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Abstract

In a multiple transmit antenna, single antenna per receiver downlink channel with limited channel

state feedback, we consider the following question: given a constraint on the total system-wide

feedback load, is it preferable to get low-rate/coarse channel feedback from a large number of

receivers or high-rate/high-quality feedback from a smaller number of receivers? Acquiring feedback

from many receivers allows multi-user diversity to be exploited, while high-rate feedback allows

for very precise selection of beamforming directions. We show that there is a strong preference for

obtaining high-quality feedback, and that obtaining near-perfect channel information from as many

receivers as possible provides a significantly larger sum rate than collecting a few feedback bits from

a large number of users.

I. INTRODUCTION

Multi-user multiple-input, multiple-output (MU-MIMO) communication is very powerful and has

recently been the subject of intense research. A transmitter equipped with Nt antennas can serve up

to Nt users simultaneously over the same time-frequency resource, even if each receiver has only a

single antenna. Such a model is very relevant to many applications, such as the cellular downlink

from base station (BS) to mobiles (users). However, knowledge of the channel is required at the BS

in order to fully exploit the gains offered by MU-MIMO.

In systems without channel reciprocity (such as frequency-division duplexed systems), the BS

obtains Channel State Information (CSI) via channel feedback from mobiles. In the single antenna per

mobile setting, feedback strategies involve each mobile quantizing its Nt-dimensional channel vector

and feeding back the corresponding bits approximately every channel coherence time. Although there

has been considerable prior work on this issue of channel feedback, e.g., optimizing feedback contents

and quantifying the sensitivity of system throughput to the feedback load, almost all of it has been

performed from the perspective of the per-user feedback load. Given that channel feedback consumes
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considerable uplink resources (bandwidth and power), the aggregate feedback load, summed across

users, is more meaningful than the per-user load from a system design perspective. However, it is

not yet well understood how an aggregate feedback budget is best utilized.

Thereby motivated, in this paper we ask the following fundamental design question:

For a fixed aggregate feedback load, is a larger system sum rate achieved by collecting a small

amount of per-user feedback from a large number of users, or by collecting a larger amount of

per-user feedback from a smaller subset of users?

Assuming an aggregate feedback load of Tfb bits, we consider a system where Tfb/B users quantize

their channel direction to B bits each and feed back these bits along with one real number (per user)

representing the channel quality. The BS then selects, based upon the feedback received from the

Tfb/B users, up to Nt users for transmission using multi-user beamforming. A larger value of B

corresponds to more accurate CSI but fewer users and reduced multi-user diversity. By comparing

the sum rates for different values of B, we reach the following simple but striking conclusion: for

almost any number of antennas Nt, average SNR, and feedback budget Tfb, sum rate is maximized

by choosing B (feedback bits per user) such that near-perfect CSI is obtained for each of the Tfb/B

users that do feedback. In other words, accurate CSI is more valuable than multi-user diversity.

In a 4 antenna (Nt = 4) system operating at 10 dB with Tfb = 100 bits, for example, it is near-

optimal to have 5 users (arbitrarily chosen from a larger user set) feed back B = 20 bits each. This

provides a sum rate of 9.9 bps/Hz, whereas 10 users with B = 10 with and 25 users with B = 4

(i.e., operating with less accurate CSI ) provide sum rates of only 8.5 and 4.6, respectively.

Our finding is rather surprising in the context of prior work on schemes with a very small per-user

feedback load. Random beamforming (RBF), which requires only log2 Nt feedback bits per user,

achieves a sum rate that scales with the number of users in the same manner as the perfect-CSI sum

rate [1], and thus appears to be a good technique when there are a large number of users. On the

contrary, we find that RBF achieves a significantly smaller sum rate than a system using a large value

of B. This is true even when Tfb is extremely large, in which case the number of users who feedback

is very large (and thus multi-user diversity is plentiful) if RBF is used.

Although perhaps not initially apparent, the problem considered here has very direct relevance to

system design. The designer must specify how often (in time) mobiles feed back CSI and the portion

of the channel response (in frequency) that the CSI feedback corresponds to. If each mobile feeds

back CSI for essentially every time/frequency coherence block, then the BS will have many users

to select from (on every block) but, assuming a constraint on the total feedback, the CSI accuracy

will be rather limited, thereby corresponding to a small value of B in our setup. On the other hand,

mobiles could be grouped in frequency and/or time and thus only feed back information about a
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subset of time/frequency coherence blocks; this corresponds to fewer users but more accurate CSI

(i.e., larger B) on each resource block. Our results imply a very strong preference towards the latter

strategy.

The remainder of the paper is organized as follows. In Section II we discuss related prior work,

while in Section III we describe the system model and the different beamforming/feedback techniques

(zero-forcing, RBF, and its extension PU2RC). In Section IV we determine the optimal value of B for

zero-forcing (ZF) and characterize the dependence of the optimizer on Nt, SNR, and Tfb. In Section

V we perform the same optimization for PU2RC. In Section VI we compare ZF and RBF/PU2RC

and illustrate the large sum rate advantage of ZF (with large B), while in Section VII we see that our

basic conclusion is upheld even if low complexity user selection and quantization is performed, as

well as if the channel feedback is delayed. Because much of the work is based on numerical results,

the associated MATLAB code has been made available online [2].

II. RELATED WORK

Perhaps the most closely related work is [3], where the tradeoff between multi-user diversity and

accurate CSI is studied in the context of two-stage feedback. In the first stage all users feed back

coarse estimates of their channel, based on which the transmitter runs a selection algorithm to select

Nt users who feed back more accurate channel quantization during the second feedback stage, and

the split of the feedback budget between the two stages is optimized. Our work differs in that we

consider only a single stage approach, and more importantly in that we optimize the number of

users (randomly selected) who feed back accurate information rather than limiting this number to Nt.

Indeed, this optimization is precisely why our approach shows such large gains over simple RBF or

un-optimized ZF.

There has also been related work on systems with channel-dependent feedback, in which each user

determines whether or not to feed back on the basis of its current channel condition (i.e., channel norm

and quantization error) [4][5][6][7][8]. As a result, the BS does not a priori know who feeds back

and thus there is a random-access component to the feedback. Channel-dependent feedback intuitively

appears to provide an advantage because only users with good channels feed back. Although some

of this prior work has considered aggregate feedback load (c.f., [9]), that work has not considered

optimization of B, the per-user feedback load, as we do here for channel-independent feedback. We are

currently investigating the per-user optimization for channel-dependent feedback and our preliminary

results in fact reinforce the basic conclusions of the present work. However, this is beyond the scope

of this paper and we consider only channel-independent feedback here (meaning the users who do

feed back are arbitrary in terms of their channel conditions).
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III. SYSTEM MODEL & BACKGROUND

We consider a multi-input multi-output (MIMO) Gaussian broadcast channel in which the Base

Station (the BS or transmitter) has Nt antennas and each of the users or User Terminals (the UT,

mobile or receiver) have 1 antenna each (Figure 1). The channel output yk at user k is given by:

yk = h
H

k x + zk, k = 1, . . . , K (1)

where zk ∼ CN (0, 1) models Additive White Gaussian Noise (AWGN), hk ∈ C
Nt is the vector of

channel coefficients from the kth user antenna to the transmitter antenna array and x is the vector

of channel input symbols transmitted by the base station. The channel input is subject to an average

power constraint E
[
||x||22

]
≤ SNR. We assume that the channel state, given by the collection of all

channel vectors, varies in time according to a block-fading model, where the channels are constant

within a block but vary independently from block to block. The entries of each channel vector are

i.i.d. Gaussian with elements ∼ CN (0, 1). Each user is assumed to know its own channel perfectly.

At the beginning of each block, each user quantizes its channel to B bits and feeds back the bits,

in an error- and delay-free manner, to the BS (see Figure 1). Vector quantization is performed using

a codebook C that consists of 2B Nt-dimensional unit norm vectors C , {w1, . . . ,w2B}. Each user

quantizes its channel vector to the quantization vector that forms the minimum angle to it. Thus, user

k quantizes its channel to ĥk and feeds the B-bit index back to the transmitter, where ĥk is chosen

according to:

ĥk = arg min
w∈ C

sin2 (∠(hk,w)) . (2)

where cos2 (∠(hk,w)) =
|hH

k
w|2

||hk||2||wk||2
= 1 − sin2 (∠(hk,w)). The specifics of the quantization

codebook are discussed later. Each user also feeds back a single real number, which can be the

channel norm or some other Channel Quality Indicator (CQI). We assume that this CQI is known

perfectly to the BS, i.e., it is not quantized, and thus CQI feedback is not included in the feedback

budget; this simplification is investigated in Section VII-D.

For a total aggregate feedback load of Tfb bits, we are interested in the sum rate (of the different

feedback/beamforming strategies described later in this section) when Tfb/B users feed back B bits

each. The Tfb/B users who feed back are arbitrarily selected from a larger user set.1 Furthermore,

in our block fading setting, only those users who feed back in a particular block/coherence time are

1Since the users who feed back are selected arbitrarily, the number of actual users is immaterial. An alternative to arbitrary

selection is to select the users who feed back based on their instantaneous channel. This would introduce a random-access

component to the feedback link and is not considered in the present work - see Section II for a short discussion.
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considered for transmission in that block; in other words, we are limited to transmitting to a subset

of only the Tfb/B users.

A. Zero Forcing Beamforming

When Zero-Forcing (ZF) is used, each user feeds back the B-bit quantization of its channel direction

as well as the channel norm ||hk|| representing the channel quality (different channel quality indicator

(CQI) choices are considered in Section VII-A). The BS then uses the greedy user selection algorithm

described in [10], adopted to imperfect CSI by treating the vector ||hk|| · ĥk (which is known to the

BS) as if it were user k’s true channel. The algorithm first selects the user with the largest CQI. In

the next step the ZF sum rate is computed for every pair of users that includes the first selected user

(where the rate is computed assuming ||hk|| · ĥk is the true channel of user k), and the additional

user that corresponds to the largest sum rate is selected next. This process of adding one user at a

time, in greedy fashion, is continued until Nt users are selected or there is no increase in sum rate.

Unlike [10], we do not optimize power and instead equally split power amongst the selected users.

We denote the indices of selected users by Π(1), . . . ,Π(n), where n ≤ Nt is the number of

users selected (n depends on the particular channel vectors). By the ZF criterion, the unit-norm

beamforming vector v̂Π(k) for user Π(k) is chosen in the direction of the projection of ĥΠ(k) on the

nullspace of {ĥΠ(j)}j 6=k. Although ZF beamforming is used, there is residual interference because

the beamformers are based on imperfect CSI. The (post-selection) SINR for selected user Π(k) is

SINRΠ(k) =
SNR

n ||hΠ(k)||2 cos2
(
∠(hΠ(k), v̂Π(k))

)

1 + SNR
n ||hΠ(k)||2

∑
j 6=k

cos2
(
∠(hΠ(k), v̂Π(j))

) , (3)

and the corresponding sum rate is
∑n

k=1 log2(1 + SINRΠ(k)).

For the sake of analysis and ease of simulation, each user utilizes a quantization codebook C
consisting of unit-vectors independently chosen from the isotropic distribution on the Nt-dimensional

unit sphere [11] (Random Vector Quantization or RVQ). Each user’s codebook is independently

generated, and sum rate is averaged over this ensemble of quantization codebooks.2 Although we

focus on RVQ, in Section VII-C we show that our conclusions are not dependent on the particular

quantization scheme used.

In [13] it is shown that the sum rate of ZF beamforming with quantized CSI but without user

selection (i.e. Nt users are randomly selected) is lower bounded by:

RCSI
ZF-no selection(SNR) − Nt log2

(
1 + SNR · 2−

B

Nt−1

)
. (4)

2The RVQ quantization process can be easily simulated using the statistics of its quantization error, even for very large

codebooks; see [12, Appendix B] for details.
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where RCSI
ZF-no selection(SNR) is the perfect CSI rate. This bound, which is quite accurate for large values

of B [13], indicates that ZF beamforming is very sensitive to the CSI accuracy. With Nt = 4 and

SNR = 10 dB, for example, B = 10 corresponds to a sum rate loss of 4 bps/Hz (relative to perfect

CSI) and 17 bits are required to reduce this loss to 1 bps/Hz. Equation 4 is no longer a lower bound

when user selection is introduced, but nonetheless it is a reasonable approximation and hints at the

importance of accurate CSI.

B. Random Beamforming

Random beamforming (RBF) was proposed in [1][14], wherein each user feeds back log2 Nt bits

along with one real number. In this case, there is a common quantization codebook C consisting of Nt

orthogonal unit vectors and quantization is performed according to (2). In addition to the quantization

index, each user feeds back a real number representing its SINR. If wm (1 ≤ m ≤ Nt) is the selected

quantization vector for user k, then

SINRk =
SNR
Nt

|hH

k wm|2

1 + SNR
Nt

∑
n6=m

|hH

k wn|2
=

||hk||2 cos2 (∠hk,wm)
Nt

SNR + ||hk||2 sin2 (∠hk,wm)
. (5)

After receiving the feedback, the BS selects the user with the largest SINR on each of the Nt beams

(w1, . . . ,wNt
), and beamforming is performed along these same vectors.

C. PU2RC

Per unitary basis stream user and rate control (PU2RC), proposed in [15] (a more widely available

description can be found in [4]), is a generalization of RBF in which there is a common quantization

codebook C consisting of 2B−log
2
Nt ‘sets’ of orthogonal codebooks, where each orthogonal codebook

consists of Nt orthogonal unit vectors, and thus a total of 2B vectors. Quantization is again performed

according to (2), and each user feeds back the same SINR statistic as in RBF. User selection is

performed as follows: for each of the orthogonal sets the BS repeats the RBF user selection procedure

and computes the sum rate (where the per-user rate is log2(1 + SINR)), after which it selects the

orthogonal set with the highest sum rate. If B = log2 Nt, there is only a single orthogonal set and

the scheme reduces to ordinary RBF.

The primary difference between PU2RC and ZF is the user selection algorithm: PU2RC is restricted

to selecting users within one of the orthogonal sets and thus has very low complexity, whereas the

described ZF technique has no such restriction.
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IV. OPTIMIZATION OF ZERO-FORCING BEAMFORMING

Let RZF

(
SNR, Nt,

Tfb

B , B
)

be the sum rate for a system using ZF with Nt antennas at the transmitter,

signal-to-noise ratio SNR, and Tfb

B users each feeding back B bits. From Section III-A, we have:

RZF

(
SNR, Nt,

Tfb

B
, B

)
= E




n∑

k=1

log2


1 +

SNR
n ||hΠ(k)||2 cos2

(
∠(hΠ(k), v̂Π(k))

)

1 + SNR
n ||hΠ(k)||2

∑
j 6=k

cos2
(
∠(hΠ(k), v̂Π(j))

)





(6)

No closed form for this expression is known to exist, even in the case of perfect CSI, but this quantity

can be easily computed via Monte Carlo simulation. We are interested in the number of feedback

bits per user BOPT
ZF (SNR, Nt, Tfb) that maximizes this sum rate for a total feedback budget of Tfb:

BOPT
ZF (SNR, Nt, Tfb) , argmax

log
2
Nt≤B≤

Tfb
Nt

RZF

(
SNR, Nt,

Tfb

B
, B

)
. (7)

Although this optimization is not tractable, it is well-behaved and can be meaningfully understood.3

Consider first Figure 2, where the sum rate RZF

(
SNR, Nt,

Tfb

B , B
)

is plotted versus B for 2 and 4-

antenna systems for various values of SNR and Tfb. Based on this plot it is immediately evident that

the sum rate increases very rapidly with B, and that the rate-maximizing BOPT
ZF is very large, e.g., in

the range 15 − 20 and 20 − 25 for Nt = 4 at 5 and 10 dB, respectively. Both of these observations

indicate a strong preference for accurate CSI over multi-user diversity.

In order to understand this behavior, we introduce the sum rate approximation

R̃ZF

(
SNR, Nt,

Tfb

B
, B

)
, Nt log2


1 +

(
SNR
Nt

)
log
(

TfbNt

B

)

1 +
(

SNR
Nt

)
2
− B

Nt−1 log
(

TfbNt

B

)


 , (8)

with RZF ≈ R̃ZF. This approximation is obtained from the expression for RZF in (6) by (a) replacing

||hΠ(k)||2 with log
(

TfbNt

B

)
, the expectation of the largest channel norm among Tfb

B users from (33) in

Appendix I, (b) assuming that the maximum number of users are selected (i.e., n = Nt), (c) replacing

each cos2
(
∠(hΠ(k), v̂Π(j))

)
in the SINR denominator with its expected value 2

− B

Nt−1 /(Nt − 1) [13,

Lemma 2], and (d) approximating the cos2
(
∠(hΠ(k), v̂Π(k))

)
term in the SINR numerator with unity.

In (8) the received signal power is (SNR/Nt) log (TfbNt/B), while the interference power is 2
− B

Nt−1

times the signal power. Imperfect CSI is evidenced in the 2
− B

Nt−1 term in the interference power, while

multi-user diversity is reflected in the log (TfbNt/B) term. Although not exact, the approximation in

(8) is reasonably accurate and captures many key elements of the problem at hand.

3The optimization in (7) can alternatively be posed in terms of the numbers of users who feedback, i.e., K users feedback

Tfb/K bits each. However, it turns out to be much more insightful to consider this in terms of B, the feedback bits per

user.
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We first use the approximation to explain the rapid sum rate increase with B. From (8) we see

that increasing B by Nt − 1 bits reduces the interference power by a factor of 2. As long as the

interference power is significantly larger than the noise power, this leads to (approximately) a 3 dB

SINR increase and thus a Nt bps/Hz sum rate increase. Dropping the two instances of 1 in (8) crudely

gives:

R̃ZF

(
SNR, Nt,

Tfb

B
, B

)
≈ Nt

Nt − 1
B. (9)

Hence, sum rate increases almost linearly with B when B is not too large, consistent with Fig. 2. This

discussion has neglected the fact that increasing B comes at the expense of decreasing the number

of users who feedback, thereby decreasing multi-user diversity. However, the accompanying decrease

in sum rate is essentially negligible because (a) log (TfbNt/B) is only mildly decreasing in B due

to the nature of the logarithm, and (b) both signal and interference power are reduced by the same

factor.

It is clear that accurate CSI (i.e., a larger value of B) is strongly preferred to multi-user diversity

in the range of B for which sum rate increases roughly linearly with B. However, from Figure 2 we

see that this linear scaling runs out and that a peak is eventually reached, beyond which increasing B

actually decreases sum rate. To understand the desired combination of CSI and multi-user diversity

at BOPT
ZF , in Figure 3 the sum rate RZF

(
SNR, Nt,

Tfb

B , B
)

as well as the perfect CSI sum rate for the

same number of users (i.e., Tfb

B users) RZF

(
SNR, Nt,

Tfb

B ,∞
)

are plotted versus B for a system with

Nt = 4, Tfb = 300 bits and SNR = 10 dB. Motivated by [13, Theorem 1] (see Section III-A for

discussion), we approximate the sum rate by the perfect CSI sum rate minus a multi-user interference

penalty term:

RZF

(
SNR, Nt,

Tfb

B
, B

)
≈ RZF

(
SNR, Nt,

Tfb

B
,∞
)
− Nt log2

(
1 +

SNR

Nt
2
− B

Nt−1 log
TfbNt

B

)
(10)

This penalty term reasonably approximates the loss due to imperfect CSI which is indicated in

Figure 3. In the figure we see that for B ≥ 25 the sum rate curves for perfect and imperfect CSI

essentially match and thus the penalty term in (10) is nearly zero. As a result, it clearly does not

make sense to increase B beyond 25 because doing so reduces the number of users but does not

provide a measurable CSI benefit. Keeping this in mind, the most interesting observation gleaned

from Figure 3 is that BOPT
ZF corresponds to a point where the loss due to imperfect CSI is very small.

In other words, it is optimal to operate at the point where effectively the maximum benefit of accurate

CSI has been reaped.

At this point it is worthwhile to reconsider the sum rate versus B curves in Figure 2. Although BOPT
ZF

is quite large for all parameter choices, it is not particularly dependent on the total feedback budget Tfb.
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On the other hand, BOPT
ZF does appear to be increasing in SNR and Nt, and also seems quite sensitive

to these parameters. To grasp these points and to develop a more quantitative understanding of the

optimal B, we return to the approximation in (8). The optimal B corresponding to this approximation

is:

BOPT
ZF (SNR, Nt, Tfb) ≈ B̃OPT

ZF (SNR, Nt, Tfb) , argmax
log

2
Nt≤B≤

Tfb
Nt

R̃ZF

(
SNR, Nt,

Tfb

B
, B

)
.

The approximation is concave in B, and thus the following fixed point characterization of B̃OPT
ZF is

obtained by setting the derivative of R̃ZF

(
SNR, Nt,

Tfb

B , B
)

to zero:

SNR

Nt
2
−

eB
OPT
ZF

Nt−1

B̃OPT
ZF log 2

Nt − 1

(
log

TfbNt

B̃OPT
ZF

)2

= 1. (11)

This quantity is easily computed numerically, but a more analytically convenient form is found as

follows. By defining

L ,

(
log

TfbNt

B̃OPT
ZF (SNR, Nt, Tfb)

)2

(12)

and appropriately substituting, (11) can be rewritten in the following form:

B̃OPT
ZF (SNR, Nt, Tfb) = −Nt − 1

log 2
W−1

(
− Nt

SNR

1

L

)
(13)

where W−1(·) is branch -1 of the LambertW function [16].4 From [16, Equation 4.19], the following

asymptotic expansion of W−1(−x) holds for small x > 0:

W−1(−x) = log(x) + log

(
log

1

x

)
+ O

(
log
(
log 1

x

)

log(x)

)
. (14)

Using (14) in (13), we have the following asymptotic expansion for B̃OPT
ZF (SNR, Nt, Tfb):

B̃OPT
ZF (SNR, Nt, Tfb) ∼ (Nt − 1) log2

SNR

Nt
+ (Nt − 1) log2

L

Nt
+ (Nt − 1) log2

(
log

SNR

Nt
L

)
(15)

By repeatedly applying the asymptotic expansion of W−1(·) to the occurrences of L in (15), we can

expand B̃OPT
ZF (SNR, Nt, Tfb) as a function of Tfb, SNR and Nt to yield the following:

B̃OPT
ZF (SNR, Nt, Tfb)

Large Tfb∼ O(log log Tfb) (16)

B̃OPT
ZF (SNR, Nt, Tfb)

Large Nt∼ (Nt − 1) log2 SNR + O(log log Nt) (17)

B̃OPT
ZF (SNR, Nt, Tfb)

Large SNR∼ (Nt − 1) log2

SNR

Nt
+ O(log log log SNR) (18)

The first result implies that B̃OPT
ZF increases very slowly with Tfb. Recall our earlier intuition that B

should be increased until CSI is essentially perfect. Mathematically, this translates to choosing B such

4In order for the LambertW function to produce a real value, the argument should be larger than −

1

e
. This condition is

satisfied for operating points of interest.
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that the interference power term
(

SNR
Nt

)
2−B/(Nt−1) log (TfbNt/B) is small relative to the unit noise

power in (8). The interference term primarily depends on B, Nt and SNR, but it also logarithimically

increasing in Tfb due to multi-user diversity (the number of users who feed back is roughly linear

in Tfb). However, choosing B̃OPT
ZF according to (16) leads to 2−

eBOPT
ZF /(Nt−1) ∼ O (1/ log(Tfb)), which

negates the logarithmic increase due to multi-user diversity.5

The linear growth of B̃OPT
ZF (SNR, Nt, Tfb) with Nt and with SNR in dB units (i.e. log SNR) can also

be explained by examining the interference power term
(

SNR
Nt

)
2−B/(Nt−1) log (TfbNt/B) in (8), and

noting that the sum rate optimizing choice of B keeps this term small and roughly constant. In terms

of Nt, 2−B/(Nt−1) is the dominant factor in the interference power and scaling B linearly in Nt − 1

keeps this factor constant. In terms of SNR, the product SNR · 2−B/(Nt−1) is the dominant factor and

scaling B with log2 SNR (i.e., linear in SNRdB) keeps this factor constant. These scaling results are

consistent with [13], in which it was found that the per-user feedback load should scale linearly with

Nt and SNRdB to achieve performance near the perfect-CSI benchmark (without user selection).

In Figures 4 and 5, BOPT
ZF (SNR, Nt, Tfb) and the approximation B̃OPT

ZF (SNR, Nt, Tfb) are plotted

versus Tfb and SNRdB, respectively.6 In both figures we see that the approximation is quite accurate,

and that the behavior agrees with the scaling relationships in (16) and (18). Curves for Nt = 2 and

Nt = 4 are included in both figures, and BOPT
ZF is seen to increase roughly with Nt − 1, consistent

with (17).

V. OPTIMIZATION OF PU2RC

As described in Section III-C, Per unitary basis stream user and rate control (PU2RC) generalizes

RBF to more than log2 Nt feedback bits per user. A common quantization codebook, consisting of

2B/Nt ‘sets’ of Nt orthoognal vectors each, is utilized by each user. A user finds the best of the 2B

quantization vectors, accordng to (2), and feeds back the index of the set (B − log2 Nt bits) and the

index of the vector/beam in that set (log2 Nt bits). Although the quantization codebooks for ZF and

PU2RC are slightly different7, the key difference is in user selection. While ZF allows for selection

5If eBOPT
ZF was held constant rather than increased with Tfb, then the system would eventually become interference-limited

because the interference power and signal power would both increase logarithmically with the number of users, and thus

with Tfb [17]. This behavior can be prevented by using a different CQI statistic, as discussed in Section VII-A, but turns

out to not be particularly important.

6Because the number of users must be an integer, we restrict ourselves to values of B that result in an integer value of

Tfb

B
and appropriately round eBOPT

ZF .

7The PU2RC codebook consists of sets of orthogonal vectors, whereas no such structure exists for RVQ-based ZF. In

addition, PU2RC uses a common codebook whereas each user has a different codebook in ZF. See Section VII-C for a

further discussion of the ZF codebook.
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of any subset of (up to) Nt users, the low-complexity PU2RC procedure described in Section III-C

constrains the BS to select a set of up to Nt users from one of the 2B/Nt sets.

As a result of this difference, a very different conclusion is reached when we optimize the per-user

feedback load B for PU2RC: we find that B = log2 Nt (i.e., RBF) is near-optimal and thus the

optimization provides little advantage. Sum rate is plotted versus B (for PU2RC) in Figure 6. Very

different from ZF, the sum rate does not increase rapidly with B for small B, and it begins to decrease

for even moderate values of B.

If B is too large, the number of orthogonal sets 2B/Nt becomes comparable to the number of

users Tfb/B and thus it is likely that there are fewer than Nt users on every set (there are on average

TfbNt

B2B users per set). For example, if Tfb = 500 and B = 8, there are 26 orthogonal sets and 40 users

and thus less than a user per set on average. Hence, the BS likely schedules much fewer than Nt

users, thereby leading to a reduced sum rate. Thus, large values of B are not preferred.

For moderate values of B > log2 Nt, there are a sufficient number of users per set but nonetheless

this ‘thinning’ of users is the limiting factor. As B increases the quantization quality increases, but

because there are only TfbNt

B2B users per set (on average) the multi-user diversity (in each set) decreases

sharply, so much so that the rate per set in fact decreases with B. (For ZF there is also a loss in

multi-user diversity as B is increased, but the number of users is inversely proportional to B, whereas

here it is inversely proportional to B2B .) The BS does choose the best set (amongst the 2B/Nt sets),

but this is not enough to compensate for the decreasing per-set rate.

VI. COMPARISON OF MULTI-USER BEAMFORMING SCHEMES

In Figure 7, the sum rates of ZF and PU2RC are compared for various values of SNR, Tfb and Nt;

for each strategy, B has been optimized separately as discussed in Sections IV and V, respectively.

It is seen that ZF maintains a significant advantage over PU2RC for Nt = 4. At small Nt, both

schemes perform similarly, but ZF maintains a small advantage. In addition, the advantage of ZF

increases extremely rapidly with Nt and SNR. For example, Figure 8 compares the sum rate of the two

strategies with varying Nt for Tfb = 500 bits. The basic conclusion is that optimized ZF significantly

outperforms optimized PU2RC.8 This holds for essentially all system parameters (Nt, SNR, Tfb) of

interest, with the only exception being Nt = 2 around 0 dB.

As optimized PU2RC performs essentially the same as RBF (Section V), this large gap in sum rate

can be explained by contrasting RBF and optimized ZF. In particular, it is useful to find the number

8If ZF and PU2RC are compared for a fixed value of B and a fixed number of users, as in [4], for certain combinations

of bits and users PU2RC outperforms ZF. However, in our setting where we compare ZF and PU2RC with each technique’s

own optimal value of B, ZF is found to generally be far superior.
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of users needed by RBF to match the sum rate of optimized ZF. From [1], we have that the SINR of

the kth user (on a particular beam) under RBF has CDF 1 − e
−x

Nt

SNR
(x+1)Nt−1 . With K users in the system,

RBF chooses the largest SINR amongst these K users (this is in fact an upper bound as explained

in [1]). By basic results in order statistics, the expectation of the maximum amongst K i.i.d. random

variables is accurately approximated by the point at which the CDF equals (K − 1)/K [18]. Hence,

in order to achieve a target SINR S, RBF requires approximately K = exp
(

SNt

SNR

)
(1 + S)Nt−1

users. From Section IV, optimized ZF operates with effectively perfect CSI. Hence, dropping the

interference term in (8), we have that ZF achieves an SINR of about SNR
Nt

log TZFNt

BOP T

ZF

, for a total

feedback budget of TZF bits. Setting S = SNR
Nt

log TZFNt

BOP T

ZF

, we see that RBF requires approximately

K = TZFNt

BOP T

ZF

(
1 + SNR

Nt

log TZFNt

BOP T

ZF

)Nt−1
users to match the SINR achieved by optimized ZF for a

given TZF, Nt and SNR. The total feedback for RBF is TRBF = K log2 Nt bits. Thus RBF requires

approximately TRBF total bits to match the sum rate of optimized ZF with TZF bits, where

TRBF = (log2 Nt)
TZFNt

BOPT
ZF

(
1 +

SNR

Nt
log

TZFNt

BOPT
ZF

)Nt−1

. (19)

For example, when Nt = 4, SNR = 5 dB and Tfb = 300 bits, RBF requires 5000 users, and thus

10000 bits, in order to match the sum rate of ZF with only 300 bits. Clearly, it is impractical to

consider RBF in such a setting. Furthermore, from (19) we have that TRBF increases rapidly with

TZF, Nt as well as SNR, making RBF increasingly impractical.

Although RBF uses a very small codebook of Nt vectors, it may appear that this is compensated

by the large number of users Tfb/ log2 Nt. By selecting users with large SINR’s, the BS exploits

multi-user diversity and selects users that have channels with large norms and that are well-aligned

to one of the Nt quantization vectors/beamformers. The latter of these two effects can be referred

to as ‘quantization diversity’, and it may seem that this effect can compensate for the very small

codebook. However, it turns out to be very unlikely that a selected user is well-aligned with its

quantization vector, even if Tfb is very large. To see this, consider the smallest quantization error

amongst the Tfb/ log2 Nt users. Because the user channels are independent and spatially isotropic,

the smallest error is precisely the same, in distribution, as the quantization error for a single user

quantizing to a codebook of Tfb/ log2 Nt orthogonal sets of Nt vectors each, where each orthogonal

set is independent and isotropic. Thus, the smallest quantization error for RBF is effectively the same

as that of a codebook of size B = log2 (TfbNt/ log2 Nt). For example, with Nt = 4 and Tfb = 300

bits, the best quantization error is only as good as an 8-bit quantization. As we saw in Section IV,

the sum rate is very sensitive to quantization error and multi-user diversity cannot compensate for

this.
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VII. FURTHER CONSIDERATIONS

A. Effect of Optimal User Selection and SINR Feedback

In this section, we will argue that the choice of CQI (for ZF) does not significantly alter our main

results, and that it is not necessary to use high-complexity user selection algorithms to benefit from

the optimization of B.

In terms of CQI for ZF, we have thus far considered channel norm feed back. An alternative is

feeding back the expected SINR (as discussed in [17])

||hk||2 cos2
(
∠(hk, ĥk)

)

Nt

SNR + ||hk||2 sin2
(
∠(hk, ĥk)

) (20)

as is done for RBF/PU2RC. This allows the BS to select users that have not only large channels,

but also small quantization errors. In [17, Eq. (41)], the rate achievable with SINR feedback when

the number of users feeding back is large increases with the quantity 2B Tfb

B , and this increases

monotonically in B (for B > 2). Thus, the sum rate (with SINR feedback) increases with B as

long as one remains in the large user regime, as described in [17], eventually entering the high

resolution regime (provided Tfb is sufficiently large). However, in this regime, the advantage of SINR

feedback over channel norm feedback is minimal as the quantization error is small, and there is no

real difference between the two CQI feedback schemes. On the other hand, if Tfb is very small so

that one cannot really enter the high resolution regime, SINR-based feedback is seen to provide a

slightly larger sum rate than norm feedback, but the optimal value of B is largely the same.

The primary disadvantage of the ZF technique we have considered so far is the relatively high

complexity user selection algorithm. We now illustrate that ZF is superior to RBF/PU2RC even

when a much lower complexity selection algorithm is used. In particular, we consider the following

algorithm: the BS sorts the Tfb/B users by channel norm, computes the ZF rate for the users with

the j largest channel norms for j = 1, . . . , Nt, and then picks the j that provides the largest sum rate.

This requires Nt sum rate computations, whereas the greedy selection algorithm of [10] performs

an order of Nt(Tfb/B) rate computations. The selected user set is likely to have fewer and less

orthogonal users than greedy selection and thus performs significantly worse than greedy selection,

but nonetheless is seen to outperform PU2RC.

In Figure 9 sum rate is plotted versus B for norm and SINR feedback (for greedy selection), and

for greedy and simplified user selection (for norm feedback). In terms of CQI feedback, for small

B the sum rate with SINR feedback is slightly larger than with norm-feedback but this advantage

vanishes for large B, which is the optimal operating point. In terms of user selection, we see that the

simplified approach achieves a much smaller sum rate than the greedy algorithm but still outperforms
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PU2RC. Although this simplified scheme may not be the best low-complexity search algorithm, this

simply illustrates that user selection complexity need not be a major concern with respect to our main

conclusion.

B. Effect of Receiver Training and Feedback Delay

If there is imperfect CSI at the users and/or delay in the channel feedback loop, then there is some

inherent imperfection in the CSI provided to the BS, even if B is extremely large. As we will see,

this only corresponds to a shift in the system SNR and thus does not affect our basic conclusions.

We model the case of receiver training as described in [19]. To permit each user to estimate its

own channel, βNt (shared) downlink pilots (or β pilots per antenna) are transmitted. If each user

performs MMSE estimation, the estimate h̃k (of hk) and hk are related as hk = h̃k + nk, where nk

is the Gaussian estimation error of variance (1 + β SNR)−1. To model feedback delay we consider

correlated block fading where hk is the channel during receiver training and feedback while h
+
k is the

channel during actual data transmission, with the two related according to h
+
k = r hk +

√
1 − r2 ∆k,

where 0 < r < 1 is the correlation coefficient and ∆k is a standard complex Gaussian process. User

k quantizes its channel estimate h̃k and feeds this back to the BS. Following the same methods used

for (8) and the argument in [19], the combined effect of the estimation error at the user and the

feedback delay changes our sum rate approximation to:

R̃TRAINING-DELAY

(
SNR, Nt,

Tfb

B
, B

)
= Nt log2


1 +

SNR
Nt

log TfbNt

B

1 + φ Nt

Nt−1SNR + SNR
Nt

2
− B

Nt−1 log TfbNt

B


 ,(21)

where the term φ = 1 − r2 + (1 + β SNR)−1 is the additional multi-user interference due to training

and delay. This approximation is the same as R̃ZF

(
SNR

1+φ Nt

Nt−1
SNR

, Nt,
Tfb

B , B

)
, and thus we see that

training and delay simply reduce the system SNR. Hence, all previously discussed results continue

to apply, although with a shift in system SNR.

C. Low-complexity Quantization

Although the computational complexity of performing high-rate quantization may seem daunting,

here we show that the very low-complexity scalar quantization scheme proposed in [20] provides a

sum rate only slightly smaller than RVQ. In the scheme of [20], the components of channel vector

hk = [h1, . . . , hNt
]T are first divided by the first component h1 to yield Nt − 1 complex elements.

The Nt − 1 relative phases are individually quantized using uniform (scalar) quantization in the

interval [−π, π]. Similarly, the inverse tangents of the relative magnitudes, i.e., tan−1
(
|hm|
|h1|

)
for

m = 2, . . . , Nt, are each quantized uniformly in the interval [0, π
2 ]. The B bits are distributed equally

between the phases and magnitudes of the Nt − 1 elements as far as possible.
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In Figure 10 sum rate is plotted versus B for RVQ and scalar quantization at SNR = 10 dB. Scalar

quantization provides a smaller sum rate than RVQ for small and moderate values of B, and the

optimum value of B for scalar quantization is a few bits larger than with RVQ.9 Most importantly,

the optimized rate with scalar quantization is only slightly smaller than the optimized rate with RVQ

(this is also true for other values of Nt, Tfb, and SNR).

The strong performance of scalar quantization can be explained through the expected angular

distortion. For RVQ the expected angular distortion satisfies E

[
sin2 ∠(hk, ĥk)

]
≤ 2

− B

Nt−1 , and this

term appears in the approximation in (8). By basic results on high-rate quantization, the distortion

with scalar quantization is also proportional to 2
− B

Nt−1 but with a larger constant [21]. This constant

term translates to a constant bit penalty; for Nt = 4 a numerical comparison shows a bit penalty

of approximately 4.5 bits, i.e., scalar quantization with B + 4.5 bits achieves the same distortion as

RVQ with B bits. As a result, scalar quantization requires a large value of B in order to achieve

near-perfect CSI, but because CSI is strongly preferred to multi-user diversity it is still worthwhile

to operate at the ”essentially perfect” CSI point, even with a suboptimal quantization codebook.

In order to show that it is not possible to greatly improve upon RVQ, in Figure 10 the sum rate

with an idealized codebook that achieves the quantization upper bound given in [22] is also shown.

The expected distortion of this idealized codebook is only a factor of Nt−1
Nt

smaller than with RVQ,

and thus a very small performance gap is expected.

D. Effect of CQI Quantization

Prior work has shown that CQI quantized to 3-4 bits (per user) is virtually the same as unquantized

CQI [9][17]. Since the actual per-user feedback is the B directional bits plus the CQI bits, by ignoring

CQI bits in the feedback budget we have artificially inflated the number of users. If the CQI bits are

accounted for, strategies that utilize few directional bits become even less attractive (CQI bits make

multi-user diversity more expensive) and thus our basic conclusion is unaffected. For example, with

Nt = 4, Tfb = 300 bits and SNR = 10 dB, ZF with unquantized CQI (i.e., not accounting for CQI

feedback) is optimized with 13 users and B = 23. If, on the other hand, we actually quantize the

CQI to 4 bits and then allow only Tfb

B+4 users to feedback, the optimum point changes to 10 users

with B = 26.

E. Single-User Beamforming

In this section, we consider the case when the BS is constrained to beamform to only a single

user. Each user quantizes its channel direction using B bits and feeds back its quantization index,

9For Nt = 2 scalar quantization actually outperforms RVQ because there is only a single relative phase and amplitude.
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or equivalently ĥk, along with the received signal-to-noise ratio for beamforming along the direction

ĥk: SNR |hH

k ĥk|2 = SNR ||hk||2 cos2 ∠(hk, ĥk). The BS then selects the user k∗ with the largest such

post-beamforming SNR:

k∗ = argmax
1≤k≤

Tfb
B

SNR ||hk||2 cos2
(
∠(hk, ĥk)

)
. (22)

Let RSUBF

(
SNR, Nt,

Tfb

B , B
)

be the average rate achieved with signal-to-noise ratio SNR, Nt antennas

at the BS and Tfb/B users feeding back B bits each:

RSUBF

(
SNR, Nt,

Tfb

B
, B

)
= E

[
log2

(
1 + SNR max

1≤k≤
Tfb
B

(
||hk||2 cos2

(
∠(hk, ĥk)

)))]
. (23)

The optimizing B, given SNR, Nt, and Tfb, is defined as:

BOPT
SUBF

(
SNR, Nt,

Tfb

B

)
= argmax

1≤B≤Tfb

RSUBF

(
SNR, Nt,

Tfb

B
, B

)
(24)

However, this optimization cannot be performed analytically, so we instead find a reasonable approx-

imation R̃SUBF

(
SNR, Nt,

Tfb

B , B
)

for RSUBF

(
SNR, Nt,

Tfb

B , B
)

that is tractable.

RSUBF

(
SNR, Nt,

Tfb

B
, B

)
≈ log2

(
1 + SNR

(
1 +

(
1 − 2

− B

Nt−1

)
log

TfbNt

B

))
(25)

≈ log2

[
1 + SNR

(
log

TfbNt

B
− 2

− B

Nt−1 log (TfbNt)

)]
(26)

= R̃SUBF

(
SNR, Nt,

Tfb

B
, B

)

Equation 25 is derived in Appendix II, and (26) is obtained by neglecting the term 2
− B

Nt−1 log B,

which is small relative to 2
− B

Nt−1 log (TfbNt). The corresponding approximation B̃OPT
SUBF

(
SNR, Nt,

Tfb

B

)

for BOPT
SUBF

(
SNR, Nt,

Tfb

B

)
is:

B̃OPT
SUBF

(
SNR, Nt,

Tfb

B

)
= argmax

1≤B≤Tfb

R̃SUBF

(
SNR, Nt,

Tfb

B
, B

)
. (27)

Note that B̃OPT
SUBF

(
SNR, Nt,

Tfb

B

)
is independent of SNR. Maximizing the concave function (26) with

respect to B yields the following solution:

B̃OPT
SUBF

(
SNR, Nt,

Tfb

B

)
= −(Nt − 1)

log 2
W−1

(
− 1

log (TfbNt)

)
(28)

∼ (Nt − 1) log2 log (TfbNt) + O(log log(Nt log Tfb)) (29)

where W−1(·) is branch -1 of the LambertW function and (29) is obtained through asymptotic expan-

sion [16]. B̃OPT
SUBF

(
SNR, Nt,

Tfb

B

)
is truncated to be between 1 and Tfb. Note that the optimal number

of bits scale roughly linearly with Nt, provided Tfb is sufficiently large, and double logarithmically

with Tfb.

Figure 11 depicts the behavior of rate with B for a 4 antenna system at 0 and 5 dB. Although

there clearly is a peak for all of the curves, very different from multi-user beamforming, the sum
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rate is not particularly sensitive to B and thus using the optimizing B provides only a small rate

advantage.10 Multi-user beamforming systems are extremely sensitive to CSI because the interference

power depends critically on the CSI; for single-user beamforming there is no interference and thus

the dependence upon CSI is much weaker.

VIII. CONCLUSION

In this paper, we have considered the basic but apparently overlooked question of whether low-rate

feedback/many user systems or high-rate feedback/limited user systems provide a larger sum rate

in MIMO downlink channels. This question simplifies to a comparison between multi-user diversity

(many users) and accurate channel information (high-rate feedback), and the surprising conclusion is

that there is a very strong preference for accurate CSI. Multi-user diversity provides a throughput gain

that is only double-logarithmic in the number of users who feed back, whereas the marginal benefit

of increased per-user feedback is very large up to the point where the CSI is essentially perfect.

Although we have considered only spatially uncorrelated Rayleigh fading with independent fading

across blocks, our general conclusion applies to more realistic fading models. A channel with strong

spatial correlation is easier to describe (assuming appropriate quantization) than an uncorrelated

channel and thus fewer bits are required to achieve essentially perfect CSI. For example, 15/20

bits might be required to provide nearly perfect CSI for a 4-antenna channel at 10 dB with/without

correlation, respectively. Thus, spatial correlation further reinforces the preference towards accurate

CSI. In terms of channel correlation across time and frequency, we note that a recent work has

studied a closely related tradeoff in the context of a frequency-selective channel [23]: should each

user quantize its entire frequency response or only a small portion of the frequency response (i.e.,

quantize only a single resource block)? The first option corresponds to coarse CSI (even though

frequency-domain correlation is exploited) but a large user population, while the second corresponds

to accurate CSI but fewer users per resource block. Consistent with our results, the second option is

seen to provide a considerably larger sum rate than the first. We suspect the same holds true in the

context of temporal correlation, where the comparison is between a user quantizing its channel across

10The opportunistic beamforming (OBF) strategy proposed in [14] is equivalent to the system considered here with a

single quantization vector; thus there is only CQI feedback and no CDI feedback (i.e., B = 0). This option is not explored

by our optimization, but it is easy to confirm that an optimized single-user beamforming system outperforms OBF when

CQI feedback is accounted for. For example, when Nt = 4, Tfb = 70 bits and 4 bits are allocated to CQI quantization, it is

optimal for about 4 users to quantize their CDI to 13 bits each. OBF requires 200 users (at both 0 and 10 dB) to achieve

the same rate, and thus even in the best case where CQI consumes only a single bit per user for OBF, optimized single-user

beamforming is preferred.
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many continuous blocks (possibly exploiting the correlation of the channel by using a differential

quantization scheme) and a user finely quantizing its current channel at only a few limited time

instants.

In closing, it is worth emphasizing that our results do not imply that multi-user diversity is worthless.

On the contrary, multi-user diversity does provide a significant benefit. However, the basic design

insight is that feedback resources should first be used to obtain accurate CSI and only afterwards be

used to exploit multi-user diversity. Given the increasing importance of multi-user MIMO in single-

cell and multi-cell (i.e., network MIMO) settings, it seems that this point should be fully exploited

in the design of next-generation cellular systems such as LTE.

APPENDIX I

ORDER STATISTICS OF A Γ(Nt, 1) RANDOM VARIABLE

Let X
(K)
1:K be the K th order statistic among X1, X2, . . . , XK which are K i.i.d. Γ(Nt, 1) random

variables. Note that Xk has the same distribution of Yk,1+Yk,2+· · ·+Yk,Nt
, where Yk,1, Yk,2, . . . , Yk,Nt

are i.i.d. Γ(1, 1) variates. E

[
X

(K)
1:K

]
is not known in closed form, and we will hence use the following

lower bound:

E

[
X

(K)
1:K

]
= max

k=1,...,K
Yk,1 + Yk,2 + · · · + Yk,Nt

(30)

≥ max
k=1,...,K

max
n=1,...,Nt

Yk,n (31)

=

KNt∑

k=1

1

k
(32)

∼ log(KNt) + γ, (33)

where (32) is obtained from [18, 2.7.5] and (33) holds as K → ∞ where γ is the Euler-Mascheroni

constant. Equation 33 implies a logarithmic growth in K, as described in, for example, [24]. We will

typically apply (33) while omitting the Euler-Mascheroni constant for simplicity.
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APPENDIX II

APPROXIMATION FOR RSUBF

(
SNR, Nt,

TFB

B , B
)

Recall from (23), that:

RSUBF

(
SNR, Nt,

Tfb

B
, B

)
= E

[
log2

(
1 + SNR max

1≤k≤
Tfb
B

(
||hk||2 cos2

(
∠(hk, ĥk)

)))]
(34)

≤ log2

(
1 + SNR E

[
max

1≤k≤
Tfb
B

(
||hk||2 cos2

(
∠(hk, ĥk)

))])
(35)

= log2

(
1 + SNR E

[
max

1≤k≤
Tfb
B

(
G

(1)
k +

(
1 − 2

− B

Nt−1

)
G

(Nt−1)
k

)])
(36)

≈ log2

(
1 + SNR E

[(
G

(1)
k +

(
1 − 2

− B

Nt−1

)
max

1≤k≤
Tfb
B

G
(Nt−1)
k

)])
(37)

= log2

(
1 + SNR

(
E

[
G

(1)
k

]
+
(
1 − 2

− B

Nt−1

)
E

[
max

1≤k≤
Tfb
B

G
(Nt−1)
k

]))

= log2

(
1 + SNR

(
1 +

(
1 − 2

− B

Nt−1

)
E

[
max

1≤k≤
Tfb
B

G
(Nt−1)
k

]))
(38)

≈ log2

(
1 + SNR

(
1 +

(
1 − 2

− B

Nt−1

)(
log

TfbNt

B

)))
(39)

where (35) is obtained by applying Jensen’s inequality. Equation 36 is obtained from [17, Lemma

2], where G
(m)
k in (36) is a Γ(m, 1) variate. Equation 37 is obtained by restricting the maximization

to apply only to the G
(Nt−1)
k (which stochastically dominates G

(1)
k ), and the expectation in (38) has

been replaced by (33) from Appendix I after neglecting the Euler-Mascheroni constant.
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