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Wireless Networks
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Abstract—This paper surveys and unifies a number of re-
cent contributions that have collectively developed a metric
for decentralized wireless network analysis known as trans-
mission capacity. Although it is notoriously difficult to derive
general end-to-end capacity results for multi-terminal or ad
hoc networks, the transmission capacity (TC) framework allows
for quantification of achievable single-hop rates by focusing
on a simplified physical/MAC-layer model. By using stochastic
geometry to quantify the multi-user interference in the network,
the relationship between the optimal spatial density and success
probability of transmissions in the network can be determined,
and expressed – often fairly simply – in terms of the key
network parameters. The basic model and analytical tools are
first discussed and applied to a simple network with path loss only
and we present tight upper and lower bounds on transmission
capacity (via lower and upper bounds on outage probability). We
then introduce random channels (fading/shadowing) and give TC
and outage approximations for an arbitrary channel distribution,
as well as exact results for the special cases of Rayleigh and
Nakagami fading. We then apply these results to show how TC
can be used to better understand scheduling, power control, and
the deployment of multiple antennas in a decentralized network.
The paper closes by discussing shortcomings in the model as well
as future research directions.

Index Terms—Transmission capacity, wireless networks, ad
hoc networks, stochastic geometry.

I. INTRODUCTION

THIS paper presents the recently developed framework for
the outage probability and transmission capacity [1] in a

one hop wireless ad hoc network. The transmission capacity
is defined as the number of successful transmissions taking
place in the network per unit area, subject to a constraint on
outage probability. In addition to being of general interest,
the advantange of transmission capacity – relative to, say, the
transport capacity or average sum throughput – lies largely
in that it can be exactly derived in some important cases,
and tightly bounded in many others, as we shall show. From
the expressions and approach given in this paper the exact
dependence between system performance (transmission capac-
ity, outage probability) and the possible design choices and
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network parameters are laid bare. In contrast to the proposed
framework, nearly all other work on ad hoc networks must
resort to scaling laws or numerical simulations, in which case
intuition and/or precision is usually lost.

The first goal of this paper is to concisely summarize the
new analytical tools (largely drawn from the field of stochastic
geometry [2], [3]) that have been developed over numerous
papers by the authors and others. Because these techniques
have been developed somewhat independently depending on
the problem of interest, the system model in Section II applied
to the baseline model of pathloss attenuation without fading
in Section III will help newcomers to the area understand the
various approaches in context.

The second goal is to show how this framework can be used
to give crisp insights into wireless network design problems.
In the past few years, the transmission capacity approach has
been applied to various design problems by a growing group of
researchers (see [1], [4]–[8]). Although transmission capacity
was originally developed to analyze spread spectrum in ad
hoc networks, it has proven to be a metric with considerable
breadth of application. Since decentralized wireless networks
are generally very difficult to characterize, the intuitive and
simple-to-compute qualities of transmission capacity have
made it a popular choice for a large number of possible
systems, including: 𝑖) direct-sequence and frequency-hopping
spread spectrum [1], [4], [9], 𝑖𝑖) interference cancellation
[5], [10], 𝑖𝑖𝑖) spectrum sharing in unlicensed, overlaid, and
cognitive radio networks [6], [7], [11], [12], 𝑖𝑣) scheduling
[10] and power control [13], [14], 𝑣) and the use of mul-
tiple antennas (which had resisted characterization by other
methods) [8], [15]–[21]. Other researchers have also further
studied the basic tradeoffs between outage probability, data
rate, and transmission capacity for general networks [22].
We selectively discuss some of these applications. Section
IV addresses networks with fading channels, with a focus
on Rayleigh (Section IV-B) and Nakagami (Section IV-C)
fading, scheduling (Section IV-D), and power control (Section
IV-E). Section V addresses the use of multiple antennas, with
discussions of diversity (Section V-A), spatial interference
cancellation (Section V-B), and spatial multiplexing (Section
V-C).

The third goal of the paper is to stimulate new efforts
to further the tools presented here, both in making them
more general and in applying them to new problems. We
readily concede that the presented model has some nontrivial
shortcomings at present, and we identify those as well as
possible avenues forward in Section VI.

0090-6778/10$25.00 c⃝ 2010 IEEE
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II. SYSTEM MODEL

We introduce the system model in Section II-A, discuss rel-
evant mathematical background in Section II-B, and elaborate
on the connection with transport capacity in Section II-C.

A. Mathematical model and assumptions

We consider an ad hoc wireless network consisting of a
large (infinite) number of nodes spread over a large (infinite)
area. The network is uncoordinated, meaning transmitters
do not coordinate with each other in making transmission
decisions. That is, nodes employ Aloha [23] (i.e., in each
slot, each node independently decides whether to transmit
or to listen) as the medium access control (MAC) proto-
col. We view the network at a snapshot in time, where
the locations of the transmitting nodes at that snapshot are
assumed to form a stationary Poisson point process (PPP)
on the plane of intensity 𝜆, denoted Π(𝜆) = {𝑋𝑖}, where
each 𝑋𝑖 ∈ ℝ

2 is the location of interfering transmitter
𝑖. The PPP assumption for node locations is valid when
the uncoordinated transmitting nodes are independently and
uniformly distributed over the network arena, which is often
reasonable for networks with indiscriminate node placement
or substantial mobility. If intelligent transmission scheduling
is performed, the resulting transmitter locations will most
certainly not form a PPP, so this paper’s analytical framework
is primarily applicable to uncoordinated transmitters. Although
suboptimal, such a model may be reasonable in cases where
the overhead associated with scheduling is prohibitively high,
for example due to highly mobile nodes, bursty traffic, or
rigid delay constraints. We also note that this framework has
been extended to CSMA, and the gains are not that large over
Aloha [24], [25]. Viewing the network at a single snapshot
in time restricts our focus to characterizing the performance
of one-hop transmissions with specified destinations. That is,
our attention is on (uncoordinated) MAC layer performance,
but our model neither addresses nor precludes any multi-hop
routing scheme. These model limitations are further discussed
in Section VI.

Each transmitter is assumed to have an assigned receiver at
a fixed distance 𝑟 away. This assumption may be easily relaxed
(e.g., see [13] and [14]) but at the cost of complicating the
derived expressions without providing additional insight. The
set of receivers is disjoint with the set of transmitters. Because
the network is infinitely large and spatially homogeneous,
the statistics of Π(𝜆) are unaffected by the addition of a
placed transmitter and receiver pair, and, more importantly,
this pair is “typical” in that the performance experienced at
the reference pair characterizes the node-average performance
in the network (Slivnyak’s Theorem [2]). Without loss in
generality we place the reference receiver at the origin (𝑜),
and the reference transmitter is located 𝑟 meters away. See
Fig. 1. Note that the locations of the other receivers are not
important because the reference receiver’s performance only
depends upon the positions of the transmitters.

Each transmitter is usually assumed to employ unit trans-
mission power (except when we discuss power control in
Section IV-E). The channel strength is assumed to be solely
determined by pathloss and fading, i.e., the received power at
distance 𝑑 is 𝐻𝑑−𝛼, where 𝛼 > 2 is the pathloss exponent

Fig. 1. The transmitter locations (black circles) at a typical time form a
Poisson process, Π; each transmitter has an assigned receiver (gray circles)
located at distance 𝑟. The reference communications link has a reference
receiver at the origin (green) and a reference transmitter at distance 𝑟 (red).
Each black transmitter generates interference seen at the reference receiver,
indicated by the dashed lines.

and 𝐻 is the fading coefficient. All fading coefficients are as-
sumed to be independent and identically distributed (iid). This
simplified model has been shown to capture the key distance
dependency in ad hoc networks, and minor alterations to it
such as adding an attenuation constant or forcing the received
power to be less than one increase the analytical complexity
with little apparent benefit [26]. We study networks without
fading (𝐻 = 1) in Section III then with fading in Section IV.

We treat interference as noise, assume that the ambi-
ent/thermal noise is negligible, and assert transmission success
to be determined by the signal to interference plus noise ratio
(SINR) lying above a specified threshold 𝛽. The assumption
of negligible thermal noise may be easily relaxed (e.g., see
[13] and [14]) but at the cost of complicating the derived
expressions without providing additional insight. The outage
probability (OP), denoted by 𝑞, is the probability that the sig-
nal to interference ratio (SIR) at the reference receiver is below
a specified threshold 𝛽 required for successful reception:

𝑞(𝜆) ≡ ℙ(SIR < 𝛽) (1)

= ℙ

(
𝑆𝑟−𝛼∑

𝑋𝑖∈Π(𝜆) 𝐼𝑖∣𝑋𝑖∣−𝛼
< 𝛽

)
(2)

= ℙ

(
𝑌 >

1

𝛽

)
, (3)

where 𝑌 ≡ 1
𝑆𝑟−𝛼

∑
𝑋𝑖∈Π(𝜆) 𝐼𝑖∣𝑋𝑖∣−𝛼 is defined as the ag-

gregate interference power seen at the reference receiver at
the origin, normalized by the signal power 𝑆𝑟−𝛼. The last
expression in (3) highlights the fact that, conditioned on 𝑆,
the OP is the tail probability of the aggregate interference
level expressed as a shot noise process.

The randomness is in the interferer locations, {𝑋𝑖}, and
the fading coefficients, 𝑆 and {𝐼𝑖}. The OP is a function of
𝛼, 𝛽, 𝜆, 𝑟 and the fading statistics. Note that 𝑞 is continuous
monotone increasing in 𝜆 and is onto [0, 1]. Our primary
performance metric is the transmission capacity (TC) which
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TABLE I
NOTATION USED IN PAPER.

𝑎 ≡ 𝑏 𝑎 is defined to equal 𝑏
𝜆 spatial intensity of attempted transmissions (per 𝑚2)

Π = {𝑋𝑖} Poisson point process (PPP) of intensity 𝜆 of Tx locations
𝛼 pathloss exponent (𝛼 > 2)
𝛽 SIR/SINR requirement for successful reception
𝑟 distance separating each Tx-Rx pair

𝑞(𝜆) outage probability (OP)
𝜖 constraint on OP

𝑐(𝜖) transmission capacity (TC)
𝜌 transmission power

𝐻𝑖𝑗 fading coefficient from transmitter 𝑖 to receiver 𝑗
𝑀 number of frequency channels, or spreading factor

𝑁𝑟 , 𝑁𝑡, 𝑁 number of receive, transmit, or total antennas

takes a target OP 𝜖 as a parameter:

𝑐(𝜖) ≡ 𝑞−1(𝜖)(1 − 𝜖), 𝜖 ∈ (0, 1). (4)

It is the spatial intensity of attempted transmissions 𝑞−1(𝜖)
associated with OP 𝜖, thinned by the probability of success,
1 − 𝜖. The quantity 𝜖 is a network-wide quality of service
measure, ensuring a typical attempted transmission will suc-
ceed with probability 1 − 𝜖. The transmission capacity has
units of number of transmission attempts per unit area, i.e.,
it is a measure of spatial intensity of transmissions. Note
that the OP 𝑞(𝜆) is defined for an arbitrary transmission
intensity 𝜆, and 𝑐(𝜖) is simply that value of 𝜆 such that
𝑞(𝑐(𝜖)/(1 − 𝜖)) = 𝜖. The definition of TC is motivated by
several factors: 𝑖) fixing the OP at 𝑞 = 𝜖 is a useful and simple,
albeit coarse, characterization of network performance, 𝑖𝑖) the
TC is tractable and can be computed, or at least bounded,
for many useful network design questions. A summary of
the mathematical notation employed in this paper is given in
Table I.

B. Mathematical background

The key underlying mathematical concept is the shot-noise
process first developed in 1918 [27],

𝑌 (𝑡) =
∞∑

𝑗=−∞
ℎ(𝑡− 𝑡𝑗), (5)

where {𝑡𝑗} is a stationary Poisson point process (PPP) on ℝ

and ℎ(𝑡) is a (linear, time-invariant) impulse response function
[28], [29]. Here 𝑌 (𝑡) is the superposition of all signals,
appropriately attenuated to time 𝑡. If we instead interpret {𝑡𝑗}
as locations on the plane, 𝑡 as the location of a reference
receiver, ℎ(𝑡) as a channel attenuation function, and 𝑡− 𝑡𝑗 as
the distance from 𝑡𝑗 to 𝑡, then 𝑌 (𝑡) may be interpreted as the
cumulative interference power seen at 𝑡. A power-law impulse
response, ℎ(𝑡) = 𝐾𝑡−𝛼 [30] makes the process {𝑌 (𝑡)} Lévy
stable [31].

The use of spatial models in wireless communications dates
back to the late 1970’s [32], [33]. There was in fact quite
extensive work on the model in which nodes are located
according to a 2-D PPP, Aloha is used, a routing protocol
determines the node for which each transmitted packet is
intended for, and the received SINR and specifics of the
communication protocol determine conditions for transmis-
sion success; see [34] for an overview of early results. The

aggregate interference process in an ad hoc network was first
recognized as Lévy stable in [35]–[37], and its characteristic
function was studied in [38]. A series of papers by Baccelli et
al. demonstrated the power of stochastic geometry for model-
ing a wide range of problems within wireless communications,
as summarized in [39], [40].

We note that there have been several very helpful tutorials
on applying stochastic geometry to wireless networks devel-
oped in the last year, including the comprehensive two-volume
monograph by Baccelli and Blaszczyszyn [39], a monograph
by Haenggi and Ganti that has many of the available results on
non-homogeneous Poisson node distributions [41], a summary
tutorial article for a JSAC special issue on the topic [42], and a
tutorial by Win et al. on characterizing interference in Poisson
fields [43]. We refer readers to those references (and [2], [3])
for background.

C. Relationship to transport capacity

The general subject of the paper is the analysis of capacity
and outage probability of wireless ad hoc networks. Ideally,
one could determine the capacity region of an ad hoc network,
which would be the set of maximum rates that could be
achieved simultaneously between all possible pairs in the
network, and hence is 𝑛(𝑛−1) dimensional for 𝑛 (full-duplex)
users. Even if this was obtainable – which it has not been
despite considerable efforts [44] – it would still likely not
capture some key aspects of an ad hoc network, which call
for information to be moved over space. Gupta and Kumar
pioneered an important line of work on transport capacity in
[45], which measures the end-to-end sum throughput of the
network multiplied by the end-to-end distance. Representative
publications include [46]–[50]. A key feature of all these
works is that it is not possible to compute the exact transport
capacity in terms of the system parameters, and although
bounds and closed-form expressions are available in some
cases, the best-known results are stated in the form of scaling
laws that quantify how the volume of the capacity region
grows with the number of nodes in the network. The most
accepted conclusion is that the capacity grows sublinearly as
Θ(

√
𝑛), which can be achieved with multi-hop transmission

and treating multi-user interference as noise, as proven in
several different ways [45], [49], [51] including recently using
Maxwell’s equations [52]. Generous assumptions on mobility
[53], bandwidth [54], or cooperation [55] result in more
optimistic scaling laws.

The transport capacity, 𝐶𝑇 (𝑛), is defined as the maximum
distance-weighted sum rate of communication over all pairs
of 𝑛 nodes [45]. In an extensive network, where the density
of nodes per unit area is constant, the transport capacity has
been shown to grow as 𝐶𝑇 (𝑛) = Θ(𝑛) as 𝑛 → ∞, with
units of bit-meters per second [46]. Roughly speaking, there
can be Θ(𝑛) simultaneous nearest-neighbor transmissions in
the network, and the distance and the rate of communication
between nearest-neighbors are both Θ(1), yielding 𝐶𝑇 (𝑛) =
Θ(𝑛).

Comparison of transport capacity and TC is facilitated
by normalizing the transport capacity by the network area,
𝐴(𝑛) = Θ(𝑛), giving 𝐶𝑇 (𝑛)/𝐴(𝑛) = Θ(1) in units of bit-
meters per second per unit area. Within the TC framework,
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assuming communication at the Shannon rate of log2(1 + 𝛽),
this metric also is Θ(1) and is precisely 𝑐(𝜖) log2(1 + 𝛽)𝑟.
Thus, transmission and transport capacity are consistent in the
scaling sense. Furthermore, by abstracting out the end-to-end
and multihop aspect of the network, the transmission capacity
framework allows for a detailed study of the critical constant
term; this is generally very difficult to do if using transport ca-
pacity. Transport capacity and TC are complementary metrics:
transport capacity gives order optimal throughput, optimized
over all MAC and routing techniques, while TC gives detailed
performance and design insights for the lower layers of the
network.

III. BASELINE MODEL: PATH LOSS ONLY

In this section, a baseline model is presented where the
only randomness is in the position of the nodes, i.e., there
is no fading (𝑆 = 1 and 𝐼𝑖 = 1 for each 𝑖 in (3)).
Upper and lower bounds are given on outage probability and
transmission capacity, emphasizing the impact that dominant
(strong) interferers have on the sum of the interference. The
impact of fading is addressed in Section IV.

A. Exact results

The points of the 2-D PPP of intensity 𝜆, i.e., Π(𝜆) =
{𝑋𝑖} ⊂ ℝ

2, may be mapped to a 1-D PPP of unit intensity
using Corollary 2 in [56]. In particular, 𝜋𝜆∣𝑋𝑖∣2 ∼ 𝑇𝑖, where
∣𝑋𝑖∣2 is the squared distance from the origin of the 𝑖𝑡ℎ nearest
transmitter, and 𝑇𝑖 is the distance from the origin of the 𝑖𝑡ℎ

nearest point in a unit intensity 1-D PPP. Applying this to the
normalized interference power 𝑌 in (3) gives:

𝑌 = 𝑟𝛼
∑

𝑋𝑖∈Π(𝜆)

∣𝑋𝑖∣−𝛼 (6)

= (𝜋𝜆)
𝛼
2 𝑟𝛼

∑
𝑋𝑖∈Π(𝜆)

(𝜋𝜆∣𝑋𝑖∣2)−𝛼
2 (7)

= (𝜋𝑟2𝜆)
𝛼
2

∑
𝑇𝑖∈Π1(1)

𝑇
−𝛼

2
𝑖 , (8)

where the notation Π1(1) indicates a 1-D PPP of intensity 1.
The corresponding OP in (3) becomes

𝑞(𝜆) = ℙ

⎛
⎝(𝜋𝑟2𝜆)

𝛼
2

∑
𝑇𝑖∈Π1(1)

𝑇
−𝛼

2

𝑖 >
1

𝛽

⎞
⎠ (9)

= ℙ

(
𝑍𝛼 >

1

(𝜋𝑟2𝜆)
𝛼
2 𝛽

)
(10)

= 𝐹𝑍𝛼

((
(𝜋𝑟2𝜆)

𝛼
2 𝛽

)−1
)
, (11)

where 𝑍𝛼 ≡ ∑
𝑇𝑖∈Π1(1)

𝑇
−𝛼

2
𝑖 is a random variable whose dis-

tribution depends only on 𝛼 and 𝐹𝑍𝛼(⋅) is the complementary
cumulative distribution function (CCDF) of 𝑍𝛼. Using 𝐹−1

𝑍𝛼
(⋅)

to denote the inverse, and solving 𝐹𝑍𝛼

((
(𝜋𝑟2𝜆)

𝛼
2 𝛽

)−1
)
= 𝜖

for 𝜆 allows the TC to be written as:

𝑐(𝜖) =

(
𝐹−1
𝑍𝛼

(𝜖)
)− 2

𝛼 (1− 𝜖)

𝜋𝑟2𝛽
2
𝛼

. (12)

These transformations highlight that the essential difficulty
in computing the OP and the TC lies in computing the
distribution of the stable rv 𝑍𝛼.

In fact the only 𝛼 > 2 for which 𝑍𝛼 has a distribution
expressible in closed-form is for 𝛼 = 4, which is the inverse
Gaussian distribution. Important early results for this special
case are due to Sousa and Silvester [36] (Eqn. (21)). In
particular, they give an exact expression for the OP in terms
of the CDF of the standard normal rv, 𝑄(𝑧) = ℙ(𝑍 ≤ 𝑧), for
𝑍 ∼ 𝑁(0, 1):

𝑞(𝜆) = 2𝑄
(√

𝜋/2𝜆𝜋𝑟2
√
𝛽
)
− 1. (13)

The corresponding exact expression for the TC is:

𝑐(𝜖) =

√
2/𝜋(1− 𝜖)𝑄−1 ((1 + 𝜖)/2)

𝜋𝑟2
√
𝛽

. (14)

An additional exact result is given for the case of Rayleigh
fading in Section IV-A. The general unavailability of closed
form expressions for the distribution of 𝑍𝛼 motivates the
search for lower and upper bounds, which we discuss next.

B. Lower outage bound: dominant nodes

A lower bound on the probability of outage is obtained by
partitioning the set of interferers Π into dominating and non-
dominating nodes. A node 𝑖 is dominating if its interference
contribution alone is sufficient to cause outage at the receiver.
We call dominating nodes near (n) nodes and non-dominating
nodes far (f) because because dominating nodes must be
within some distance of the origin, and non-dominating nodes
must be far from the origin. The dominating nodes may be
defined geometrically as the interferers located inside a disk
centered at the origin of radius 𝛽

1
𝛼 𝑟:

Πn(𝜆) ≡
{
𝑋𝑖 :

𝑟−𝛼

∣𝑋𝑖∣−𝛼 < 𝛽

}
(15)

=
{
𝑋𝑖 : ∣𝑋𝑖∣ < 𝛽

1
𝛼 𝑟

}
(16)

= Π(𝜆) ∩ 𝑏
(
𝑜, 𝛽

1
𝛼 𝑟

)
. (17)

Here 𝑏(𝑜, 𝑑) = {𝑥 ∈ ℝ
2 : ∥𝑥∥ ≤ 𝑑} denotes the ball

centered at the origin 𝑜 of radius 𝑑. The aggregate interference,
normalized by the received signal power 𝑟−𝛼, may be split into
aggregate dominant and aggregate non-dominant interference:

𝑌 ≡ 1

𝑟−𝛼
∑

𝑋𝑖∈Π(𝜆)

∣𝑋𝑖∣−𝛼 (18)

𝑌 n ≡ 1

𝑟−𝛼
∑

𝑋𝑖∈Πn(𝜆)

∣𝑋𝑖∣−𝛼 (19)

𝑌 f ≡ 1

𝑟−𝛼
∑

𝑋𝑖 ∕∈Πn(𝜆)

∣𝑋𝑖∣−𝛼, (20)

where 𝑌 = 𝑌 n+𝑌 f . The lower bound is obtained by ignoring
the non-dominant interference:

𝑞(𝜆) = ℙ

(
𝑌 n + 𝑌 f >

1

𝛽

)
> ℙ

(
𝑌 n >

1

𝛽

)
≡ 𝑞𝑙(𝜆). (21)
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Note that, by construction, the event {𝑌 n > 1
𝛽 } is the same

as the event {Πn(𝜆) ∕= ∅}, which is simply the complement
of a void probability for a Poisson process:

𝑞𝑙(𝜆) = 1− ℙ(Πn(𝜆) = ∅) = 1− e
−𝜆

∣∣∣𝑏
(
𝑜,𝛽

1
𝛼 𝑟

)∣∣∣ (22)

= 1− e−𝜆𝜋𝑟
2𝛽

2
𝛼 . (23)

By solving 𝑞𝑙(𝜆) = 𝜖 for 𝜆 we get an upper bound on 𝑞−1(𝜖),
which yields a TC upper bound:

𝑐𝑢(𝜖) =
(1− 𝜖) log(1 − 𝜖)−1

𝜋𝑟2𝛽
2
𝛼

(24)

=
1

𝜋

(
𝑟𝛽

1
𝛼√
𝜖

)2 +𝑂(𝜖2) as 𝜖→ 0. (25)

The right hand side is obtained by observing that the first
order Taylor series expansion of (1 − 𝜖) log(1 − 𝜖)−1 around
𝜖 = 0 equals 𝜖 + 𝑂(𝜖2), where 𝑂(⋅) is the standard “big-
oh” notation [57]. Neglecting the 𝑂(𝜖2) term gives an error
𝜖 − (1 − 𝜖) log(1 − 𝜖)−1 ≈ 0.005 for 𝜖 = 0.1. The right
hand side may be interpreted as a disk packing statement. In
particular, the maximum number of transmissions per square
meter for fixed 𝛼, 𝛽, 𝜖, 𝑟 is found by packing disks of radius

𝑅(𝛼, 𝛽, 𝜖, 𝑟) ≡ 𝑟𝛽
1
𝛼√
𝜖

, each disk with a single transmitter at the
center. This radius clarifies the dependence of the supportable
density of transmissions on these four key model parameters.

C. Upper outage bounds: Markov, Chebychev, and Chernoff
bounds

We may decompose the outage event in (21) as:

𝑞(𝜆) = ℙ

({
𝑌 n >

1

𝛽

}
∪

{
𝑌 f >

1

𝛽

}
∪{

𝑌 n ≤ 1

𝛽
, 𝑌 f ≤ 1

𝛽
, 𝑌 n + 𝑌 f >

1

𝛽

})
. (26)

In words: the event {𝑌 n + 𝑌 f > 1/𝛽} means either 𝑌 n or
𝑌 f individually exceed 1/𝛽, or they are both below 1/𝛽 but
their sum exceeds 1/𝛽. By construction, however, the event
{𝑌 n ≤ 1/𝛽} is the same as the event {𝑌 n = 0}, which means
the third event in (26) is null. The probability of the remaining
first two events may be written as:

𝑞(𝜆) = ℙ

(
𝑌 n >

1

𝛽

)
+ ℙ

(
𝑌 f >

1

𝛽

)

− ℙ

(
𝑌 n >

1

𝛽

)
ℙ

(
𝑌 f >

1

𝛽

)
(27)

= 𝑞𝑙(𝜆) + (1− 𝑞𝑙(𝜆))ℙ

(
𝑌 f >

1

𝛽

)
, (28)

where we have exploited the independence of 𝑌 n, 𝑌 f and
applied the definition of 𝑞𝑙(𝜆) in (21). Substituting (22) for
𝑞𝑙(𝜆) into (28), we obtain an upper bound on 𝑞(𝜆) by an
upper bound on ℙ

(
𝑌 f > 1/𝛽

)
. We presently give three such

bounds, using the Markov and Chebychev inequalities and the
Chernoff bound. Although the details of the analysis below
differ for each of the three bounds, the general techniques
is the same: upper bound ℙ

(
𝑌 f > 1/𝛽

)
using the inequality,

substitute into (28), then seek a simple expression that upper
bounds the resulting expression.

The Markov inequality [58] gives ℙ(𝑌 f > 1/𝛽) ≤ 𝛽𝔼[𝑌 f ].
Campbell’s Theorem [2] states that if {𝑋𝑖} are points drawn
from a PPP of possibly varying intensity 𝜆(𝑥) then

𝔼

[ ∑
𝑋𝑖∈Π

𝑓(𝑋𝑖)

]
=

∫
ℝ2

𝑓(𝑥)𝜆(𝑥)d𝑥. (29)

Applying this to find 𝔼[𝑌 f ] is straightforward after a change
of variable to polar coordinates:

𝔼[𝑌 f ] = 𝔼

⎡
⎣ 1

𝑟−𝛼
∑

𝑋𝑖∈Π∩𝑏̄(0,𝑠)
∣𝑋𝑖∣−𝛼

⎤
⎦ (30)

= 𝑟𝛼
∫ ∞

𝑠

𝑡−𝛼𝜆2𝜋𝑡d𝑡 =
2𝜋𝑟2𝛽

2
𝛼−1

𝛼− 2
𝜆 (31)

≡ 𝜇𝜆, (32)

where 𝑠 = 𝛽
1
𝛼 𝑟. Multiplying (32) by 𝛽 and combining with

(28), an upper bound on outage is

𝑞(𝜆) ≤ 𝑞𝑢,Markov(𝜆) (33)

=

(
1− e−𝜆𝜋𝑟

2𝛽
2
𝛼

)
+ e−𝜆𝜋𝑟

2𝛽
2
𝛼 2𝜋𝑟2𝛽

2
𝛼

𝛼− 2
𝜆. (34)

Using the bounds 1− e−𝐴 ≤ 𝐴 and e−𝐴 ≤ 1 for 𝐴 > 0 and
simplifying gives a “relaxed Markov” upper bound:

𝑞𝑢,Markov(𝜆) ≤ 𝜋𝑟2𝛽
2
𝛼𝜆+

2𝜋𝑟2𝛽
2
𝛼

𝛼− 2
𝜆 (35)

=
𝛼

𝛼− 2
𝜋𝑟2𝛽

2
𝛼𝜆. (36)

Setting (36) equal to 𝜖 and solving for 𝜆 gives a relaxed
Markov lower bound on the TC:

𝑐𝑙,Markov(𝜖) =
𝛼− 2

𝛼

𝜖

𝜋𝑟2𝛽
2
𝛼

+𝑂(𝜖2) as 𝜖→ 0, (37)

which is clearly smaller than the TC upper bound of (24) by a
factor (𝛼−2)/𝛼. The right hand side is obtained by observing
that the first order Taylor series expansion of 𝜖(1− 𝜖) around
𝜖 = 0 equals 𝜖 + 𝑂(𝜖2). Neglecting the 𝑂(𝜖2) term gives an
error 𝜖− 𝜖(1− 𝜖) = 𝜖2 = 0.01 for 𝜖 = 0.1.

Campbell’s Theorem also gives the variance of the far-field
aggregate interference:

Var(𝑌 f) = 𝔼

⎡
⎣ 1

𝑟−2𝛼

∑
𝑋𝑖∈Π∩𝑏̄(0,𝑠)

(∣𝑋𝑖∣−𝛼)2
⎤
⎦ (38)

= 𝜆𝑟2𝛼
∫ ∞

𝑠

𝑡−2𝛼2𝜋𝑡d𝑡 (39)

=
𝜋𝑟2𝛽

2
𝛼−2

𝛼− 1
𝜆 ≡ 𝜎2𝜆 (40)

We use (32) and (40) and Chebychev’s inequality [58] on the
far-field aggregate interference (assuming 𝔼[𝑌 f ] < 1

𝛽 ), as:

ℙ

(
𝑌 f >

1

𝛽

)
≤ ℙ

(∣∣𝑌 f − 𝔼[𝑌 f ]
∣∣ > 1

𝛽
− 𝔼[𝑌 f ]

)
(41)

≤ 𝜎2𝜆(
1
𝛽 − 𝜇𝜆

)2 (42)
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Fig. 2. Top: OP 𝑞(𝜆) versus the spatial intensity of attempted transmissions,
𝜆, for the basic model with 𝛼 = 4, 𝛽 = 3, and 𝑟 = 10 meters. The three
lines are lower bound, exact OP, and the (Chernoff) upper bound. Bottom:
the TC 𝑐(𝜖) versus the outage requirement 𝜖 obtained by inverting the outage
expression and bounds.

Substituting (42) into (28) and using the bounds 1−e−𝐴 ≤ 𝐴
and e−𝐴 ≤ 1 for 𝐴 > 0 and simplifying gives a “relaxed
Chebychev” upper bound:

𝑞𝑢,Chebychev(𝜆) ≤ 𝜋𝑟2𝛽
2
𝛼𝜆+

𝜋𝑟2𝛽
2
𝛼

−2

𝛼−1 𝜆(
1
𝛽 − 2𝜋𝑟2𝛽

2
𝛼

−1

𝛼−2 𝜆

)2 . (43)

This expression is quadratic in 𝜆; setting equal to 𝜖 and solving
for 𝜆 gives the relaxed Chebychev lower bound on the TC.

The Chernoff bound [58] may be used to obtain an upper
bound on the OP:

ℙ

(
𝑌 f >

1

𝛽

)
≤ inf
𝜃≥0

𝔼

[
e𝜃𝑌

f
]
e−𝜃

1
𝛽 (44)

= exp

{
− sup
𝜃≥0

(
𝜃
1

𝛽
− 2𝜋𝜆

∫ ∞

𝛽
1
𝛼 𝑟

(
e𝜃𝑟

𝛼𝑥−𝛼 − 1
)
𝑥d𝑥

)}
.

This expression may be obtained by computing the moment
generating function of 𝑌 f restricted to 𝑏(𝑜, 𝑣) and then letting
𝑣 → ∞, as in [10], [36]. The final upper bound on OP is then:

𝑞𝑢,Chernoff(𝜆) ≡ 1−
(
1− e−𝜆𝜋𝑟

2𝛽
2
𝛼 × (45)

exp

{
− sup
𝜃≥0

(
𝜃

𝛽
− 2𝜋𝜆

∫ ∞

𝛽
1
𝛼 𝑟

(
e𝜃𝑟

𝛼𝑥−𝛼 − 1
)
𝑥d𝑥

)})
.

Sample lower and upper bounds and exact expressions for both
OP and TC are shown in Fig. 2.

D. Tightness of the lower bound: sub-exponential distribu-
tions

Comparing the lower outage bound (22) with the upper
outage bound (45), and glancing at Fig. 2, it is apparent that
the (simple) lower outage bound is much tighter than the
(complicated) upper bound. One explanation for this comes
from the fact that the random interference contribution of
each node obeys a subexponential distribution [59]. Consider
𝑛 points distributed independently and uniformly over a disk

of radius 𝑑 centered at the origin, denoted {𝑋1, . . . , 𝑋𝑛}. It
is straightforward to establish the CCDF of the individual

interference rvs, 𝑉 = ∣𝑋 ∣−𝛼, to be 𝐹𝑉 (𝑣) =
(
𝑣

1
𝛼 𝑑

)−2

for 𝑣 ≥ 𝑑−𝛼. A sufficient condition for a distribution to
be subexponential is that lim sup𝑣→∞ 𝑣ℎ𝑉 (𝑣) < ∞ where
ℎ𝑉 (𝑣) ≡ d

d𝑣

(− log𝐹𝑉 (𝑣)
)

is the hazard rate function. In our
case, we find 𝑣ℎ𝑉 (𝑣) =

2
𝛼 , ensuring 𝐹𝑉 is subexponential.

A defining characteristic of subexponential distributions is the
fact that sums of iid rvs {𝑉1, . . . , 𝑉𝑛} typically achieve large
values 𝑣 by having one or more large summands (as opposed
to a large number of moderate sized summands) [59]:

lim
𝑣→∞

ℙ(𝑉1 + ⋅ ⋅ ⋅+ 𝑉𝑛 > 𝑣)

ℙ(max{𝑉1, . . . , 𝑉𝑛} > 𝑣)
= 1, 𝑛 ≥ 2. (46)

Because the interference contributions from each node are
subexponential, it follows that the probability of an outage
event {𝑉1 + ⋅ ⋅ ⋅ + 𝑉𝑛 > 𝑣} (for large 𝑣) approximately
equals the probability of there being one or more dominant
nodes with 𝑉𝑖 > 𝑣. Replacing

∑
𝑖∈Π(𝜆) ∣𝑋𝑖∣−𝛼 in (3) with∑𝑛

𝑖=1 ∣𝑋𝑖∣−𝛼 gives 𝑣 = 𝑟−𝛼 1
𝛽 . Thus 𝑣 is large if either 𝛽 is

small (receiver can decode small SIR) or 𝑟 is small (Tx and
Rx are close together) . For small 𝑣 (meaning both 𝛽 and 𝑟
are large), outage occurs more easily, and in particular, outage
may occur due to the aggregate interference being large, even
though there may not be any dominant nodes. This argument
holds for fixed 𝑑 and 𝑛, but gives intuition as to why the
dominant interference lower bound is tight.

E. Optimization of SINR Threshold and Outage Constraint

The SINR threshold 𝛽 and the outage constraint 𝜖, which
are treated as constants in the TC framework, are generally
under the control of the system designer and should be chosen
reasonably. A meaningful objective is maximization of the
area spectral efficiency 𝑐(𝜖) log2(1 + 𝛽), i.e., the product of
successful density and spectral efficiency. Using (12), the joint
maximization over (𝛽, 𝜖) can be written as:

max
𝛽,𝜖

𝑐(𝜖) log2(1 + 𝛽) =

max
𝛽,𝜖

(
𝐹−1
𝑍𝛼

(𝜖)
)− 2

𝛼 (1 − 𝜖)

𝜋𝑟2𝛽
2
𝛼

log2(1 + 𝛽).

(47)

This clearly allows for separate maximizations of 𝛽 and 𝜖:

𝛽★ = argmax
𝛽

log2(1 + 𝛽)

𝛽
2
𝛼

(48)

𝜖★ = argmax
𝜖

(
𝐹−1
𝑍𝛼

(𝜖)
)− 2

𝛼 (1− 𝜖), (49)

where the optimizers 𝛽★ and 𝜖★ depend only on the path-loss
coefficient 𝛼. In [11, Section IV], where a related but slightly
different problem is studied, a closed-form solution for 𝛽★ was
found:

𝛽★ = e
𝛼
2 +𝒲

(
−𝛼

2 𝑒
−𝛼

2

)
− 1 (50)

where 𝒲(𝑧) is the principle branch of the Lambert 𝒲
function. 𝐹𝑍𝛼(⋅) is not known in closed form, and thus 𝜖★

must be determined numerically. In Fig. 3, 𝛽★ and 𝜖★ are
plotted versus 𝛼, and both are seen to be increasing in 𝛼.
𝛽★ is consistent with normal operating spectral efficiencies,
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Fig. 3. Top: Optimized SINR threshold 𝛽 versus path loss exponent 𝛼.
Bottom: Optimized outage probability constraint 𝜖 versus path loss exponent
𝛼.

while 𝜖★ shows that the optimal 𝜖 that maximizes the TC may
be unacceptably large. Although such a large outage provides
a large area spectral efficiency, it also translates directly to
long transmission delays and energy inefficiency. This analysis
highlights a key drawback in unrestricted (spatial) throughput
maximization: the max-throughput operating point may have
an unacceptably high associated OP. The TC framework
captures this tradeoff by definition: it gives the maximum
spatial throughput subject to a specified OP constraint.

IV. TRANSMISSION CAPACITY IN FADING CHANNELS

We now evolve the discussion to consider channels that
also have a random fluctuation about the path loss, commonly
known as fading or shadowing. The SIR in (3) models the
scenarios discussed in this section where random variable 𝑆
represents the desired signal fade and 𝐼𝑖 the fading coefficient
from the 𝑖-th interferer. We assume 𝑆 is drawn according
to some distribution 𝐹𝑆 and each 𝐼𝑖 according to 𝐹𝐼 with
𝑆, 𝐼1, 𝐼2, . . . independent. Independent fading is assumed for
tractability; computing the OP and TC in correlated fading
will be more difficult.

We first develop a framework for analyzing OP and TC with
an arbitrary random channel, and then show exact results on

OP and TC for Rayleigh and Nakagami fading. It is initially
surprising that exact results on OP and TC can be computed
with certain types of fading, but not without fading; recall in
the previous session we had to be content with upper and lower
bounds. Although unmitigated fading reduces TC, it raises
the possibility of opportunistic scheduling and transmit power
control, which are discussed in Section IV-D and Section IV-E.

A. General Fading

With general fading values as in (3), the set of dominant
interferers in (15) becomes

Πn(𝜆) =

{
𝑋𝑖 :

𝑆𝑟−𝛼

𝐼𝑖∣𝑋𝑖∣−𝛼 < 𝛽

}
. (51)

Computation of the probability of a dominant interferer
(ℙ(Πn(𝜆) ∕= ∅)) yields the following lower bound to OP [13]:

𝑞𝑙(𝜆) = 1− 𝔼

[
exp

{
−𝜆𝜋𝑟2𝛽 2

𝛼𝔼[𝐼
2
𝛼 ]𝑆− 2

𝛼

}]
, (52)

where the outer expectation is with respect to 𝑆. This expres-
sion is similar to the lower bound in (22), but the expectation
in front of the exponential makes inverting this expression for
𝜆 infeasible. Applying Jensen’s inequality to 𝑞𝑙(𝜆) yields the
following approximations:

𝑞(𝜆) ≈ 1− exp
{
−𝜆𝜋𝑟2𝛽 2

𝛼𝔼[𝐼
2
𝛼 ]𝔼[𝑆− 2

𝛼 ]
}

(53)

𝑐(𝜖) ≈ −(1− 𝜖) log(1− 𝜖)

𝜋𝑟2𝛽
2
𝛼𝔼[𝐼

2
𝛼 ]𝔼[𝑆− 2

𝛼 ]
. (54)

These quantities are approximations because Jensen’s in-
equality yields inequality in the wrong direction. However,
numerical results show that this approximation is reasonably
accurate for small values of 𝜖 [13]. It is possible to extend
the upper bounds from Section III-C to fading [13], but we
focus exclusively on the above lower bound and approximation
because they are more accurate.

If we assume that the signal and interference coefficients
follow the same distribution 𝐹𝐻 , which is reasonable in most
communication environments, the expressions in (52)-(54)
particularize to:

𝑞𝑙(𝜆) = 1− 𝔼𝐻

[
exp

{
−𝜆𝜋𝑟2𝛽 2

𝛼𝔼[𝐻
2
𝛼 ]𝐻− 2

𝛼

}]
(55)

𝑞(𝜆) ≈ 1− exp
{
−𝜆𝜋𝑟2𝛽 2

𝛼𝔼[𝐻
2
𝛼 ]𝔼[𝐻− 2

𝛼 ]
}

(56)

𝑐(𝜖) ≈ (1− 𝜖) log(1− 𝜖)−1

𝜋𝑟2𝛽
2
𝛼𝔼[𝐻

2
𝛼 ]𝔼[𝐻− 2

𝛼 ]
. (57)

Comparing the TC approximation in (57) to the TC upper
bound in (24) we see that the effect of fading is captured

by the term
(
𝔼[𝐻

2
𝛼 ]𝔼[𝐻− 2

𝛼 ]
)−1

. By Jensen’s inequality,
this quantity is less than one (with equality only if 𝐻 is
deterministic) and thus fading has an overall negative effect
relative to pure pathloss attenuation. Furthermore, note that the
TC approximation in (57) is equal to the exact TC in (62) for
Rayleigh fading derived in the next section. For the particular
case of Rayleigh fading with 𝛼 = 4, the approximate ratio
(24) over (62) equals 𝜋2 ≈ 1.5708, while the exact ratio ((14)

over (62)) is 𝜋
2
𝑄−1((1+𝜖)/2)
log(1−𝜖)−1 , which rapidly approaches 𝜋2 as

𝜖→ 0. Thus, adding Rayleigh fading to a network with 𝛼 = 4
reduces the TC by 57%.
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B. Rayleigh Fading

The case of Rayleigh fading, where each 𝐻𝑖𝑗 is exponen-
tially distributed (unit mean), is appealing not only for its
practical importance but also because it is one of the few
cases for which the OP and TC can be computed in closed
form. The following argument was made precise by Baccelli
et al. [24], but can be traced to [60], [61]. Define the aggregate
interference seen at the origin as 𝑍 =

∑
𝑋𝑖∈Π(𝜆)𝐻𝑖0∣𝑋𝑖∣−𝛼,

and denote the Laplace transform of 𝑍 by ℒ𝑍(𝑠) = 𝔼
[
e−𝑠𝑍

]
.

Then the success probability under Rayleigh fading is the
Laplace transform of 𝑍 evaluated at 𝑠 = 𝛽𝑟𝛼:

ℙ(SIR > 𝛽) = ℙ(𝐻00 > 𝛽𝑟𝛼𝑍) (58)

=

∫ ∞

0

e−𝛽𝑟
𝛼𝑧𝑓𝑍(𝑧)d𝑧 (59)

= 𝔼
[
e−𝑠𝑍

]∣∣
𝑠=𝛽𝑟𝛼

(60)

This transform can be computed explicitly, yielding an exact
OP expression ((3.4) in [24]):

𝑞(𝜆) = 1− exp

{
−𝜆𝜋𝑟2𝛽 2

𝛼
2𝜋

𝛼
csc

(
2𝜋

𝛼

)}
, (61)

where csc denotes the cosecant. The corresponding exact TC
expression is

𝑐(𝜖) =
(1 − 𝜖) log(1− 𝜖)−1

𝜋𝑟2𝛽
2
𝛼

2𝜋
𝛼 csc

(
2𝜋
𝛼

) . (62)

C. Nakagami Fading

The Nakagami-𝑚 distribution has power given by

𝑓𝑆(𝑥) =

(
𝑚

𝔼[𝑆]

)𝑚
𝑥𝑚−1

Γ(𝑚)
exp

(
− 𝑚𝑥

𝔼[𝑆]

)
, 𝑚 ≥ 0.5. (63)

and is quite general in that Rayleigh fading corresponds to
𝑚 = 1 and path loss only corresponds to 𝑚 → ∞. Because
the distribution is also of exponential form, OP and TC can
be computed exactly in a manner similar to Rayleigh fading,
resulting in a transmission capacity of [15]

𝑐(𝜖) =
𝐾𝛼,𝑚(1 − 𝜖) log(1− 𝜖)−1

𝐶𝛼,𝑚𝛽
2
𝛼𝑅2

, where (64)

𝐾𝛼,𝑚 =

[
1 +

𝑚−2∑
𝑘=0

1

(𝑘 + 1)!

𝑘∏
𝑙=0

(𝑙 − 2/𝛼)

]−1

, (65)

𝐶𝛼,𝑚 =
2𝜋

𝛼

𝑚−1∑
𝑘=0

(
𝑚

𝑘

)
𝐵

(
2

𝛼
+ 𝑘;𝑚−

(
2

𝛼
+ 𝑘

))
, (66)

and 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏) is the Beta function. Although this

expression is clearly more complex than (62), it does describe
nearly any fading environment. Interestingly, if 𝑚 → ∞,
i.e.for path loss only, (64) converges to the upper bound of
(24).

D. Threshold scheduling

Fading can potentially be exploited if only users experienc-
ing good fading conditions transmit. This can be done through
a simple threshold scheduling rule where each transmitter
elects to transmit only if the signal fading coefficient 𝐻00 is
larger than a threshold 𝑡, as in [13]. Threshold scheduling is an
example of opportunistic scheduling. The spatial intensity of
attempted transmissions for threshold 𝑡 is 𝜇(𝑡) ≡ 𝜆ℙ(𝐻00 >
𝑡) = 𝜆𝐹𝐻(𝑡), i.e., the original intensity 𝜆 thinned by the
probability of being above the threshold. Because the threshold
is on the received signal strength rather than the SIR, the
decision depends only on local fading and does not affect the
interference. Therefore, the outage probability with threshold
𝑡 is:

𝑞(𝜈, 𝑡) = ℙ

(
𝐻00𝑟

−𝛼∑
𝑋𝑖∈Π(𝜈)𝐻𝑖0∣𝑋𝑖∣−𝛼

< 𝛽

∣∣∣∣∣ 𝐻00 ≥ 𝑡

)
(67)

where the {𝐻𝑖𝑗} are drawn iid according to 𝐹𝐻 . The density
of active transmissions is kept equal to 𝜈, independent of
the value of 𝑡, by choosing 𝜆 = 𝜈

ℙ(𝐻00>𝑡)
. Thus, the only

change brought about is that the signal distribution follows
distribution 𝐹𝐻∣𝐻≥𝑡 instead of 𝐹𝐻 . As a result, the OP in
(67) is decreasing in 𝑡 and thus TC increases with 𝑡.1 The
transmission capacity approximation is given by:

𝑐(𝜖) ≈ (1− 𝜖) log(1− 𝜖)−1

𝜋𝑟2𝛽
2
𝛼𝔼[𝐻

2
𝛼 ]𝔼[𝐻− 2

𝛼 ∣𝐻 ≥ 𝑡]
. (68)

Comparing this with (57), the (approximate) ratio of TC with

threshold scheduling to that without it is 𝔼[𝐻− 2
𝛼 ]

𝔼[𝐻− 2
𝛼 ∣𝐻≥𝑡]

. Because

bad signal fades are eliminated, the gains from threshold
scheduling can be very substantial: for example, in Rayleigh
fading a very reasonable threshold of 𝑡 = 1 (i.e., 0 dB)
increases TC by a factor of 4.7, 3.3, and 2.25 for 𝛼 = 2.5, 3,
and 4, respectively.

E. Power control

While threshold scheduling attempts to completely avoid
bad fades, an alternative strategy is to transmit regardless of
the fading conditions and adjust transmit power to compensate
for fading. In [14] a fractional power control policy in which
each transmitter partially compensates for the signal fading
coefficient is proposed. In particular, transmit power is chosen
proportional to the fading coefficient raised to the exponent
−𝛾 where 𝛾 ∈ [0, 1]:

𝑃 tx,fpc
𝑖 =

𝜌

𝔼[𝐻−𝛾
𝑖𝑖 ]

𝐻−𝛾
𝑖𝑖 𝑃 rx,fpc

𝑖 =
𝜌

𝔼[𝐻−𝛾
𝑖𝑖 ]

𝐻1−𝛾
𝑖𝑖 𝑟−𝛼.

(69)
Note that 𝛾 = 0 corresponds to constant power while 𝛾 = 1
corresponds to full channel inversion. The resulting SIR is
SIR = 𝐻1−𝛾

00 𝑟−𝛼/
∑
𝑖∈Π(𝜆)

(
𝐻−𝛾
𝑖𝑖 𝐻𝑖0

) ∣𝑋𝑖∣−𝛼.
With channel inversion (𝛾 = 1) there is no signal fading

(𝑆 = 1) and each interference coefficient is distributed as

1An outage is declared only if a transmitter actually attempts transmission
and fails; not meeting the threshold is not considered an outage because it is
essentially the same as not electing to transmit in pure Aloha.
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1
𝐻𝑖𝑖

, and thus based on (52) we get the following OP lower
bound:

𝑞𝑙,ci(𝜆) = 1− exp
{
−𝜆𝜋𝑟2𝛽 2

𝛼𝔼[𝐻
2
𝛼 ]𝔼[𝐻− 2

𝛼 ]
}
. (70)

(There is no outer expectation because the signal fading coef-
ficient is deterministic.) By Jensen’s inequality, this quantity is
larger than the OP lower bound for constant power given (55),
and thus the lower bounds indicate that inversion degrades
performance. For Rayleigh fading this ordering is precise: the
OP lower bound with channel inversion in (70) is equal to the
actual OP with constant power given in (62), and thus constant
power is strictly superior to inversion in Rayleigh fading.

Although inversion worsens performance, partial compen-
sation for fading can be beneficial. If we consider general 𝛾
and substitute the appropriate distributions for 𝑆 and 𝐼 in (54),
we get:

𝑐fpc(𝜖, 𝛾) ≈ (1− 𝜖) log(1 − 𝜖)−1

𝜋𝑟2𝛽
2
𝛼𝔼

[
𝐻

2
𝛼

]
𝔼

[
𝐻−𝛾 2

𝛼

]
𝔼

[
𝐻−(1−𝛾) 2

𝛼

] .
(71)

This approximation is maximized by minimizing
𝔼

[
𝐻−𝛾 2

𝛼

]
𝔼

[
𝐻−(1−𝛾) 2

𝛼

]
over 𝛾 ∈ [0, 1], and an application

of Hölder’s inequality yields 𝛾∗ = 1/2. Although this only
ensures that 𝛾 = 1/2 is optimal for the TC approximation,
results in [14] confirm that 𝛾 = 1/2 is also near-optimal
for a wide range of reasonable parameter values.2 Using
𝛾 ≫ 1

2 over-compensates for signal fading and leads to
interference levels that are too high, while 𝛾 ≪ 1

2 leads to
small interference levels but an under-compensation for signal
fading. The benefit of FPC is substantial for small values of
𝜖 and 𝛼. In Rayleigh fading, FPC increases TC by a factor of
2.1 and 1.2 for 𝛼 = 2.5 and 𝛼 = 4, respectively, for small 𝜖.

V. MULTIPLE ANTENNAS

The amplitude and phase of fading channels vary quite
rapidly over space, with an approximate decorrelation distance
of half a wavelength (6 cm at 2.5 GHz). This allows multiple
suitably-spaced antennas to be deployed at both the transmitter
and receiver to generate 𝑁𝑡𝑁𝑟 Tx-Rx antenna pairs, where
𝑁𝑡 and 𝑁𝑟 are the number of transmit and receive antennas.
Considerable work has been done on multi-antenna systems
(MIMO) in the past decade, well summarized by [62], [63],
and such systems are now quite well understood and are
central to all emerging high-data rate broadband wireless
standards. However, much less is known regarding the use
of antennas in ad hoc networks. In addition to providing
diversity and spatial multiplexing benefits, multiple antennas
also provide the ability to perform interference cancellation.
Recent analysis of MIMO systems using the TC framework
allows us to evaluate these different antenna techniques, and
provides a very optimistic picture of the benefit of MIMO in
ad hoc networks.

A. Diversity

Broadly defined, diversity techniques use Tx and Rx anten-
nas to mitigate fading and increase the received SNR. With

2An important exception to this is for large values of 𝜖, i.e., dense networks,
in which case the optimum tends towards constant power (𝛾 = 0).

maximum-ratio combining/transmission (MRC & MRT), the
transmitter and receiver apply weighting vectors at the antenna
arrays based only on the Tx-Rx channel matrix. If the Tx
and Rx weight vectors are denoted by t0 and r0, respectively,
and H𝑖 denotes the 𝑁𝑟 × 𝑁𝑡 channel matrix from the 𝑖-th
transmitter, then the SIR equation (3) becomes:

SIR =
∣r†0H0t0∣2𝑟−𝛼∑

𝑋𝑖∈Π(𝜆) ∣r†0H𝑖t𝑖∣2∣𝑋𝑖∣−𝛼
. (72)

Choosing the Tx and Rx weights as the right/left singular
vectors of the largest singular value of H0 results in the
signal coefficient being equal to the square of this singular
value, and thus boosts signal power by a factor between
max{𝑁𝑡, 𝑁𝑟} and 𝑁𝑡𝑁𝑟. With an appropriate application of
(54), this implies that the TC scales as [15]:

𝑐(𝜖) = Ω(max{𝑁𝑡, 𝑁𝑟} 2
𝛼 ), as 𝑁𝑡, 𝑁𝑟 → ∞

𝑐(𝜖) = 𝑂((𝑁𝑡𝑁𝑟)
2
𝛼 ), as 𝑁𝑡, 𝑁𝑟 → ∞. (73)

The upper bound is tight for channels with high spatial
correlation, while the lower bound is tight for i.i.d. Rayleigh
fading. Note that 𝑁𝑡 = 1, 𝑁𝑟 > 1 and 𝑁𝑡 > 1, 𝑁𝑟 = 1 cor-
respond to maximum-ratio combining (MRC) and maximum-
ratio transmission (MRT), respectively.

Orthogonal space-time block coding (OSTBC) is another
diversity technique. OSTBC, which intuitively corresponds to
repeating each information symbol from different antennas at
different times, does not change the transmitted symbol rate
but significantly increases received signal power.3 However,
interference power is also boosted and as a result OSTBCs
increase the TC scaling only as 𝑐(𝜖) = Θ(𝑁

2
𝛼
𝑟 ) as 𝑁𝑟 → ∞

[15]. OSTBCs have very little affect on TC – the scaling gain
is due to MRC at the receiver, independent of the code.

B. Spatial Interference Cancellation

If the receiver also has knowledge of the interferer channels,
the 𝑁𝑟-dimensional Rx weight vector can be used to can-
cel interference. In the single-transmit, multi-receive antenna
setting with spatially uncorrelated Rayleigh fading, choosing
the Rx weight vector orthogonal to the vector channels of
the strongest 𝑁𝑟 − 1 interferers (i.e., r0 ⊥ H1, . . . ,H𝑁𝑟−1)
results in 𝑂(𝑁𝑟

1− 2
𝛼 ) TC scaling [16]. An even larger TC

increase is obtained if the Rx vector is designed to cancel
interference and reap diversity. In particular, using about half
the Rx degrees of freedom for cancellation and the remainder
for diversity (i.e., choosing r0 as the projection of vector H0

on the nullspace of H1, . . . ,H𝑁𝑟/2 ) leads to 𝑂(𝑁𝑟) TC
scaling [19].4 In fact, the SIR is maximized, and thus the
benefits of interference cancellation and diversity are optimally
balanced, if the Rx vector is chosen according to the MMSE-

criterion: r0 =
(∑

𝑋𝑖∈Π(𝜆) ∣𝑋𝑖∣−𝛼H𝑖H†
𝑖

)−1/2

H0. Results
on the transmission capacity with an MMSE filter are available
in [64]–[66].

3For some combinations of 𝑁𝑡 and 𝑁𝑟 OSTBCs either lose orthogonality,
or reduce the data rate slightly. The results here make the optimistic assump-
tion of rate 1 orthogonal STBCs for general 𝑁𝑡, 𝑁𝑟 .

4Both of these scaling results are obtained using the OP upper bounding
techniques described in Section III-C.
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Fig. 4. The transmission capacity of various spatial diversity techniques vs.
the number of antennas per node. Interference cancellation & diversity refers
to cancelling the nearest 𝑁/2 interferers and using the remaining degrees of
freedom for diversity. Here, 𝜖 = .1, 𝛼 = 4, 𝛽 = 1.

In Fig. 4 the TC of diversity (beamforming and OSTBC)
and intererence cancellation are plotted versus the number of
antennas (𝑁 ) for 𝛼 = 4 and 𝛽 = 1. All of the techniques
except OSTBC provide significant gains, but the combination
of interference cancellation and diversity clearly provides the
largest TC, as predicted by the TC scaling results.

C. Spatial Multiplexing

The most aggressive use of the antennas is to use them
to form up to 𝐿 ≤ min{𝑁𝑡, 𝑁𝑟} parallel spatial channels.
If the transmitter has knowledge of the channel matrix H0,
this corresponds to beamforming along the eigenmodes of
the channel. The achieved SINR for each spatial channel
depends on the eigenvalues of the channel matrix as well
as the interference power, so some channels are much better
than others. When subject to an SINR target and an outage
constraint, it is preferable to transmit only a small number of
streams (𝐿 ≪ 𝑁 ) unless the network is very sparse. This is
illustrated in Fig. 5 where the optimized number of spatial
streams (as determined in [20]) is plotted versus the interferer
density and this quantity is seen to decrease from 𝑁 to 1 with
the density. Ideally, the number of spatial channels can be
adapted dynamically based on the channel and interference
strengths to maximize the quantity 𝐿𝑐(𝜖, 𝐿), which is the
area spectral efficiency (ASE) shown in Fig. 5, and has a
unique maximum [20]. Here 𝑐(𝜖, 𝐿) is the TC with target
OP 𝜖 when 𝐿 antennas are employed. If each Tx wishes
to communicate with multiple receviers, multi-user MIMO
techniques can be used to send separate data streams to each
receiver. In the situation where each transmitter and receiver
has 𝑁 antennas, the TC has been shown to increase super-
linearly with 𝑁 when dirty paper coding, the optimal multi-
user MIMO technique, is used [18].

If the transmitter does not know channel matrix H0,
spatial multiplexing is generally performed by transmitting
independent data streams from each transmit antenna. The
OP and TC for low-complexity (and sub-optimal) MRC and
zero-forcing receivers are known [8], but many important

Fig. 5. Optimal number of MIMO modes 𝐿 and Area Spectral Efficiency
(ASE) vs. transmitter intensity per m2. The 𝐿 curves are monotonically
decreasing, ASE curves are bell-shaped and have a unique maximum. Here,
𝜖 = .1, 𝑟 = 1m, 𝛼 = 4.

questions remain unanswered on this topic, e.g.performance
with optimal MIMO receivers.

VI. CURRENT LIMITATIONS AND FUTURE DIRECTIONS

Although the results presented in this paper have illustrated
the value of the transmission capacity framework, they have
also failed to capture two important aspects of ad hoc net-
works. The first is that they are for a snapshot, or single-
hop, of the network. This may be acceptable for unlicensed
spectrum analysis or other decentralized networks, but ad hoc
networks must route traffic from source to destination, often
over multiple hops through intermediate nodes. A network
with higher single-hop TC should be able to achieve higher
end-to-end capacity than a network with smaller TC because
more simultaneous transmissions are possible. However, im-
portant issues such as desired hop length, number of hops,
multi-hop routes, and end-to-end delay are not presently
addressed. In addition, noise should not be neglected since a
principle function of multihop is to increase the SNR for each
hop. Some work that attempts to use the results of this paper
(or similar results) to address multihop includes [24], where a
metric called expected forward progress is introduced and used
to find the optimum split between transmitters and receivers
(potential relays) in terms of the Aloha contention probability.
Recently, [67] has developed a multihop model and found
an end-to-end delay-optimizing strategy in a Poisson field of
interference (without noise), while [68] finds the end-to-end
transmission capacity in closed-form (i.e., transport capacity)
with noise under a few restrictive assumptions like equi-distant
relays and independent retransmissions. Clearly, this is a line
of work that should be pursued and improved upon in the
coming years.

The second lacking aspect of the current results is that
they rely on a homogeneous Poisson distribution of nodes
for tractability, which accurately models only uncoordinated
transmissions (e.g., Aloha). A well known alternative is to
schedule simultaneous transmissions with the objective of
controlling interference levels. Local scheduling mechanisms
generally space out simultaneous transmissions, thereby sig-
nificantly changing the interference distribution, while ideal-
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ized centralized scheduling can eliminate outages altogether
and determine the optimal set of transmitters in each slot (e.g.,
max-weight scheduling within the backpressure paradigm
[69]). Preliminary work in this direction includes computing
the outage probability and transmission capacity under non-
Poisson point processes [41], [70], [71]. Although scheduling
mechanisms provide obvious gains, these come at the cost
of overhead (e.g., control messages). Thus, a general open
question is understanding the tradeoff between the benefits and
overhead costs of different scheduling/routing mechanisms
(Aloha is a particular point on this tradeoff curve), and
determining the appropriate techniques for different network
settings. Furthermore, a fundamental property that applies
even to scheduled systems is that transmissions occupy space
whenever interference is treated as noise; the transmission
capacity provides a clean characterization of this space, and
thus many of the insights apply, in principle, to scheduled
systems as well.

As is true of any complicated research topic, discussion
of a particular model or framework exposes tension between
analytical tractability and accuracy/generality. The transmis-
sion capacity framework clearly leans towards simplicity and
tractability, but nonetheless provides valuable design insight
and a launching point for more refined, less tractable network
analyses.
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