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Abstract—An N -point FFT processes N complex signals to
compute N output complex signals using decimation-in-time
(DIT) or decimation-in-frequency (DIF) approach. The FFT
makes use of n = log2N stages of computations where each stage
computes N complex signals; N is assumed to be power-of-two.
This paper considers implementation of a real signal of length
N . Since the degrees of freedom of the input data is N , each
stage of the FFT should not need to compute more than N signal
values, where a signal value can corresponds to a purely real or
purely imaginary value. Any more than N samples computed
at any FFT stage is inherently redundant. This paper, for the
first time, presents novel DIT and DIF structures for computing
real FFT, referred as RFFT, that are canonic with respect to
the number signal values computed at each FFT stage. In the
proposed structure, in an N -point RFFT, exactly N signal values
are computed at the output of each FFT stage and at the output.
No prior canonic DIT RFFT structure was presented before.
This paper, for the first time, presents a formal approach to
compute RFFT using DIT in a canonic manner. While canonic
FFT structures based on decimation-in-frequency were presented
before, these structures were derived in an adhoc way. This paper
presents a formal method to derive canonic DIF RFFT structures.

I. INTRODUCTION

FFT is an important topic in Digital Signal Processing
(DSP) and is widely used in applications such as telecom-
munications, biomedical signal processing, and spectral anal-
ysis. Nowadays, there has been an increasing interest in
the computation of FFT of real-valued signals, referred as
RFFT. This is because most of the physical signals, such as
biomedical signals, are real. The real-valued signals exhibit
conjugate symmetry giving rise to redundancies. This property
can be exploited to reduce both arithmetic and architectural
complexities.

A number of RFFT computation algorithms and implemen-
tations have been proposed for both pipelined and in-place
architectures in the literature [1]–[4]. An approach to com-
puting an N -point RFFT using an N

2 -point complex FFT was
presented in [1]. However, this approach requires significant
amount of post-processing. Custom pipelined architectures for
RFFT have been proposed in [5], [6]. In the work of [6], the
computations of N

2 − 1 conjugate-symmetric samples were
eliminated to obtain more efficient RFFT structures, where N
represents the size of the FFT. Here, we consider a complex
signal as two signals: real part signal and imaginary part
signal. Therefore, in these architectures, the number of signals
computed at the output is the same as the input, i.e., N .
However, although the outputs are canonic in the number of
signals, these architectures still exhibit redundancies at the

intermediate stages, as they are composed of hybrid datapaths
consisting of both complex and real datapaths. Recently,
pipelined architectures consisting of only real datapaths for
decimation-in-frequency (DIF) RFFT were proposed in [7].
Real-valued FFT architectures for radix 23 and radix 24 were
presented in [8] based on hybrid datapath. The architecture
in [8] does not maintain the canonic property in number of
signal values computed at the output of each FFT stage.

The goal of this paper is to design general RFFTs that are
canonic with respect to the number of signals at the output
of each stage, i.e., for an N -point RFFT, the total number
of values computed at the output of each stage should be
N . Furthermore, each stage should contain maximum N

2 real
butterflies as opposed to N

2 complex butterflies. In this paper,
we demonstrate that it is possible to compute only N indepen-
dent values at each stage for an N -point RFFT. This property
has not been explicitly studied before. Although this property
is satisfied by only one prior architecture proposed in [7],
general approaches for designing canonic RFFT computations
have been not presented. This paper makes two contributions:
first, we present an approach to design canonic RFFT compu-
tation based on decimation-in-time (DIT) approach; second,
we present a formal method to design RFFT structures for
decimation-in-frequency (DIF) approach as presented in [7].

The organization of the paper is as follows. Section II
explains the basics of the RFFT. Section III introduces the
canonic DIT RFFTs. An algorithm for canonic DIT RFFT
computation and its generalization to arbitrary size RFFT
are presented in Section IV. Section V presents an approach
for computing canonic DIF RFFT. Section VI presents a
comparison of the proposed canonic RFFT structures with
prior works. Finally, Section VII concludes the paper.

II. RFFT

The N -point Discrete Fourier Transform (DFT) for a se-
quence x[n] is defined as [9]:

X[k] =

N−1∑
n=0

x[n]e−j 2π
N nk =

N−1∑
n=0

x[n]Wnk
N ,

k = 0, 1, ..., N − 1, (1)

where WN = e−j 2π
N . The flow-graph of a 16-point DIT FFT

is shown in Fig. 1. For real-valued inputs x[n], it can be shown
that

X[k] = X∗[N − k]. (2)
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Fig. 1. Flow-graph of a 16-point DIT FFT.

In this case, there are N
2 −1 conjugate output pairs, i.e., X[k]

and X[N − k], for k = 1, 2, ..., N
2 − 1. Therefore, only N

2 +1
outputs need to be computed in an N -point RFFT flow-graph,
since we can compute either X[k] or X[N − k], along with
two real output signals X[0] and X[N/2]. The total number
of purely real and purely imaginary signal values is N . For
example, as shown in Fig. 1, for a 16-point FFT, we can choose
to only compute X[0] ∼ X[8], while X[9] ∼ X[15] can be
obtained by conjugating X[1] ∼ X[7]. Thus, only 16 values
need to be computed at the output. We present RFFT structures
where the size of the signal values computed at each FFT stage
is exactly N ; such structures satisfy the canonic property.

III. CANONIC DIT RFFT

In this section, we present the flow-graphs for canonic DIT
RFFT computations which are guaranteed to have N signals
at each stage.

A. 4-point RFFT

A 4-point canonic DIT RFFT flow-graph is shown in Fig. 2.
The nodes marked by ◦ and � respectively represent purely real
and purely imaginary signals. Solid and dashed lines respec-
tively represent purely real and purely imaginary datapaths. In
the 4-point RFFT, since X[1] and X[3] are conjugates of each
other, we can eliminate X[3] by removing the bottom butterfly
at the second stage. The computations of real and imaginary
parts of X[1] are separated as shown in Fig. 2. Note that the
number of inputs, the number of outputs and the number of
signal values at the intermediate stage are all the same and
equal 4, the size of FFT.
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Fig. 2. Flow-graph of a canonic 4-point DIT RFFT.

B. 8-point RFFT

An 8-point canonic DIT RFFT can be obtained by merging
two 4-point canonic RFFTs, as shown in Fig. 3. In an 8-point
FFT, 8

2 − 1 output computations can be eliminated. Since 2
samples have already been eliminated after the second stage
by use of the 4-point canonic RFFTs, we need to eliminate
8
2 − 1 − 2 × 1 = 1 more sample at the output. Thus, we
can remove computation of X[6] at the last stage, and the
computation of the real part and imaginary part of X[2] are
separated. The real parts and imaginary parts of X[1] and
X[5] are computed by two independent real butterflies, as these
were separated in previous stages. The number of signal values
computed at each FFT stage or the output is always 8; thus
the structure is canonic.
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Fig. 3. Flow-graph of a canonic 8-point DIT RFFT.

C. 16-point RFFT

As shown in Fig. 4, 16-point canonic RFFT flow-graph can
also be obtained by merging two 8-point canonic RFFTs. At
the last stage, only 16

2 − 1 − 2 × 3 = 1 sample needs to be
eliminated.

IV. ALGORITHM FOR CANONIC DIT RFFT COMPUTATION

A. Divide and Conquer

As illustrated in Section III, any N -point RFFT, where N
is power-of-two, can be obtained by merging two N

2 -point
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Fig. 4. Flow-graph of a canonic 16-point DIT RFFT.

RFFTs using the DIT property algorithm. This property can
be expressed as

X[k] =

N−1∑
n=0

x[n]Wnk
N

=

N
2 −1∑
n=0

x[2n]W 2nk
N +

N
2 −1∑
n=0

x[2n+ 1]W
(2n+1)k
N

=

N
2 −1∑
n=0

x[2n]W 2nk
N +W k

N

N
2 −1∑
n=0

x[2n+ 1]W 2nk
N

k = 0, 1, ..., N − 1, (3)

where
∑N

2 −1
n=0 x[2n]W 2nk

N and
∑N

2 −1
n=0 x[2n+1]W 2nk

N respec-
tively represent two N

2 -point RFFTs for the even part and
the odd part of the inputs. Twiddle factors W k

N need to be
multiplied to the odd part before the butterflies at the last
stage, as shown in Fig. 3 and Fig. 4.

Therefore, due to the regularity of the canonic RFFT flow-
graph, the canonic RFFT flow-graph can be extended for any
N = 2n-point DIT RFFT recursively. Note that for an N

2 -
point canonic RFFT, N

2 /2 − 1 = N
4 − 1 signals have been

eliminated. Thus, when merging two N
2 -point canonic RFFTs,

only one more computation and its corresponding butterfly
need to be eliminated at the last stage, as N

2 − 1− 2× (N4 −
1) = 1. We choose to eliminate the computation of X[ 3N4 ].
Therefore, the butterfly which computes X[N4 ] and X[ 3N4 ]
is removed, and the real and imaginary parts of X[N4 ] are
separated. The twiddle factor before the bottom input of the
removed butterfly (i.e., the ( 3N4 +1)th signal) can be calculated

as W
3N
4 +1−N

2 −1

N = W
N
4

N = −j, as W k
N is the twiddle factors

before the bottom inputs of the butterflies at the last stage for
k = 0, 1, ..., N

2 − 1. This operation is further illustrated as
in Fig. 5.
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Fig. 5. Remove butterfly and separate real part and imaginary part
for DIT RFFT.

B. Generalization to N = 2n-point DIT RFFT

We summarize the pattern for an N = 2n-point canonic DIT
RFFT in this section. The key idea of the proposed approach
to implement a RFFT involves removing one butterfly for each
2m-point RFFT at stage m for 2 ≤ m ≤ n. Note that there
are 2n−m 2m-point RFFTs at stage m. Therefore, we need
to perform the operation as shown in Fig. 5 to the butterflies
whose bottom inputs are the (2mi+3× 2m−2 +1)th signals,
where i = 0, 1, ..., 2n−m − 1. Similarly, it can be proved that
the twiddle factors before the (2mi+ 3× 2m−2 + 1)th signal
at stage m are

W 2m−2

N ×W 2n−m

N = W 2n−2

N = W
N
4

N = −j, (4)

as the twiddle factors for stage m are in group of 2m (i.e.,
2m−1 0’s and W 0:2n−m:2n−1−2n−m

N ).
This pattern is also summarized as in Table I. The elimina-

tions are performed from stage 1 to stage n to obtain the final
N -point canonic DIT RFFT flow-graph.

Moreover, it can be observed that the output signals for an
N -point canonic RFFT will be {SN

2
, N

2 +SN
2
}, where SN

2
is

the output set of an N
2 -point canonic RFFT; and then replace

X[N4 ] and X[ 3N4 ] with X[N4 r] and X[N4 i], respectively. This
is also consistent with the patterns described above, i.e.,
remove one butterfly whose bottom input is the ( 3N4 + 1)th
signal. This property is also summarized in Table II.

Based on the patterns presented above, a 32-point DIT
RFFT structure is designed as shown in Fig. 6. In this structure,
the number of signal values computed at the output of each
FFT stage or the output is 32; thus, this structure is canonic.

V. ALGORITHM FOR CANONIC DIF RFFT COMPUTATION

In this section, we discuss the canonic computation for DIF
RFFT. An alternate flow-graph for a 16-point DIF FFT is
shown in Fig. 7. It can be seen that the DIT and DIF only differ
in the twiddle factors at different stages. Similar to DIT, we
eliminate the redundancies in the FFT computation to achieve
the canonic RFFT structure. However, unlike the DIT, the DIF
RFFT is not symmetric, i.e., the twiddle factors in the top N

2 -
point DIF RFFT are not the same as for the bottom N

2 -point
DIF RFFT. Therefore, we cannot directly use the divide and
conquer idea to design a canonic DIF RFFT structures.

Moreover, we have to transform the twiddle factors for
the DIF RFFT to ensure non-redundancy. For example, for
a 16-point RFFT, there will be exactly 22 signal values at
the beginning of the second stage, since no butterfly can be
removed in the first stage and twiddle factors W 1, W 2, W 3,
W 5, W 6, W 7 lead to complex signals. Therefore, we have to
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TABLE I. Bottom Input Positions of the Removed Butterflies.

Stage 1 2 3 ... m ... n
Positions none 4,8,12,... 7,15,23,... ... 2mi+ 3× 2m−2 + 1, for i = 0, 1, ..., 2n−m − 1 ... 3× 2n−2 + 1

TABLE II. Canonic DIT RFFT Output Signals.

RFFT Size N 4 8 16 32

Output SN 0, 1r, 2, 1i 0, 1r, 2r, 1i 0, 1r, 2r, 1i, 4r, 5r, 2i, 5i 0, 1r, 2r, 1i, 4r, 5r, 2i, 5i, 8r, 9r, 10r, 9i, 4i, 13r, 10i, 13i
4, 5r, 2i, 5i 8, 9r, 10r, 9i, 4i, 13r, 10i, 13i 16, 17r, 18r, 17i, 20r, 21r, 18i, 21i, 8i, 25r, 26r, 25i, 20i, 29r, 26i, 29i
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Fig. 6. Flow-graph of a canonic 32-point DIT RFFT.

push these twiddle factors to a later stage to guarantee that
only 16 signal values are input to the second FFT stage.

We could follow the same pattern as presented in Table I to
design canonic DIF RFFT computation. The same number of
butterflies will be removed at each stage. It can be observed
that the twiddle factors before the top input and the bottom
input of the removed butterflies can be expressed as W k

and W k+N/4, respectively. Therefore, instead of performing
the transformation shown in Fig. 5 for a DIT RFFT, the
transformation in Fig. 8 is used to generate a canonic DIF
RFFT structure. Fig. 9 shows an example of a 16-point canonic
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DIF RFFT computation.
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Fig. 8. Remove butterfly and separate real part and imaginary part
for DIF RFFT.

In conclusion, the canonic DIT and DIF RFFT computations
can be designed by following the same pattern shown in Table
I. In order to remove the redundant butterflies and to separate
the real and imaginary parts of complex values, we use the
transformation in Fig. 5 for a DIT RFFT, or the transformation
in Fig. 8 for a DIF RFFT. The patterns for the output signals
for both the designs are the same and shown in Table II.

VI. PERFORMANCE COMPARISON

The number of butterflies in the proposed canonic RFFT
computation is the same as the previous works in [6], [7].
However, these structures require different numbers of twiddle
factors. Furthermore, the number of twiddle factor operations
even differs in the proposed canonic DIT RFFT and canonic
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Fig. 9. Flow-graph of a canonic 16-point DIF RFFT.

DIF RFFT, as the transformations for removing the butterflies
are different for the DIT RFFT and DIF RFFT, as shown
in Fig. 5 and Fig. 8, respectively. Note that we do not consider
W

N
4 , W

N
2 , and W

3N
4 as twiddle factor operations, since they

only involve negation or switching.
It can be seen for an N = 2n-point canonic DIT RFFT, the

number of twiddle factors before stage k is

2n−k × (2k−2 − 1), for 3 ≤ k ≤ n. (5)

Therefore, the total number of twiddle factor operations can
be calculated as

#twiddle factor = (n− 1)× 2n−2 − 2n−1 + 1

= (n− 3)× 2n−2 + 1. (6)

However, for an N = 2n-point canonic DIF RFFT, the number
of twiddle factors before stage k is

2k−3 × (2n−k+1 − 2)− 1, for 3 ≤ k ≤ n. (7)

Therefore, the total number of twiddle factor operations can
be calculated as

#twiddle factor = (n− 2)× 2n−2 − 2n−1 + 2 + (n− 2)

= (n− 4)× 2n−2 + n. (8)

As a result, it can be concluded that the canonic DIF RFFT
computation has less twiddle factor operations than canonic
DIT RFFT for n ≥ 4, while canonic DIT and DIF RFFT
computations have the same number of twiddle factors for
n = 2, 3.

Table III compares the number of twiddle factor operations
of the different approaches for the computation of the RFFT.
As it is shown, the number of twiddle factor operations in
all the approaches has the same order of magnitude. The
proposed canonic DIF RFFT computation has less twiddle
factor operations than the computation in [6], while it has the
same performance as the work in [7].

TABLE III. Comparison of Twiddle Factor Operation and Datapath
for N = 2n-point RFFT

RFFT Algorithm #Twiddle Factor Operations Datapath
[6] DIF (n− 7

2
)× 2n−2 + n− 1 hybrid

[7] DIF (n− 4)× 2n−2 + n real
Proposed DIT (n− 3)× 2n−2 + 1 real
Proposed DIF (n− 4)× 2n−2 + n real

VII. CONCLUSION

This paper has introduced the novel notion of canonic RFFT
computations where the number of signal values computed at
each intermediate FFT stage is same as the size of RFFT. The
canonic computations for N = 2n-point DIT and DIF RFFTs
are proposed. It is shown that canonic DIF RFFT structures re-
quire less twiddle factor operations than the DIT counterparts.
The proposed canonic structures are not necessarily canonic
with respect to the twiddle factor operations and are non-
unique.
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