stage follows the zero-
mean i.i.d. Gaussian distribution, then the intra-chip variation
probability is equivalent to a single stage intra-chip variation
probability:

Pintra = P [sign(si + ni) 6= sign(si + n′i)] (14)

where si = (−1)Ci(Dt
i −Db

i ) has a variance that is equal to
2σ2.

As manufacturing process variation and environmental noise
of the delay difference both follow zero-mean Gaussian dis-
tribution, their probability density functions (PDF) are given
by:

fs(s) =
1√

2πσ2
s

exp(− s2

2σ2
s

), fn(n) =
1√

2πσ2
n

exp(− n2

2σ2
n

).

(15)
Note that σ2

s = 2σ2 in Equation (6). Pintra of an original
MUX PUF can be calculated as

Pintra =P [sign(si + ni) 6= sign(si + n′i)]

=4

∫ ∞
0

1√
2πσ2

s

exp(− s2

2σ2
s

)

∫ −s
−∞

1√
2πσ2

n

exp(− n2

2σ2
n

)dn∫ ∞
−s

1√
2πσ2

n

exp(− n′2

2σ2
n

)dn′ds

=4

∫ ∞
0

1√
2πσ2

s

exp(− s2

2σ2
s

)(
1

4
− 1

4
erf2(

s√
2σ2

n

))ds

=

∫ ∞
0

1√
2πσ2

s

exp(− s2

2σ2
s

)ds−∫ ∞
0

1√
2πσ2

s

exp(− s2

2σ2
s

)erf2(
s√
2σ2

n

)ds

=
1

2
− 1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

), (16)

where the first of the two integrals in the fourth line represents
integrating just a Gaussian over half of the space, and the
second is a known definite integral [22].

It can be seen that by increasing the ratio of manufacturing
process variation to environmental variation, the intra-chip
variation can be reduced to close to 0.

If we consider the Pintra of the PUF response with a given
challenge, the conditional probability can be derived as

P [sign(si + ni) 6= sign(si + n′i)|si] =
1

2
− 1

2
erf2(

|si|√
2σ2

n

).

(17)
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The reliability for a certain challenge-response pair is greatly
dependent on the manufacturing process variation between the
two generated paths. If a challenge selects two paths with
rN ≈ 0, the variation is large, since the above equation
achieves maximum at si = 0. Otherwise, if |rN | is relatively
large, the manufacturing process variation would be the prima-
ry factor to determine the output and the noise would hardly
flip the response.

However, if we take the skew effect of non-ideal arbiters
into consideration, the intra-chip variation behaviors would
also be dependent on the number of stages and the perfor-
mance of the arbiter. The response then can be described as
sign(

∑N
i=1(si + ni)−∆Arb). Therefore, Pintra is given by

P [sign(

N∑
i=1

(si +ni)−∆Arb) 6= sign(

N∑
i=1

(si +n′i)−∆Arb)].

(18)
If we combine

∑N
i=1 si and ∆Arb as a variable X ∼

(∆Arb, Nσ
2
s), Pintra can be expressed as P [sign(x + n) 6=

sign(x+ n′)], where x ∼ N(−∆Arb√
N
, σ2
s) and n ∼ N(0, σ2

n).
Therefore, according to Equation (18), the intra-chip variation
probability decreases with the increase of ∆Arb. Intuitively
we would expect this as when ∆Arb is relatively large and the
number of stages is small,

∑N
i=1(si + ni) will have a high

probability of unaltered sign() value. However, if the number
of stages is relatively large that ∆Arb√

N
approaches to 0, Pintra

will be reduced to Equation (16).
A closed-from expression for Pintra (i.e., Equation (18))

does not exist, but we can derive the expression by using a
first-order approximation of the exponential function:

P [sign(

N∑
i=1

(si + ni)−∆Arb) 6= sign(

N∑
i=1

(si + n′i)−∆Arb)]

=2

∫ ∞
−∞

1√
2πσ2

s

exp(− s2

2σ2
s

)(
1

4
− 1

4
erf2(

|s− ∆arb√
N
|√

2σ2
n

))ds

=2

∫ ∞
−∞

1√
2πσ2

s

exp(−
(x+ ∆arb√

N
)2

2σ2
s

)(
1

4
− 1

4
erf2(

|x|√
2σ2

n

))dx

≈2

∫ ∞
−∞

1√
2πσ2

s

exp(− x2

2σ2
s

)(1− ∆Arb

σ2
s

√
N
x)

(
1

4
− 1

4
erf2(

|x|√
2σ2

n

))dx

=
1

2
− 1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)−

4
∆Arb

σ2
s

√
N

∫ ∞
0

x√
2πσ2

s

exp(− x2

2σ2
s

)(
1

4
− 1

4
erf2(

x√
2σ2

n

))dx

=
1

2
− 1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)−

∆Arb√
2πNσ2

s

(
1− 2

π

√
σ2
s

σ2
s + σ2

n

arctan(

√
σ2
s

σ2
s + σ2

n

)

)
(19)

It can be seen that Pintra increases with the num-
ber of stages, since 2

π

√
σ2
s

σ2
s+σ2

n
arctan(

√
σ2
s

σ2
s+σ2

n
)) is less

than 1. Additionally, the term of
√

σ2
s

σ2
s+σ2

n
is close to

1, while the ratio of σs

σn
is relatively large. As a result,

(
1− 2

π

√
σ2
s

σ2
s+σ2

n
arctan(

√
σ2
s

σ2
s+σ2

n
)
)

will be close to 0. There-
fore, in this case, the number of the stages only has a minor
influence on the intra-chip variation of the original MUX PUF.

Conclusion 1: The reliability indicator of an original MUX
PUF is

Reliability = 1− Pintra

=
1

2
+

1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)

+
∆Arb√
2πNσ2

s

(
1− 2

π

√
σ2
s

σ2
s + σ2

n

arctan(

√
σ2
s

σ2
s + σ2

n

)

)
(20)

where σs is the standard deviation of manufacturing process
variation for a single stage, σn is the standard deviation of
environmental noise, ∆Arb is the skew effect of the arbiter,
and N is the number of stages in an original MUX PUF. �

2) Uniqueness: In order to compute inter-chip variation
based on the same mathematical model, we need to compare
the responses of different PUFs. The Gaussian fit curve for
the inter-chip variations of the 100-stage MUX PUF is shown
in Fig. 13. The average of the inter-chip variation is 43.2%.

G
au

ss
ia

n 
F

it 
P

ro
b

Inter-Chip Variation (%)

Fig. 13. Gaussian Fit Curve of Inter-Chip Variation Distribution.

Theoretically, if the PUFs are uncorrelated, the expected
inter-chip variation of the original MUX PUF is simply given
by

Pinter = 2P (R = 1)(1− P (R = 1))

=
1

2
− 1

2
erf2(

K√
N

), (21)

where K = ∆Arb√
4σ2

= ∆Arb√
2σ2

s

. Therefore, the value of uniqueness

indicator can be expressed as

Uniqueness =1− |2Pinter − 1| = 4P (R = 1)(1− P (R = 1))

=1− erf2(
∆Arb√
2Nσ2

s

). (22)

According to the value of P (R = 1), we could expect the
average of the inter-chip variation to be 2 × 0.328 × (1 −
0.328) = 44%, which is also consistent with our experimental
results.
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3) Randomness: Similarly, according to Equation (10) in
Section V.C, the randomness of an original MUX PUF is

Randomness = 1− |2P (R = 1)− 1| = 1− erf(
∆Arb√
2Nσ2

s

).

(23)

E. Design Example
The above equations are useful for designing a PUF that

could meet the specific application requirement. Consider the
scenario that the PUF designer has fabricated a PUF and tested
its performance. However, the designer found the performance
of the current PUF cannot satisfy the application requirement.
Instead of fabricating a large number of different PUF designs,
the designer could utilize the statistical analysis results to
predict the performances of other PUF designs theoretically,
since some of the parameters can be calculated from the
results of the current PUF. For example, if we fabricate a 100-
stage original MUX PUF which has the performance similar
to our experimental results, we can calculate the value of
K by Equation (12) based on the performance of the 100-
stage MUX PUF. We can then substitute different values of
N to predict the performances of the original MUX PUFs for
different numbers of stages. For the intra-chip variation, we
can obtain the relations among σs, σn, and ∆Arb by utilizing
Equations (19) and (23) together. The various performance
results for different values of N are calculated theoretically
and are summarized in Table II (the bold line indicates the
results obtained from the current measured or simulated PUF).

Therefore, the statistical analysis can be used to decide how
many MUX stages should be used to design the PUF to match
the application requirements. Note that the values may not be
exact, but we can obtain the trends of the performance metrics
from the statistical analysis results. These results show that
inter-chip variation is strongly dependent on N for N < 100,
while intra-chip variation is almost independent of N , for a
relatively large N (i.e., N > 25).

VI. PERFORMANCE ANALYSIS OF FEED-FORWARD MUX
PUFS AND MUX/DEMUX PUF

In Section V, we demonstrated that MUX-based PUFs can
be statistically analyzed by modeling of the physical compo-
nents. In this section, we continue to analyze the performance
of feed-forward MUX PUFs and MUX/DeMUX PUF. We
compare the performance of these MUX-based PUFs with
respect to the three indicators described in Section IV.

A. Statistical Properties of Feed-Forward MUX PUF
1) Reliability: As shown in Fig. 2, some of the challenge

bits of a feed-forward MUX PUF will be the intermediate stage
arbiter outputs instead of the external bits in a feed-forward
MUX PUF. For instance, if there is only one feed-forward path
in a MUX PUF, which is from the a-th stage to the b-th stage,
the time difference of the b-th stage could be expressed as:

∆b = (−1)sign(ra)(Dt
b −Db

b). (24)

It can be expected intuitively that the intra-chip variation will
be greatly dependent on the location of the ending stage of the
feed-forward path. If the challenge of the last stage flips, the
output bit will be sign(−

∑N−1
i=1 (−1)C

′
i∆i + ∆N ) compared

to sign(
∑N−1
i=1 (−1)C

′
i∆i + ∆N ) while there is no error. We

can also illustrate this characteristic of the feed-forward PUF
mathematically. As an example, if the challenge of the k-th
stage flips in an N -stage structure, the probability that the
output bit will change, Pe, is given by (without considering
noise):

Pe =P [sign(

k−1∑
i=1

(−1)C
′
i∆i +

N∑
i=k

(−1)C
′
i∆i)

6= sign(−
k−1∑
i=1

(−1)C
′
i∆i +

N∑
i=k

(−1)C
′
i∆i)]

=2

∫ ∞
0

1√
2π(N − k + 1)σ2

s

exp(− s2

2(N − k + 1)σ2
s

)

(1−
∫ s

−s

1√
2π(k − 1)σ2

s

exp(− w2

2(k − 1)σ2
s

))dwds

=2

∫ ∞
0

1√
2π(N − k + 1)σ2

s

exp(− s2

2(N − k + 1)σ2
s

)

(1− erf(
s√

2π(k − 1)σ2
s

))ds

=1− 2

π
arctan(

√
N − k + 1

k − 1
)

=
2

π
arctan(

√
k − 1

N − k + 1
) (25)

where the second integral in the third line is also a known
definite integral in [22].

It can be seen that the probability Pe increases with k.
Obviously, the problem for this structure is that if the ending
stage of a feed-forward path is close to the last stage, the
reliability of the PUF will be degraded significantly. If k = N ,
i.e., the ending stage of the feed-forward path is the last stage,
Pe will be 2

πarctan(
√
N − 1), which is close to 1.

Therefore, Pintra of this feed-forward MUX PUF with
single feed-forward path can be described as

(1− P1)P1 + P1
2

π
arctan(

√
k − 1

N − k + 1
), (26)

where P1 is equal to Pintra of the original MUX PUF. Note
that, for simplicity, the following analysis on reliability will
focus on the case without considering the skew effect of
arbiters (i.e., P1 represents Equation (16) instead of Equation
(19)), since the number of stages and the skew effect do not
have a significant impact on intra-chip variation, as described
in Section V. Additionally, there could be a number of feed-
forward paths in one PUF design. In these PUFs, if the ending
stage of a feed-forward path is close to the last stage, the
reliability of the PUF will be degraded significantly.

B. Statistical Properties of Modified Feed-Forward MUX PUF

Motivated by this analysis, we propose the modified feed-
forward MUX PUF structure shown in Fig. 7, which is
presented in Section III. The modified feed-forward path
mitigates the effect of the locations of feed-forward paths.
In this structure, the modified feed-forward path only affects
the delay difference of one stage. For example, if the two
consecutive ending stages of a feed-forward path are the k-th
and (k + 1)-th stages respectively, we can derive C ′ for the
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TABLE II. Predicted Performance of the Original MUX PUFs for Different Number of Stages (N) Obtained by Statistical Analysis Using
the Model Derived from Experimental Results with N=100.

N Intra-chip Variation Reliability Inter-chip Variation Uniqueness P (R = 1) Randomness
25 5.3% 94.7% 30.3% 60.7% 18.7% 37.3%
50 5.6% 94.4% 38.9% 77.8% 26.4% 52.9%
75 5.7% 94.3% 42.3% 84.6% 30.4% 60.7%

100 5.8% 94.2% 44.1% 88.2% 32.8% 65.6%
150 5.9% 94.1% 46.0% 91.9% 35.8% 71.6%
200 5.9% 94.1% 46.9% 93.9% 37.7% 75.3%

modified feed-forward MUX PUF as follows:

C ′k−1 = ⊕Nj=k+2Cj ⊕ Ck ⊕ Ck+1, (27)

C ′k = ⊕Nj=k+2Cj ⊕ Ck+1, (28)

C ′k+1 = ⊕Nj=k+2Cj . (29)

Since Ck = Ck+1 in this structure, the modified feed-forward
path will only affect the value of C ′k.

As a result, by employing this modified feed-forward path,
only one stage will be affected by each feed-forward arbiter.
Thus, this structure will have lower intra-chip variation, com-
pared to the standard feed-forward MUX PUF. However, the
nonlinearity of mathematical models for the modified feed-
forward MUX PUF and the standard feed-forward MUX PUF
are similar, except the challenge mapping C ′i. Therefore, we
can conclude that one benefit of using the proposed modified
feed-forward path is that the reliability of the feed-forward
MUX PUF can be improved. Furthermore, the modified feed-
forward path can lead to higher security, as the degree of
nonlinearity can be increased without significant increase of
intra-chip variation.

The designer can predict the performances of different
implementations of the feed-forward MUX PUFs based on
above statistical analysis results. For example, we consider
the 100-stage feed-forward MUX PUFs with one feed-forward
path (assuming that the feed-forward path starts from the
output of the 20th stage, and the ends at the k-th stage). If
error occurs in the feed-forward path, the probabilities that
the output bit will change Pe and the intra-chip variation
probabilities, Pintra, are summarized in Table III (P1 is equal
to 5.8% in our experimental results). Note that the probabilities
of errors in the feed-forward paths are the same for all the
feed-forward MUX PUFs with single feed-forward path, since
there is no feed-forward path in previous stages.

It can be seen that the modified feed-forward path can
reduce the intra-chip variation of the feed-forward MUX
PUF. Compared to the original MUX PUF, the intra-chip
variation of the modified feed-forward MUX PUF with single
feed-forward path is only increased very slightly. Based on
Table III, it can also be concluded that if the designer want to
design a standard feed-forward MUX PUF, the designer could
adjust the locations of the feed-forward paths according to the
particular design performance requirement.

1) Reliability: In this structure, the delay difference of the
ending stage of the first feed-forward path (from stage a to
stage b) will be (−1)C

′
b+1(Dt

b −Db
b) with probability 1−P1,

and will be −(−1)C
′
b+1(Dt

b − Db
b) with probability P1. We

define the stage variation probability as the probability that
the sign of the delay difference for each stage changes from
positive to negative or vice versa. Note that the stage variation

probability is a good indicator of the effect of the noise at each
MUX stage. The greater the stage variation probability, the less
reliable the response. It is obvious that for the MUX PUF,
the stage variation probability for each stage is equal to the
intra-chip variation probability Pintra = P1. For the modified
feed-forward structure, the stage variation probability for the
stage whose select signal is from the first feed-forward arbiter
can be calculated as

P [sign(si + ni)sign(sb + nb) 6= sign(si + n′i)sign(sb + n′b)]

=2(1− P1)P1 =
1

2
− 2

π2
arctan2(

√
σ4
s

2σ2
sσ

2
n + σ4

n

). (30)

Since arctan(
√

σ4
s

2σ2
sσ

2
n+σ4

n
) ≤ π

2 , we can conclude that

1

2
− 2

π2
arctan2(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)

=
1

2
− 2

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)
1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

)

≥1

2
− 1

π
arctan(

√
σ4
s

2σ2
sσ

2
n + σ4

n

). (31)

Therefore, it can be concluded that the stage variation prob-
ability is increased by introducing feed-forward arbiters. This
is similar to the scenario where the environmental noise can
cause large variations of the time difference to the ending
stages of feed-forward paths. The intra-chip variation proba-
bility of a feed-forward MUX PUF can be expressed as

Pintra =
1

2
− 1

π
arctan(

√
σ4
s

2σ2
s σ̃

2 + σ̃4
), (32)

where σ̃2 = σ2
n+ 1

N

∑M
k=1 σ

′2
k , and M is the number of feed-

forward paths and σ′k is the additional deviation introduced by
the feed-forward paths. The value of σ′k for each feed-forward
path is different, which is dependent on the noise in previous
stages. Therefore, unlike the original MUX PUF, the feed-
forward MUX PUF structure has large number of variants.
The differences in both the number and the locations of the
feed-forward paths result in different mathematical models,
which will lead to different values of Pintra.

Conclusion 2: Although a general expression cannot be
derived for Pintra of the modified feed-forward MUX PUF,
we can still conclude from Equation (32) and Table III that

Pintra(feed-forward MUX PUF)

>Pintra(modified feed-forward MUX PUF)

>Pintra(original MUX PUF). (33)
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TABLE III. Performances of Different Feed-Forward MUX PUFs

Standard Feed-Forward MUX PUF Modified Feed-Forward MUX PUF
k 50 70 90 50 70 90
Pe 49.4% 62.4% 78.5% 6.4% 6.4% 6.4%

Pintra 8.33% 9.09% 10.02% 5.83% 5.83% 5.83%

Thus, the modified feed-forward MUX PUF has lower value
of the reliability indicator than the original MUX PUF, since
Reliability = 1 − Pintra. If we take skew effect of the
arbiter into consideration, the same conclusion above can
also be reached, since the feed-forward PUF has larger stage
variations (assuming all other parameters to be the same). �

2) Uniqueness: If we still assume that the arbiters are
ideal, the inter-chip variation will not be affected by the
modified feed-forward paths. The delay differences of the
ending stages of feed-forward paths still follow a zero-mean
Gaussian distribution. Thus, the mean of total time difference
of the two generated paths is 0. Since the manufacturing
process variations are uncorrelated for different PUFs, Pinter
will remain 50% for the modified feed-forward MUX PUFs.

However, if we consider the skew effect of arbiters, the
inter-chip variation behaviors would be different for the o-
riginal MUX PUFs and the feed-forward MUX PUFs. We
consider the Gaussian random variable Y that follows the
distribution N(0, Nσ2

s+
∑N
i=1 σ

2
ni

). Without loss of generality,
we assume ∆Arb ≥ 0. Thus, the probability that the PUF
output is 1 is given by:

P (R = 1) = P (Y > ∆Arb)

=
1

2
− 1

2
erf(

∆Arb√
2Nσ2

s + 2
∑N
i=1 σ

2
ni

). (34)

If we consider two variables Y and Y ′, where Y ′ has
larger stage variations (i.e., larger

∑N
i=1 σ

2
ni

), we can obtain
the relation that P (Y > ∆Arb) < P (Y ′ > ∆Arb) < 1

2
from Equation (34). In this case, Pinter for the two different
PUFs are 2P (Y > ∆Arb)(1 − P (Y > ∆Arb)) and 2P (Y ′ >
∆Arb)(1− P (Y ′ > ∆Arb)), respectively. We can show that

2P (Y > ∆Arb)(1− P (Y > ∆Arb))

− 2P (Y ′ > ∆Arb)(1− P (Y ′ > ∆Arb))

=2(P (Y > ∆Arb)− P (Y ′ > ∆Arb))

(1− P (Y > ∆Arb)− P (Y ′ > ∆Arb))

<0. (35)

Thus we conclude that the PUF structure with larger stage
variations has a larger inter-chip variation. In particular, we
can conclude that the modified feed-forward MUX PUF has a
greater inter-chip variation probability Pinter than the original
MUX PUF, since the stage variation probability for a modified
feed-forward MUX PUF is larger.

Conclusion 3: The values of Pintra and Pinter of a
modified feed-forward MUX PUF are both greater than those
of the original MUX PUF. Therefore, it can be concluded that
the feed-forward MUX PUF has higher uniqueness than the
original MUX PUF, as Pinter of the modified feed-forward
MUX PUF is closer to 1

2 . �

3) Randomness: If we still consider the variable Y , we can
get P (R = 1) = P (Y > ∆Arb) while taking the skew effect
of the arbiters into consideration. Since P (Y > ∆Arb) <

1
2 ,

we can obtain the expression for the randomness as

Randomness = 1− |2P (R = 1)− 1| = 2P (Y > ∆Arb).
(36)

Therefore, we can also conclude that the modified feed-
forward MUX PUF has better randomness than the original
MUX PUF, as the value of P (Y > ∆Arb) for the modified
feed-forward MUX PUF is greater.

C. Statistical Properties of Different Types of Modified Feed-
forward MUX PUFs

As discussed in Section III.B, modified feed-forward MUX
PUFs can be classified into three different structures, which
have different inter-chip and intra-chip characteristics. We
examine the relations of these structures statistically in this
subsection.

1) Reliability: From Conclusion 2, the stage variation prob-
ability of the ending stage of the first modified feed-forward
path is given by

P2 = (1− P1)P1 + P1(1− P1) > P1. (37)

Similarly, the stage variation probability of the ending stage
of the second modified feed-forward path can be written as

P3 = (1− P2)P1 + P2(1− P1). (38)

Generally speaking, if we have the stage variation probabil-
ity for the ending stages of the first m modified feed-forward
paths and P1 < P2 < ... < Pm, then the stage variation
probability for the ending stage of the (m + 1)-th modified
feed-forward path is given by

Pm+1 = (1− Pm)P1 + (1− P1)Pm > Pm. (39)

This can be proved as follows:

Pm+1 − Pm =(1− Pm)P1 + (1− P1)Pm

− (1− Pm−1)P1 − (1− P1)Pm−1

=(Pm−1 − Pm)P1 + (1− P1)(Pm − Pm−1)

=(Pm − Pm−1)(1− 2P1). (40)

As we have already shown that P1 <
1
2 and we have Pm >

Pm−1, therefore, we can conclude that Pm+1 > Pm.
Conclusion 4: In a modified feed-forward MUX

PUF structure, the stage variation probability of the
ending stage of a modified feed-forward path is greater
than those of previous modified feed-forward paths.

�

It can be expected that the stage variation probability of
a modified feed-forward overlap structure is less than the
separate or cascade structure, since there is no feed-forward
arbiter in previous path for any of the modified feed-forward
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paths in the overlap structure. We can show this property by
combining the feed-forward paths and other stages together.
The stage variation probability of the first feed-forward arbiter
is equal to P1, since there is no feed-forward path involved.
Then, the stage variation probability of the second feed-
forward arbiter is given by (assuming there are K2 stages
before the second feed-forward path and the b-th stage is the
ending stage of the first feed-forward path):

P2 =P [sign(

K2∑
i=1,i6=b

si + sb +

K2∑
i=1

ni)

6= sign(

K2∑
i=1,i6=b

si + xb +

K2∑
i=1

n′i)] (41)

where xb = sb, with probability 1− P1, and xb = −sb, with
probability P1.

In the expression above, we have
∑K2

i=1,i6=b si ∼
N(0, (K2 − 1)σ2

s), sb ∼ N(0, σ2
s) and

∑K2

i=1 ni ∼
N(0,K2σ

2
n). This involves triple integrals over Gaussian dis-

tributions and does not have a closed-form expression. There-
fore, we use Monte-Carlo simulation method to examine the
performance. Fig. 14 shows the stage variation probabilities
of the second feed-forward arbiter for different K2.

P
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Fig. 14. Stage Variation Probability of the Ending Stage of the
Second Feed-Forward Arbiter.

It can be observed from Fig. 14 that the stage variation
probability is decreased with the increase of K2, since the
error in feed-forward path is more likely to be averaged out
by more stages. For the third feed-forward arbiter, the stage
variation probability is

P3 =P [sign(

K3∑
i=1,i6=b,d

si + sb + sd +

K3∑
i=1

ni)

6= sign(

K3∑
i=1,i6=b,d

si + xb + xd +

K3∑
i=1

n′i)] (42)

where xb = sb, with probability 1− P1, and xb = −sb, with
probability P1; xd = sd, with probability 1 − P2, and xd =
−sd, with probability P2. We can find that P3 also decreases
with K3.

In the modified feed-forward separate structure, Ki is
greater than the corresponding Ki in the cascade structure.
Therefore, the stage variations of the ending stages of feed-
forward paths in the cascade structure are larger. Furthermore,
large stage variation probability in previous path is more likely
to lead to a large stage variation probability of the following
feed-forward arbiters. As a result, we can conclude that the

modified feed-forward separate structure is more reliable than
the modified feed-forward cascade structure.

Conclusion 5: Based on the stage variation properties, we
conclude that Pintra of the three structures satisfy

Pintra(MFFO) < Pintra(MFFS) < Pintra(MFFC).
(43)

The MFFO structure has the best reliability, while the
MFFC structure is the least reliable. Note that the above
statistical analysis approach can also be applied to the three
different types of standard feed-forward MUX PUFs. These
feed-forward MUX PUFs exhibit similar characteristics as
the modified feed-forward MUX PUFs. �

2) Uniqueness: According to the derivation in Section
VI.B.2, the MFFC structure has the largest stage variation
probability and, thus, has the best uniqueness, while the MFFO
has the lowest value of the uniqueness indicator among the
three modified feed-forward structures.

3) Randomness: Similarly, as discussed in Section VI.B.3,
the randomness of the three structures satisfy the relation:

Randomness(MFFC)

>Randomness(MFFS)

>Randomness(MFFO). (44)

D. Statistical Properties of MUX/DeMUX PUF
1) Reliability: The analysis of the MUX/DeMUX PUF is

similar to the feed-forward structure. If the select signal of a
DeMUX flips, the intra-chip variation of the response is given
by (assuming the DeMUX acts as skipping K stages, while
there are N stages in total):

P [sign(

N∑
si + ni) 6= sign(

N−K∑
si + ni)]

=2

∫ ∞
0

1√
2π(N −K)(σ2

s + σ2
n)
exp(− x2

2(N −K)(σ2
s + σ2

n)
)∫ −x

−∞

1√
2πK(σ2

s + σ2
n)2

exp(− y2

2K(σ2
s + σ2

n)
)dydx

=2

∫ ∞
0

1√
2π(N −K)(σ2

s + σ2
n)
exp(− x2

2(N −K)(σ2
s + σ2

n)
)

(
1

2
− 1

2
erf(

x√
2K(σ2

s + σ2
n)

))dx

=
1

2
− 1

π
arctan(

√
N −K
K

). (45)

It can be seen that the probability P [sign(
∑N

si + ni) 6=
sign(

∑N−K
si + ni)] increases with K.

If we also employ feed-forward path to generate the select
signal of the DeMUXs, then Pintra of the MUX/DeMUX PUF
with a single feed-forward path can be expressed as

Pintra = (1− P1)P1 + P1 ×

(
1

2
− 1

π
arctan(

√
N −K
K

)

)
,

(46)
where P1 = 1

2 −
1
πarctan(

√
σ4
s

2σ2
sσ

2
n+σ4

n
), which is equal to

Pintra of the original MUX PUF. If N−K
K <

σ4
s

2σ2
sσ

2
n+σ4

n
,

Pintra of MUX/DeMUX PUF will be greater than Pintra of
the original MUX PUF. Therefore, similar to the feed-forward
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MUX PUF, the intra-chip variation of the MUX/DeMUX PUF
will also depend on the number and the locations of the signal
propagation paths.

2) Uniqueness: As shown in Section V, the greater of the
number of stages in the original MUX PUF, the less biased the
output will be. Therefore, the MUX/DeMUX PUF will have
less uniqueness, as some stages will be skipped under certain
configurations. In other words, Pinter of the MUX/DeMUX
PUF is expected to be smaller than the Pinter of the original
MUX PUF, if their total numbers of stages are the same.

3) Randomness: Since the output will be more biased, we
can conclude that the randomness will also be degraded by
introducing DeMUXs into the original MUX PUF.

VII. PERFORMANCE COMPARISON OF VARIOUS
MUX-BASED PUFS

Based on the statistical analysis results, the performance
comparisons of the MUX-based PUFs are summarized in
Table IV.

These analysis results enable deeper understandings of the
MUX-based PUFs, which could be exploited to improve the
performance during PUF design. A number of claims are listed
below:

(a) In a MUX PUF, if we increase the number of stages, u-
niqueness and randomness will improve while reliability
will be degraded.

(b) Smaller skew of the arbiter will lead to higher unique-
ness and randomness.

(c) The stage variation probability will increase with the
number of previous feed-forward paths in a feed-forward
structure, as the error in previous path would propagate
to later stages.

(d) When designing the feed-forward PUF, an appropriate
tradeoff point should be achieved based on the particular
application and the performance requirement. Designer
should be careful in selecting the type, the number, and
the locations of feed-forward paths.

(e) The number and the locations of the paths in the
MUX/DeMUX PUF also provide a tradeoff between
reliability and uniqueness.

VIII. EXPERIMENTS

A. Experimental Setup
Experiments were carried out by SPICE simulations on a

65-nm technology process. We use the Monte-Carlo method
to simulate the effect of process variations and environmental
variations. In our simulation, we set up the transistor parame-
ters and process variations based on a major industrial standard
model, according to the findings in the area of statistical static
timing analysis [16], [23]. All of the simulated MUX-based
PUFs have 100 MUX stages. We placed 10 feed-forward paths
regularly on the MUX stages for each PUF structure with feed-
forward paths and 10 DeMUXs regularly for MUX/DeMUX
PUFs. We generated 100-bit responses for measurement in our
experiments. All the structures were tested by at least 1000
Monte-Carlo runs.

The inter-chip variations and the intra-chip variations are
computed according to the Hamming distances obtained for
different chips and the same chip under different readouts,
respectively. Part of these results have already been presented
in [19], [20]. The randomness values are calculated based on

the total numbers of 0’s and 1’s for each MUX-based PUF
structure.

B. Results
Table V presents the results of inter-chip variations, intra-

chip variations, and the percentage of 1’s in the response.,
while Table VI presents the results of the three performance
indicators: reliability, uniqueness, and randomness. First, it
can be observed that the minimum inter-chip variation is
larger than the maximum intra-chip variation for all of the
simulated structures. Thus, we can conclude that the variations
caused by the randomness in manufacturing process are more
significant than the variations under different environmental
conditions. Therefore, these PUFs can be used as reliable
secret keys with some error correcting techniques. Second, it
can also be observed that by adding feed-forward arbiters into
the MUX PUF circuit, the inter-chip variations and intra-chip
variations are both increased, since the noise influences the
select signals of some of the intermediate stages. Furthermore,
it can be seen that the modified feed-forward structures lead to
better reliability than the standard feed-forward MUX PUFs.
Compared to the original MUX PUF, the intra-chip variation
of the standard feed-forward MUX PUF is increased by 68%
on average. But the intra-chip variation of the modified feed-
forward MUX PUF is only increased by 17% on average,
which is only 1

4 of the standard feed-forward PUFs. Therefore,
we can conclude that the reliability is improved by adopting
the proposed modified feed-forward path. Finally, it can also
be observed that the randomness is improved by introducing
feed-forward paths into the original MUX PUF.

C. Discussion
By comparing the experimental results presented in Table V

and Table VI, it can be concluded that the relations between
the performances of different types of MUX-based PUFs are
consistent with the theoretical results shown in Table IV. Note
that the value of P (R = 1) which is more close to 0.5
indicates better randomness. It can also be observed from
Table V and Table VI that the feed-forward separate structure
is the most reliable structure while the feed-forward cascade is
the least reliable one among the three feed-forward structures.
Moreover, the MUX/DeMUX PUF has relatively low inter-
chip variations; as a result, the uniqueness of this structure is
decreased.

These experimental results validate the correctness of our
statistical analysis. Overall, all the MUX-based PUF struc-
tures can be used as reliable secret keys for authentication
and identification within certain error tolerance, as the PUFs
exhibit sufficient gaps between the minimum of the inter-chip
variations and the maximum of intra-chip variations.

IX. CONCLUSION AND FUTURE WORK

We have presented a systematic statistical approach to
quantitatively evaluate various types of MUX-based PUFs. We
defined three performance indicators - reliability, uniqueness,
and randomness - to compare the performances of these
MUX-based PUFs. These indicators are also validated by
the corresponding simulation results. The experimental results
show that the proposed statistical analysis approach effectively
reflects the characteristics of various PUF designs. We have
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TABLE IV. Theoretical Performance Indicators Comparison

Indicator Expression Relation
Reliability 1− Pintra original MUX > MFFO > MFFS > MFFC
Uniqueness 1− |2Pinter − 1| MFFC > MFFS > MFFO > original MUX > MUX/DeMUX
Randomness 1− |2P (R = 1)− 1| MFFC > MFFS > MFFO > original MUX > MUX/DeMUX

TABLE V. Results of Inter-Chip and Intra-Chip Variations for 100-Stage PUFs

Structures Inter-Chip Variation Intra-Chip Variation
P (R = 1)Max Min Max Avg

Original MUX 59% 22% 13% 5.8% 32.8%
Feed-forward Overlap 66% 27% 15% 8.7% 38.8%
Feed-forward Cascade 64% 25% 20% 10.7% 42.1%
Feed-forward Separate 65% 26% 17% 9.9% 40.3%

Modified Feed-forward Overlap 61% 25% 14% 6.6% 37.3%
Modified Feed-forward Cascade 64% 25% 15% 7.0% 39.9%
Modified Feed-forward Separate 61% 27% 15% 6.9% 38.4%

MUX/DeMUX 57% 23% 16% 7.1% 29.9%

TABLE VI. Results of Performance Indicators for 100-Stage PUFs

Structures Reliability Uniqueness Randomness
Original MUX 94.2% 88.2% 65.6%

Feed-forward Overlap 91.3% 95.0% 77.6%
Feed-forward Cascade 89.3% 97.5% 84.2%
Feed-forward Separate 90.1% 96.2% 80.6%

Modified Feed-forward Overlap 93.4% 93.5% 74.6%
Modified Feed-forward Cascade 93.0% 95.9% 79.8%
Modified Feed-forward Separate 93.1% 94.6% 76.8%

MUX/DeMUX 92.9% 83.8% 59.8%

also proposed a novel modified feed-forward MUX PUF
structure, which has better reliability than the standard feed-
forward MUX PUF. Future work will be directed towards the
evaluation of MUX-based PUFs from a security perspective
by various types of modeling attacks. We also would like to
verify our findings with fabricated PUFs in future.
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