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High SNR Analysis for MIMO Broadcast Channels: Dirty
Paper Coding Versus Linear Precoding

Juyul Lee, Student Member, IEEE, and Nihar Jindal, Member, IEEE

Abstract—In this correspondence, we compare the achievable
throughput for the optimal strategy of dirty paper coding (DPC) to
that achieved with suboptimal and lower complexity linear precoding
techniques (zero-forcing and block diagonalization). Both strategies utilize
all available spatial dimensions and therefore have the same multiplexing
gain, but an absolute difference in terms of throughput does exist. The
sum rate difference between the two strategies is analytically computed
at asymptotically high SNR. Furthermore, the difference is not affected
by asymmetric channel behavior when each user has a different average
SNR. Weighted sum rate maximization is also considered. In the process,
it is shown that allocating user powers in direct proportion to user weights
asymptotically maximizes weighted sum rate.

Index Terms—Broadcast channels, channel capacity, multiple-input–
multiple-output (MIMO) systems.

I. INTRODUCTION

Dirty paper coding (DPC) was proved to achieve the capacity
region of the multiple antenna broadcast channel (BC) [1]. However,
implementation of DPC requires significant complexity at both trans-
mitter and receiver, and the problem of finding practical dirty paper
codes close to the capacity limit is still open [2]. On the other hand,
linear precoding is a low complexity but suboptimal transmission
technique (with complexity roughly equivalent to point-to-point mul-
tiple-input–multiple-output (MIMO)) that is able to transmit the same
number of data streams as a DPC-based system. Linear precoding
therefore achieves the same multiplexing gain (which characterizes
the slope of the capacity versus SNR curve) as DPC, but incurs an
absolute rate/power offset relative to DPC.

The contribution of this work is the quantification of this rate/power
offset using the affine approximation developed by Shamai and Verdú
[3]. At high SNR, the channel capacity C(P ) is well approximated by
an affine function of SNR (P )

C(P ) = S1 (log
2
P � L1) + o(1) (1)

where S1 represents the multiplexing gain and L1 represents the
power offset (in 3 dB units) that are defined as

S1 = lim
P!1

C(P )

log
2
(P )

(2)

L1 = lim
P!1

log
2
(P )�

C(P )

S1
: (3)

The multiplexing gain S1 is equal to the minimum of the number of
transmit and receive antennas (for either point-to-point or downlink
MIMO channels), and thus is essentially independent of the fading en-
vironment and signaling strategy. However, the power offset L1 does
depend on the actual fading statistics and the signaling strategy. Ref-
erence [4] provides an exact characterizations of these offset terms for
point-to-point MIMO channels for the most common fading models,
such as independent and identically distributed (i.i.d.) Rayleigh fading,
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spatially correlated fading, and Ricean (line-of-sight) fading. Indeed,
one of the key insights of [4] is the necessity to consider these rate
offset terms, because considering only the multiplexing gain can lead
to rather erroneous conclusions, e.g., spatial correlation does not affect
MIMO systems at high SNR.

In a similar vein, in this correspondence, we utilize the high SNR
approximation to quantify the difference between optimal dirty paper
coding and simpler linear precoding in an independent and indentically
distributed (i.i.d.) Rayleigh-fading environment. By investigating the
differential offsets between these two strategies, we are able to quan-
tify the throughput degradation that results from using linear precoding
rather than the optimal DPC strategy in spatially white fading.1 We are
also able to derive simple expressions for the average rate offset as a
function of only the number of transmit and receive antennas and users
for systems in which the aggregate number of receive antennas is no
larger than the number of transmit antennas. Note that past work has
analyzed the ratio between the sum rate capacity and the linear pre-
coding sum rate [5], [6]. However, such analyses essentially capture
only multiplexing gain effects and, thus, are limited in scope. By al-
ternatively studying the absolute difference between the different sum
rates, we are able to derive more meaningful and accurate conclusions.

In addition to the sum rate, we study weighted sum rate maximiza-
tion (using DPC and linear precoding) and provide simple expressions
for the rate offsets. One of the most interesting results is that weighted
sum rate (for either DPC or linear precoding) is maximized at asymp-
totically high SNR by allocating power directly proportional to user
weights. A similar result was recently observed in [7] in the context of
parallel single-user channels (e.g., for OFDMA systems). Because the
linear precoding strategies we study result in parallel channels, the re-
sult of [7] shows that it is asymptotically optimal to allocate power in
direct proportion to user weights whenever linear precoding is used. By
showing that weighted sum rate maximization when DPC is employed
can also be simplified to power allocation over parallel channels, we
are able to show that the same strategy is also asymptotically optimal
for DPC.

Because of space limitations, the correspondence is limited to a brief
presentation of the main technical results and proofs. For additional
interpretation and numerical results, see [8] and [9].

II. SYSTEM MODEL

We consider a K-user Gaussian MIMO BC in which the transmitter
has M antennas and each receiver has N antennas with M � KN ,
i.e., the number of transmit antennas is no smaller than the aggregate
number of receive antennas. The received signal yk of user k is given
by

yk = Hkx+ nk; k = 1; . . . ; K (4)

where Hk(2
N �M) is the channel gain matrix for user k, x is the

transmit signal vector having a power constraint tr( [xxH ]) � P ,
and nk (k = 1; . . . ; K) is complex Gaussian noise with unit variance
per vector component (i.e., [nkn

H

k ] = I). We assume that the
transmitter has perfect knowledge of all channel matrices and each

1Although we do not pursue this avenue in the present publication, it would
also be interesting to investigate the DPC-linear precoding offset in other fading
environments, e.g., Ricean and spatially correlated fading. However, one must
be careful with respect to channel models because some point-to-point MIMO
models do not necessarily extend well to the MIMO broadcast channel. For ex-
ample, in point-to-point channels spatial correlation captures the effect of sparse
scattering at the transmitter and/or receiver and is a function of the angle-of-ar-
rival. In a broadcast channel, the angle-of-arrival is typically different for every
receiver because they generally are not physically co-located; as a result, using
the same correlation matrix for all receivers is not well motivated in this context.
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receiver has perfect knowledge of its own channel matrix. For the sake
of notation, the concatenation of the channels is denoted by HH =
HH

1 H
H
2 � � �H

H
K (2 M �KN), which can be decomposed into row

vectors as HH = hH1;1h
H
1;2 � � �h

H
1;Nh

H
2;1h

H
2;2 � � �h

H
2;N � � � h

H
K;N ,

where hk;n(2 1�M ) is the nth row of Hk . We develop rate offset
expressions on a per-realization basis, as well as averaged over the
standard i.i.d. Rayleigh-fading distribution, where the entries ofH are
i.i.d. complex Gaussian with unit variance.

III. HIGH SNR SUM RATE APPROXIMATIONS

In this section, we compute the affine approximations to the dirty
paper coding sum rate and the linear precoding sum rate at high SNR.
In the following section, these expressions are used to quantify the sum
rate degradation incurred by linear precoding relative to DPC.

A. Dirty Paper Coding

The sum rate by DPC, which achieves the sum capacity [10], [11],
[12], can be written by the duality of the MIMO broadcast channel (BC)
and the MIMO multiple-access channel (MAC) [10]

CDPC(H; P ) = max
tr(Q )�P

log2 I+

K

k=1

H
H
k QkHk (5)

where Qk represent the N � N transmit covariance matrices in the
dual MAC. No closed-form solution to (5) (which is convex) is known
to exist, but it has been shown that CDPC(H; P ) converges (absolutely)
to the capacity of the point-to-point MIMO channel with transfer matrix
H whenever M � KN :

Theorem 1 ([13, Th. 3]): When M � KN andH has full row rank

lim
P!1

CDPC(H; P )� log2 I+
P

KN
H
H
H = 0: (6)

Using this result we can make a few important observations re-
garding the optimal covariance matrices at high SNR. Since

log2 I+
P

KN

K

k=1

H
H
k Hk = log2 I+

P

KN
H
H
H (7)

choosing each of the dual MAC covariance matrices asQk = P

KN
I in

(5) achieves sum capacity at asymptotically high SNR. Thus, uniform
power allocation across the KN antennas in the dual MAC is asymp-
totically optimal. As a result, an affine approximation for the sum rate
can be found as

CDPC(H; P ) �= KN log2 P �KN log2KN + log2 HH
H (8)

where �= refers to equivalence in the limit (i.e., the difference between
both sides converges to zero as P !1). Since the MIMO BC and the
M � KN point-to-point MIMO channel are equivalent at high SNR
(Theorem 1), the high SNR results developed in [4] directly apply to
the sum capacity of the MIMO BC channel. It is important to be careful
regarding the ordering of the equivalent point-to-point MIMO channel:
due to the assumption that M � KN , the MIMO BC is equivalent to
the M � KN MIMO channel with CSI at the transmitter, which is
equivalent to theKN � M MIMO channel with or without CSI at the
transmitter (i.e., open-loop MIMO). WhenM > KN , the level of CSI
at the transmitter affects the rate offset of theM � KN point-to-point
MIMO channel. Finally, notice that the high SNR sum rate capacity
only depends on the product of K and N and not on their specific
values; this is not the case for linear precoding.

B. Linear Precoding

Linear precoding is a low-complexity, albeit suboptimal, alterna-
tive to DPC. We consider two linear precoding techniques that cancel
out the multiuser interference: block diagonalization (BD) and zero-
forcing (ZF). Note that eliminating multiuser interference is desirable
at high SNR in order to prevent interference-limited behavior.

The sum rate by BD is given by [14], [15]

CBD(H; P ) = max
Q : trfQ g�P

K

k=1

log2 I+G
H
k QkGk (9)

where Gk(= HkVk , Vk is the precoding matrix) is the effective
channel matrix for user k and the optimal rate is achieved asymptot-
ically by uniform power allocation at high SNR since the channel can
be decomposed into parallel channels. Hence, the sum rate is asymp-
totically given by

CBD(H; P ) �= KN log2 P �KN log2KN + log2

K

k=1

GkG
H
k :

(10)

As a special case, the sum rate by ZF is similarly given by

CZF(H; P ) �= KN log2 P �KN log2KN + log2

K

k=1

N

n=1

jgk;nj
2

(11)

where gk;n = hk;nvk;n and vk;n denotes the nth column vector of
Vk .

C. Equivalent MIMO Interpretation

Due to the properties of i.i.d. Rayleigh fading, systems employing
linear precoding like ZF or BD are equivalent to parallel point-to-point
MIMO channels, as shown in [14]. When ZF is used, the precoding
vector for each receive antenna (i.e., each row of the concatenated
channel matrix H) must be chosen orthogonal to the other KN � 1
rows of H. Due to the isotropic nature of i.i.d. Rayleigh fading, this
orthogonality constraint consumes KN � 1 degrees of freedom at the
transmitter, and reduces the channel from the 1 � M vector hk;n to a
1 � (M �KN + 1) Gaussian vector. As a result, the effective chan-
nels norm jgk;nj

2 of each parallel channel is chi-squared with 2(M �
KN + 1) degrees of freedom (denoted �22(M�KN+1)). Therefore, a
ZF-based system with uniform power loading is exactly equivalent (in
terms of ergodic throughput) to KN parallel 1 � (M � KN + 1)
MIMO channels.

When BD is used, the orthogonality constraint consumes (K�1)N
degrees of freedom. This reduces the channel matrixHk , which is orig-
inallyN �M , to aN � (M�(K�1)N) complex Gaussian matrix.
As a result, theN � N matrixGkG

H
k is Wishart withM�(K�1)N

degrees of freedom, and therefore a BD-based system is equivalent to
K parallel N � (M � (K � 1)N) parallel MIMO channels.

Finally, when DPC is used, the MIMO broadcast channel is equiva-
lent to theM � KN point-to-point MIMO channel, whereM � KN

and CSIT is again assumed. Note that a MIMO channel of this dimen-
sion can be interpreted as a series of parallel channels as well: in this
case, the M � KN channel is equivalent to 1 � M; 1 � (M �
1); . . . ; 1� (M �KN + 1) channels in parallel [16].

For all three cases, the MIMO equivalence is exact when uniform
power loading is used. If optimal power allocation is performed (for
either ZF, BD, or DPC) the MIMO broadcast systems can achieve a
larger ergodic throughput than the MIMO equivalent at finite SNR, but
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this advantage disappears at asymptotically high SNR because water-
filling provides a vanishing benefit.

IV. HIGH SNR OFFSET CALCULATIONS

We define the rate loss as the asymptotic (in SNR) difference be-
tween the sum rate capacity (DPC) and the BD sum rate

�DPC�BD(H) lim
P!1

[CDPC(H; P )� CBD(H; P )] : (12)

Since each of the capacity curves has a slope of KN

3
in units of

bps/Hz/dB, this rate offset (i.e., the vertical offset between capacity
versus SNR curves) can be immediately translated into a power offset
(i.e., a horizontal offset): �DPC�BD(H) = 3

KN
�DPC�BD(H) dB.

Because �DPC�BD is in dB units, we clearly have �DPC�BD(H) =
3 LBD

1
(H)� LDPC

1
(H) . In terms of the high SNR approximation,

the rate offset is precisely the difference between the L1 terms for
DPC and linear precoding multiplied by S1.

From the affine approximation to DPC and BD sum rate found in (8)
and (10), the rate loss incurred by BD is

�DPC�BD(H) = log2
jHH

Hj
K

k=1 jGkG
H
k j
: (13)

By averaging across the fading distribution, we can calculate the
average rate offset: ��DPC�BD H [�DPC�BD(H)], which allows a
comparison of ergodic throughput. Likewise, the average power offset
(denoted as ��DPC�BD) can be calculated in the same fashion. Since
the matrices HH

H and GkG
H
k are Wishart under i.i.d. Rayleigh

fading, we can get a simple closed form expression for the rate offset2:

Theorem 2: The expected loss in Rayleigh fading due to block di-
agonalization is given by

��DPC�BD(M;K;N)

= (log2 e)

K�1

k=0

N�1

n=0

(K�1)N

i=kN+1

1

M � n� i
(bps/Hz): (14)

Proof: From (8) and (10), ��DPC�BD is given by

��DPC�BD = [log2 H
H
H ]�K log2 GG

H

where GGH is N � N Wishart wth M � (K � 1)N degrees of
freedom. Using the property of Wishart matrix [17], we have

��DPC�BD
log2 e

=

KN�1

l=0

 (M � l)�K

N�1

n=0

 (M � (K � 1)N � n)

and the result follows from an expansion of the digamma function and
some algebraic manipulations.

We can easily determine the zero forcing offset by noting that it de-
pends only on the product KN

��DPC�ZF(M;K;N) = ��DPC�ZF(M;KN; 1)

= ��DPC�BD(M;KN; 1): (15)

2It is straightforward to use this result to determine the rate offset
of BD in terms of the rate offset L (KN;M) of a KN � M

MIMO channel in i.i.d. Rayleigh fading given in Proposition 1 of [4]:
L (M;K;N) = L (KN;M)+ �� (M;K;N).

In Sections IV-A–C we gain some insight into these results by first
further studying zero forcing and then considering block diagonalized
systems.

A. Zero Forcing

To understand the rate penalty associated with zero forcing, we study
the behavior of the offset as system size increases. The first case of
interest is when M = KN , i.e., the total number of receive antennas
is equal to the number of transmit antennas. In Appendix A we show
that the offset in this scenario can be well approximated as

��DPC�ZF(M;M; 1) �M log2M (bps=Hz) (16)

in the sense that the ratio of both sides converges to one as M grows
large. In this scenario, the ZF sum rate is associated with the capacity
of M parallel 1 � 1 (SISO) channels while the DPC sum rate is asso-
ciated with an M � M MIMO channel. This corresponds to a power
offset of 3 log2M (dB), which is very significant whenM is large. Nu-
merical results show that the approximation 3 log2M (dB) overstates
the power penalty by 1 to 1.5 dB for reasonable values of M(< 20),
but it does capture the growth rate correctly. Such a large penalty is not
surprising, since the use of zero-forcing requires inverting theM �M
matrixH, which is poorly conditioned with high probability when M
is large.

The behavior of zero-forcing is quite different if the number of re-
ceivers is strictly smaller than M . If system size increases such that
M;K !1 with M = �KN for some � > 1, the power offset con-
verges to a constant (see proof in Appendix B)

��DPC�ZF(�) = �3 log2 e+ � log2 1�
1

�
(dB): (17)

Thus, for large systems, ZF is a viable low-complexity alternative to
DPC if the number of transmit antennas can be made suitably large. A
similar conclusion was drawn in [18] where the ratio of the rates achiev-
able with ZF relative to the sum capacity is studied. Note that using ZF
on the MIMO downlink channel is identical to using a decorrelating re-
ceiver on the multiple antenna uplink channel or in a randomly spread
CDMA system; see [3, eq. (152)] for the asymptotic performance of
the decorrelating CDMA receiver.

B. Block Diagonalization

To gain some insight into Theorem 2, we first note a simple prop-
erty of the rate offset. If the number of transmit antennas M is kept
fixed butN is increased andK is decreased such thatKN is constant,
i.e., the number of antennas per receiver is increased but the aggregate
number of receive antennas is kept constant, then the rate offset de-
creases. Indeed, this observation can be reached by simply considering
the equivalent MIMO channels discussed in Section III-C.

It is also very useful to analyze the offset between BD (K receivers
with N antennas each) and ZF (equivalent to KN receivers with 1
antenna each). Some simple manipulations of the earlier results yield
the following theorem:

Theorem 3: If M = �KN with N > 1 and � � 1, the expected
throughput gain of BD relative to ZF is

��BD�ZF ��DPC�ZF(M;NK)� ��DPC�BD(M;N;K)

= (log2 e)K

N�1

j=1

(N � j)

(�� 1)KN + j
(bps=Hz): (18)
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Furthermore, when M = KN the power offset between BD and ZF is
a function only of N (i.e., is independent of the particular values of M
and K)

��BD�ZF(N) =
3(log2 e)

N

N�1

j=1

N � j

j
(dB): (19)

For example, consider two system configurations: (i) M
2

receivers each
have two antennas, and (ii) M receivers each have one antenna. Equa-
tion (19) indicates that the power advantage of using BD in the N = 2
system is ��BD�ZF(2) = 2:1640 (dB) relative to performing ZF that
is independent of M .

C. Unequal Average SNR’s

Near-far effects in a wireless broadcast channel environment can
lead to asymmetric channel gains; i.e., the channel gain of user k is
now Hk =

p
k ~Hk , where k denotes the average SNR of user k.

The elements of ~Hk have Gaussian distribution with mean zero and
unit variance by assumption. It is important to note that the uniform
power allocation is still asymptotically optimal even when users’ SNR
are asymmetric since M � KN . Thus, we can derive that all the sum
rates by DPC, ZF, and BD are shifted equally by N K

k=1 log2 k . As
a result, the DPC-ZF and DPC-BD offsets are unaffected.

V. WEIGHTED SUM RATE ANALYSIS

In this section we generalize the rate offset analysis to weighted sum
rate. The sum rate offset quantifies the difference between the sum rate
points of both regions; the weighted sum rate offset is intended to de-
scribe the offset for the other portions of the rate region.

We first show that allocating power in proportion to user weights is
asymptotically optimal for either DPC or BD, and then use this result
to compute the associated rate offsets.

A. Asymptotically Optimal Power Allocation

Without loss of generality, we assume user weights are given in de-
scending order: �1 � �2 � � � � � �K � 0 with K

k=1 �k = 1. The
maximum weighted sum rate problem (DPC) can be written in terms
of the dual MAC as:

CDPC(���;H; P ) = max
tr(Q )�P

K

k=1

�k log2
jA(k)j
jA(k�1)j (20)

where A(k) = I + k

j=1H
H
j QjHj for k � 1 and A(0) = I. No-

tice that the uplink (or the dual MAC) decoding is done in order of
increasing weight, i.e., user K does not get the benefit of any interfer-
ence cancellation while user 1’s signal benefits from full interference
cancellation and is thus detected in the presence of only noise. From
the construction of A(k), we have

jA(k)j
jA(k�1)j = I+QkHk(A

(k�1))�1HH
k :

The following lemma shows that if we limit ourselves to linear power
allocation policies of the form tr(Qk) = �kP , then the objective func-
tion in (20) can be decoupled at high SNR.

Lemma 1: LetFk (k = 1; . . . ; K) be the projection ofHk onto the
nullspace of fHjgk�1j=1 . If M � KN , then

lim
P!1

Hk(A
(k�1))�1HH

k � FkFHk = 0; k = 1; . . . ; K: (21)

Proof: See Appendix C.
Once the weighted sum rate maximization has been decoupled into
the problem of maximizing weighted sum rate over parallel single-user
channels, we can use the result of [7] to show that the optimal power
allocation is of the form P �k = �kP + O(1).

Theorem 4: When M � KN , allocating power according to

Qk =
�kP

N
I; k = 1; . . . ; K: (22)

asymptotically achieves the optimal solution to (20) at high SNR.
Proof: See Appendix D.

Theorem 4 generalizes the fact that uniform power allocation achieves
the maximum sum rate asymptotically at high SNR. That is, for the sum
rate problem the weights are the same (i.e., �1 = � � � = �K = 1=K),
thus the uniform power policy is asymptotically optimal.

Meanwhile, the weighted sum rate of BD is given by

CBD(���;H; P ) = max
Q : tr(Q )�P

K

k=1

�k log2 I+QkGkG
H
k

(23)

where Gk is the projection of Hk onto the null space of
fH1; . . . ;Hk�1;Hk+1; . . . ;HKg. (cf. Fk in Lemma 1 is the
projection of Hk onto the null space of fH1; . . . ;Hk�1g.) Likewise,
the optimization (23) is the same as the optimization (29) and (30)
except that Fk is replaced by Gk which does not contribute to the
asymptotic solution. Thus, the power allocation policy in (22) is also
the asymptotic solution to (23). By the same token, the weighted sum
rate optimization by ZF can be easily solved at high SNR.

B. Rate Loss

Using the asymptotically optimal power allocation policy of (22),
the difference between the weighted sum rates by DPC and BD can be
found as

�DPC�BD(���;H) =

K

k=1

�k log2
FkF

H
k

jGkG
H
k j

(24)

per realization. In Rayleigh fading, the distribution ofFkFHk is Wishart
with M � (k � 1)N degrees of freedom while the distribution of
GkG

H
k is Wishart with M � (K � 1)N degrees of freedom. Thus,

we can compute the expected loss using the property of Wishart matrix

��DPC�BD(���;M;K;N)

= (log2 e)

K

k=1

�k

N�1

n=0

M�(k�1)N�n�1

j=M�(K�1)N�n

1

j
: (25)

As done for the sum rate analysis, we can also calculate the rate/power
offsets between BD and ZF with simple algebraic manipulations.

Besides that the sum rate problem is a special case of weighted
sum rate problems, the sum rate has another property in terms
of the rate offset. The expected rate offset is minimized at
the sum rate; i.e., when �1 = � � � = �k = 1

K
. If we let

�k = N�1
n=0

M�(k�1)N�n�1
j=M�(K�1)N�n

1
j

, then then �1 > �2 > � � � > �K

and ��DPC�BD = (log2 e)
K

k=1 �k�k . Since f�kg has constraints of
�1 � � � � � �K , K

k=1 �1 = 1, and �k � 0(1 � k � K), ��DPC�BD
achieves minimum at �1 = � � � = �k = 1

K
for a given f�kg.
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VI. CONCLUSION

We have investigated the difference between the throughputs
achieved by DPC relative to those achieved with linear precoding
strategies. When the aggregate number of receive antennas is equal or
slightly less than the number of transmit antennas, linear precoding
incurs a rather significant penalty relative to DPC, but this penalty is
much smaller when the number of transmit antennas is large relative to
the number of receive antennas. Additionally, one interesting finding
is that allocating power directly proportional to user weights is asymp-
totically optimal for DPC at high SNR. This simple yet asymptotically
optimal power policy may prove to be useful in other setting such as
opportunistic scheduling.

Our analysis is limited to channels for more transmit antennas than
aggregate receive antennas. If not, no MIMO equivalent channel exists
for either DPC or linear precoding. The sum capacity (DPC) is smaller
than the capacity of the M � KN (forward) cooperative channel (in
which CSIT is not required at high SNR), but is larger than the capacity
of the reverse KN �M cooperative channel without CSIT. Addition-
ally, ZF and BD are not feasible. Thus, some form of selection (of users
and possibly of the number of data streams per receiver) must be per-
formed. As a result of these complications, it does not appear that the
high SNR framework will yield closed-form solutions for either DPC
or linear precoding when M < KN .

APPENDIX A
DERIVATION OF EQUATION (16)

Let SM be the expected rate loss with M antennas; i.e., SM =
��DPC�ZF(M;M; 1). Then, we have

SM+1 � SM =

M

i=1

1

i
� 1 + logeM; forM � 1 (26)

since logeM =
M

1
1
x
dx � M

i=2
1
i

. If we let f(M) M logeM ,
then f(M + 1) � f(M) + 1 + logeM . Since SM+1 � SM � 1 +
logeM and f(1) = S1 = 0, SM � M logeM for all M � 1.

Now we show that SM converges to M logeM . We do this by
showing that SM � �M logeM for any 0 < � < 1 for all M larger
than some M0. First notice that SM+1 � SM = M

i=1
1
i
� logeM .

Let g(M) �M logM for some 0 < � < 1. Then, g(M + 1) �
g(M)+g0(M+1) = g(M)+�+� loge(M +1). Therefore we have

g(M + 1)� SM+1 � (f(M)� SM)

+� + � loge(M + 1)� logeM: (27)

Notice that the term � + � loge(M + 1)� logeM is a monotonically
decreasing function that goes to �1. Thus, any positive gap between
g(M) and SM must close and go to �1, i.e., SM � g(M) for suffi-
ciently large M . As a consequence of this, limM!1

S
�M log M

� 1,

or limM!1
S

M log M
� � for any � < 1. Since S

M log M
is bounded

above by 1, it must converge; i.e.

lim
M!1

SM

M logeM
= 1 (28)

as desired.

APPENDIX B
DERIVATION OF EQUATION (17)

From Theorem 2, if M = �KN , the expected power offset, which
is now a function of � and KN , can be expressed as

��DPC�ZF(�;KN) =
3 log2 e

KN

KN�1

j=1

j

M � j

=3 log2 e

KN�1

j=1

j
KN

� � j
KN

1

KN
:

Let f(x) = x
��x

(� > 1), for x 2 [0; 1]. Then, by the property of
integration, we can find the limit of ��DPC�ZF as KN ! 1

��DPC�ZF(�) = lim
KN!1

��DPC�ZF(�;KN)

= 3 log2 e
1

0

f(x)dx:

Thus, we have the result.

APPENDIX C
PROOF OF LEMMA 1

If we let the eigenvector matrix and eigenvalues of k�1
j=1 H

H
j QjHj

be U and �1; . . . ; �k�1 with �j > 0, then

(A(k�1))�1=2 = U���UH

where

��� = diag
1p

1 + �1
; . . . ;

1p
1 + �k�1

; 1; . . . ; 1 :

As P goes to infinity, �’s tend to infinity. Thus, the first k � 1 eigen-
values of ��� converge to 0. The eigenvectors corresponding to the unit
eigenvalues span the nullspace fHjgk�1j=1 ; i.e.

lim
P!1

Hk(A
(k�1))�1=2 � Fk = 0:

This completes the proof.

APPENDIX D
PROOF OF THEOREM 4

By Lemma 1, the optimization (20) can be decomposed into the two
optimizations at high SNR

CDPC(���;H; P ) �= max
P �P

K

k=1

�k�k(Pk) (29)

where

�k(Pk) = max
tr(Q )=P

log2 I+QkFkF
H
k : (30)

By applying the high SNR affine approximation to (30) and applying
[3, Th. 3], we have the result.
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On the Multivariate Conditional Probability Density of a
Vector Perturbed by Gaussian Noise

Yuriy S. Shmaliy, Senior Member, IEEE

Abstract—This correspondence examines the joint conditional proba-
bility density function (pdf) of the main variables (envelope, phase, and
their n-order time derivatives) of a time-varying random signal in the pres-
ence of additive Gaussian noise. The main variables are conditioned with
respect to the given variables, which are the amplitude, phase, and their
derivatives of the signal alone. We prove a theorem stating that some of the
conditional pdfs of the main variables do not depend on some of the given
variables. This theorem, together with Bayes’s theorem, can substantially
simplify the derivations of conditional pdfs and give alternative forms of
them. Both theorems can also help in finding reasonable approximations,
as we demonstrate for the phase and first time derivative of the envelope.

Index Terms—Joint probability density function, phase, random signal,
time derivative of the envelope, time-varying vector.

I. INTRODUCTION

Statistical properties of an information bearing narrowband signal
perturbed by noise have been studied for decades beginning with the
early works of Rice. In spite of this, as will become clear in the sequel,
one of the important problems still remains unsolved.

Most generally, a signal is represented in the form of

s(t) = 2S(t) cos[!0t+ #(t)]

=Uc(t) cos!0t� Us(t) sin!0t (1)

where Uc = U cos#, Us = U sin#, 2S(t) is an instantaneous power,
and !0 is an angular carrier frequency. HereU(t) = 2S(t) and #(t)
are the signal amplitude and phase, respectively.

A common case is that, at a receiver, (1) is perturbed by narrowband
Gaussian noise, whose model is

�(t) =A(t) cos[!0t+ �(t)]

=Ac(t) cos!0t�As(t) sin!0t (2)

where Ac = A cos� and As = A sin� are orthogonal, low-pass, sta-
tionary, and zero-mean Gaussian processes with equal variances �2 =
�2
c
= �2

s
. Also, it is supposed that �(t) is continuous and multiply dif-

ferentiable. Both s(t) and �(t) are mixed at the receiver additively, so
that the signal becomes noisy

v(t) =V (t) cos[!0t+ '(t)] (3a)

=Vc(t) cos!0t� Vs(t) sin!0t (3b)

=(Uc +Ac) cos!0t� (Us + As) sin!0t (3c)

where Vc = V cos', Vs = V sin', V (t) is the envelope, and '(t) is
the phase.

Equating the amplitudes of the harmonic functions in (3b) and (3c)
produces the Gaussian variables

Ac(t) =V (t) cos'(t)� U(t) cos#(t) (4)

As(t) =V (t) sin'(t)� U(t) sin#(t) (5)
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