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Abstract— The multiple antenna multicast channel is consid- additive noise. The transmitter is subject to an averagespow
ered, in which the transmitter, equipped with an antenna array, constraintE[x"”x] < P.

sends a common message to multiple receivers, each of whid®a e channel is assumed to be quasi-static and thus fixed

assumed to have only a single antenna. The information theetic for a block of transmission. We assume the channel is known
capacity of this channel is studied, along with the rates adkvable ISsion. u ! W

using lower complexity transmission schemes. The primarydcus ~ Perfectly at the transmitter and the receivers, which &léor
of the paper is on the scaling of the capacity and achievableates optimization of the input in response to the current channel

as the number of antennas and/or users is taken to infinity. conditions. Though we assume perfect CSI, we also study the
performance of a simpler channel independent transmission
. INTRODUCTION strategy. Each of the: channels are assumed to be drawn in-

The multicast channel, in which a single transmitter sen@gpendently from the Rayleigh distribution, i.e., eachrelat
a common message to multiple receivers, arises naturallyghhs is iid complex Gaussian. _
many different communication systems' In a cellular System Though the channel realizations differ from block to blOCk,
for examp|e’ a base station may wish to broadcast a Comrﬁ%ﬂ Only consider the rate achievable within each bIOCk, this
news stream to all users. While the unicast channel broadd@ée is relevant in the slow fading scenario where delay
channel has been extensively studied in information theg¢gnstraints are of the same order as the block size.
(c.f. [1][2]), much less is known about the multicast chdnne I1l. CAPACITY DEFINITIONS

[31[4](51(61[7]- In this section we define the multicast capacity as well as

we stu_dy th? capacity Iimits_ of a_multiplle antenpa mUIti(_:aﬁtue rates achievable using sub-optimal transmissionegfies.
channel in which the transmitter is equipped with mumpl?\lote that CSl is required at the transmitter for all stragsgi

antgpnas while .each receiver has only a single _antenna.em:ept the third, in which a spatially white Gaussian input i
addition to studying the information theoretic capacitg, also used

consider the rate achievable with lower complexity schemes _ _

transmission of the spatially white input, which does ndt- Multicast Capacity

require channel state information (CSI) at the transmitter By first principles, the multicast capacity, is given by:
transmitter beamforming, which is easy to implement fro a . v

a coding perspective, and TDMA, which is the lowest CO[T??O(H’P) N p(x);g[l\%fﬁz]gp i—1om [(X:Y5)

plexity alternative. 1 ( T )
, , , = 1+ P-h;Xh;
We focus on the rate at which multicast capacity and 2;2531%{(2)@ i1 8 + L
these achievable rates increase or decrease as the number of . ;
users and/or the number of transmit antennas is increased. = log <1 P A i By Ehz‘) :

While TDMA performs poorly in each scenario, transmitteji_

beamforming and the spatially white input are able to acehievhe capacity ac;r;;]evmg input covgr|3nisf3:nRax_:_rS|zeshthe mlln- q
the same scaling as the multicast capacity in certain rezgimI um (amongs_ then users) receive - though no close
orm or waterfilling-based solution for this maximizatios i

Il. SYSTEM MODEL known to exist, the problem is convex and can be efficiently

) ) _ _ ) ~solved using standard semi-definite programming techsique
We consider a slowly fading, quasi-static channel in which

the transmitter is equipped with antennas and each of the> Transrn!t Beamformlhg _ _ _ _ _
m receivers has a single antenna. The received signal at thdransmit beamforming, in which the input is constrained
i-th receiver is given by: to be unit rank, is a low complexity, though generally sub-

optimal, transmission strategy [6]:
Y = hflx +n; 1=1

s, M,
CY(H,P) 2 max log (1 + P min |hjw|2)
whereh; € C" represents the vector channel from the trans- wi|lwll=1 i=1,...,m
mitter to thei-th receiverx € C" is the transmitted signal, and . to 12
) . i : : : = log(1+ P max min |h]w|® ).
n; IS unit variance, circularly symmetric complex Gaussian wiwl=1 i=l,...m °



Notice that this maximization is equivalent to the defimitiof where the maximum is oveky;, P; satisfying the time
Co(H, P) with the addition of a unit rank constraint on theslot constraint} ", «; = 1 and the average power con-
transmit covariance. Although this maximization is NPeharstraint >\, a; P, < P. We get a simple lower bound to
[6], a convex relaxation of this problem which gives nearly@*¥™¢(H, P) by choosing equal time slots and power:
optimal results can be efficiently solved [8]. The following
lower bound, which will prove to be useful later, follows fino Ctdma(H7 P) > l log (1 +P- min ||hi||2) ) 2)
[9, Claim 2.4.2(i)]: m =1,..m

' P It is also straightforward to get the following upper bound:

C* (H, P) > log <1 + —5 min ||hz||2> : (1) )
e Ctma(H, P) < — log <1+p. _max ||h1-||2>, 3)

In fact, the optimal beamforming vector satisfiﬂrng > " B "
#Hhi”? for each user. This implies that the optimum beanby using the fact thatnin;—; ., z; < Y .-, a;x;, for all
forming vector captures at least a fractigh of each user's «; > 0 and 331", a; = 1, and the concavity of the log
channel power. Interestingly, mutually orthogonal channtunction.
vectors are not the worst choice of channel vectors for beam-
forming: if the channel vectors are mutually orthogonag th IV. CAPACITY SCALING

— term in (1) can be replaced by . o In this section we present results on the order growth of
The beamforming rate can be achieved by multiplying @e different capacity metrics when the number of antemnas

scalar input stream by the beamforming vector which and/or the number of users is taken to infinity. These results
effectively converts the channel into a single-antennaiobh zre summarized at the end of this section in Table I.

in which the received SNR at theth receiver is given by
P|h}w|2. Thus, standard AWGN codes can be used in transmdit Fixed Antennas, Increasing Users

beamforming systems. The same statement may not hold if d\e first consider the scenario where the number of base

non-unit rank input i; used, as may be required to achieve t\&ion antennas. is fixed, while the number of users
true multicast capacity’s (H, P). is taken to infinity. Since a users channel magnitude can
. . be arbitrarily small (because the support of the distrdmuti

C. Spatially White Input of channel gains includes the open positive plane for any

A simpler alternative to finding either the optimum inpuhumber of antennas), the multicast capacity, and thus all
covariance or the optimum beamforming vector is to transnadther achievable rates, goes to 0 as the number of users goes
using a spatially white covariance, i.E. = %I. The corre- to infinity. However, there are significant differences & thte
sponding rate, denoted &%""#*¢ is given by: at which these metrics decrease to zero.
Proposition 1: If n is fixed andm — oo, capacity metrics

cvwhite(H, P) & IPin log |I + Shihfi decrease to zero at the following rates:
2 1
white 1
Note that CSI is not required at the transmitter in order to ¢ ~0 (W)
achieve this rate. Furthermore, this setup is nearly idahti 1 log log m
to that considered in space-time coding and thus techniques O (W) < ctdma < 0 (T)

such as the Alamouti code [10] can be used to achieve or
come close taCwhite,

Clearly the inequaliesCvhit*(H) < Cp(H) and
C* (H) < Co(H) hold, but no strict ordering exists betwee
C* (H) and Chite(H).

Proof: (Sketch) First note thath;||> follows the Chi-
squared distribution witl2n degrees of freedom by the as-
r%umption of iid Rayleigh fading. Thus, a key quantity to
characterize is the behavior of the minimummefindependent
Chi-square random variables. From extreme value theoey, th
minimum of m iid random variables, each with CDF(z),

Note that the transmitter simultaneously transmits to adkccurs approximately at the value ofat which F(z) = %
users in order to achieve the rates specified in the above thf®1]. The CDF of a chi-square witBn degrees of freedom
definitions. An even simpler strategy is to use an orthogon@ given by Flz)=1—¢" ZZ;S 9]2_’,“ which can be well-
ized transmission scheme such as TDMA. If the transmittgpproximated by an-th order Taylor approximation for small
is allowed to vary slot times and power subject to an averagglues ofz: F(x) ~ z". Thus, the minimum ofn iid chi-
power constraint, the following rate is achievable: squared rv’s wit2n d.o.f scales asn—1/™.

We can now proceed to show the order results. First notice
that the multicast capacity can be bounded by the minimum

D. Orthogonal Transmission

Cctdma(H, P) £ max min a;log (1+ P|hy|?),

a;, P i=1,...,
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Fig. 1. Multicast rates for = 4 and increasing # of users Fig. 2. Multicast rates for 5 user system with an increasimgf #ntennas
of the point-to-point capacities: taken to infinity. Here the multicast capacity as well as the
) beamforming and TDMA rates go to infinity at the same rate,
Co(H) < log (1 + P min |[h| > but the rate achieved with a spatially white input is bounded

] . o ] Proposition 2: If m is fixed andn — oo, capacity metrics
Using the earlier result on the minimum of chi-square raRyow at the following rates:

dom variables, the upper bound can be approximated by

log (14 —t=) ~ =%, which is O (—~). The same Co =~ O (logn)

method can be used on the definition@?"*¢ to show that cwhite ~  0(1)
white j 1 H .

C is O (—7). To analyze TDMA, notice that the lower Y~ O(logn)

bound in (2) can be approximated aslog(l + —) ~ rdma
—1—. Using the fact that the maximum of chi-squared C ~ O (logn).

random variables grows logarithmically, the TDMA upper  Proof: We first consideC®’ and the lower bound in (1).
bound can readily be approximated #dog log m. B Sincem is finite, the effect of the minimum operation over
m random variables is negligible becauseg|? is chi-squared
bwith degrees of freedom going to infinity. Thus, the lower
ound inC*/ can be approximated asg(1 + ;2>n), which is
O(log(n)). By the same argument, the TDMA bounds in (2)
and (3) can both be approximated%hslog n, which gives the

Note that similar scaling results faf, and C*"i¢ are
given in [5][4]. Since the number of users is taken to
large while the number of spatial dimensions is fixed, it i
not surprising that the scaling @, and C*"%*¢ is similar,
as one would intuitively expect the optimal covariance toite
towards the identity matrix so that all spatially disperssdrs O(logn) grgvvth of TDMA' ) bf
would receive adequate signal power. Note that TDMA doesThe multicast capacity’ IS lower bounded by, apd
not scale as well as the multicast capacity or the isotrogfaUs 9rows at least dsgn. Itis easy to see that the multicast

input rate because the use of an orthogonal strategy result§3Pacity does not grow at a rate faster than this because the
a pre-log factor of: multicast capacity is upper bounded by the capacity of the
—

Though no order result is given far®/, the lower bound channel to any of the receivers, i.€(H, P) < log(1 +

in (1) indicates thaC®/ grows at least as fast & (—+ ), P||hi||2)};.?nq this upper bound clearly 8(log ). T}?te fact
which is rather poor. While this lower bound may be overf{at ¢ is bounded follows by noting that/ <

h;||? ;
pessimistic, it is intuitively clear that beamforming wilot 108(1 + P%)' which converges tdog(1 + P) asn — oo

perform well whenm > n because every beamforming[12, Section 4.1]. u
direction will likely be nearly orthogonal to at least oneeis _ \When there are many more antennas than users, even
channel. TDMA achieves the optimal scaling dbgn because time

The multicast capacity and the rate achieved with a spatianust only be split between a finite number of users and the
white input are shown in Figure 1 for a 4 antenna transmittéPacity within each time slot increases logarithmicaliyhw
with an increasing number of receivers. The numerical tesuf*- Notice that only the isotropic input performs poorly inghi
indicate that both curves go to zero @&m~1/4), and the SCenario, since it is clearly wasteful to transmit power lin a

order term is shown for reference. spatial directions when users only occupydimensions.
. ] Figure 2 presents results for a 5 user channel with an
B. Fixed Users, Increasing Antennas increasing number of transmit antennas. From the plot, the

Next we consider the scenario where the number of usdogarithmic growth of the multicast capacity and the bouhde
m is fixed while the number of transmit antennasis behavior of the rate achieved with a spatially white inpwt ar



apparent. The rate achieved with transmit beamformingsis alSincet < 1, we have

shown here, and is seen to be extremely close to the multicast b2 e
capacity. P <— < t> = P (— -1<t- 1>
n n

C. Increasing Users and Antennas < p (‘ |2 B 1’ . t)

Finally we consider the scenario where the number of users N n
(m) and base station antennas) (simultaneously increase < 1
while maintaining a linear constant = = > 0, which — 2n(1—1t)%’
is commonly referred to as the loading factor in CDMAwhere the last step follows from Chebychev inequality ared th
literature. fact that !2I" has mean 1 and varianag2n. Combining the

] ) above to bounds we obtain
We first present a lemma showing that the per user SNR is YE 1
i - >(1-
(1_1 ! m > - ( 2”(

m __ B
bounded in the large system limit. P — >t ﬁ) — e 20-97,
Lemma 1: The per user received SNR is upper bounded as: K —1)
. ; ) which is clearly positive. Now we can lower bound the
max min hi¥h; < P-(1+ VB2, expected rate as follows:
112
in the large system limit. E(CvMte(H,P)) > P ( min [l > t) log (1 + tP)
1=1,....m n
Proof: We can clearly upper bound the minimum re- War(ul?)
ceived SNR by the average received SNR, which gives: — e -9 log(1+tP)>0.
1 m Furthermore, Lemma 1 implies that, is bounded by a
' Sh, < — fSh, .
mzax 1:r1nlnm h;>h;, < - mzax;hlEhl constant:
. m Co < (1+ P(1+/B)?).
= —max» Tr(Shih) , , =
moE SinceCy > Chite| poth quantities aré(1).
1 m Finally we characterize the behavior of TDMA by consid-
= —maxTr <ZZhth> ering the bounds in (2) and (3). Notice that the argument of
mox i=1 the log function is dominated bynax;—1 .., ||h;]|?, which

can be further upper bounded By | |h;[|%. The latter is
a Chi-square random variable withnn degrees of freedom,

whereH = [hihs - h,,] and the maximum operations arednd thus increases at most@gmn). This shows thaC*@*
over ¥ > 0 satisfying T(X) < 1. It is straightforward to grows at most.; log(mn), which givesO (10%) n
see that the solution to the final maximization is in fact the

maximum eigenvalue of the matridH". Furthermore, a
fundamental result in random matrix theory states that:[13]

= imaxTr(EHHH)
m X

Thus, using the spatially white input or the optimal input
allows for congtant transmission rate to all users, whereas
orthogonal transmission can only support a vanishing rate a
i/\max(HHH) 23 (1 + /B)>, the system size increases. The fact that a constant multicas
m rate can be supported is perhaps not surprising, as tratimmit
m power in a spatially isotropic manner should ensure that eac
A direct result of this lemma is that the multicast capacity user receives at least a constant amount of power in the large
is bounded as the number of users and antennas are takesygiem limit. However, what is perhaps less intuitive ist tha

infinity at a fixed ratio. the multicast capacity is bounded and does not increase with
Proposition 3: If n andm both tend to infinity at the ratio the system size.
=120, then A lower bound to the scaling of the beamforming rate can
be attained by considering the bound in (1), which clearly is
E(CO) ~ O(1) O(+) due to thel/m? term in the SNR. Though this seems
E(C™Me) ~ O(1) rather pessimistic, determining whether beamforming ¢sm a
logn achieve a constant rate remains an open research question.

B(C™) &~ O n Numerical results for a system at an SNR of 10 dB with an
Proof: (Sketch) We first show thaE[C™"#*¢(H, P)] is equal number of antennas and users (ifes 1) are shown in
bounded away from zero. Fix anye (0, 1) and notice that ~ Figure 3. While both the multicast capacity any™ite achieve
) ) m constant rates, there is a non-negligible difference betvwie
P < min B > t> - p <ﬂ > t> constant factor. Transmit beamforming also appears taegehi
=lL.,m n no a constant rate; the decreasing nature of the curve is liedy
b " to the fact that the plotted rate is actually a lower bound to
(-r(BFer)) - o
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4 6 8 10 12 14 16 18 20 The capacity of multiple antenna multicast channels was
Transmit Antennas (= Users) studied in the limit of a large number of transmit antennas
and/or users under the assumption of quasi-static fadifgew
orthogonal transmission schemes such as TDMA are strictly
sub-optimal in all regimes, other low-complexity transsiis
schemes were found to achieve the optimum scaling in certain
regimes. In particular, transmitting an isotropic inpuhiawes
optimal scaling when there are a large number of users
when the number of users and antennas is large, while
Shsmitter beamforming performs well when there are more

Fig. 3. Multicast rates for , increasing users

V. TRANSMISSION TO ASUBSET OFUSERS

that the multicast capacity is bounded in the large systenmt. li
In addition, multicast transmission to a subset of users was

selection is only _beneficia_l “Tom an (_)rder perspective) mVheconsidered, and the optimal tradeoff between subset side an
the subset contains a vanishing fraction of users. rate was characterized.

Lemma 1 indicates that the sum of received SNR’s across
all n users, and therefore across any subset, is upper bounded ACKNOWLEDGMENT
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