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Abstract—The multihop spatial reuse Aloha (MSR-Aloha) Our motivation for introducing these two protocols is both
protocol was recently introduced by Baccelliet al, where each practical and mathematical. Practically, the performance of
transmitter selects the receiver among its feasible next hops MSR-Aloha, which restricts attention to the head of line packet

that maximizes the forward progress of the head of line packet _ . . . .
towards its final destination. They identify the optimal medium will by construction be inferior to the performance of longest

access probability (MAP) that maximizes the spatial density €dge routing, which exploits “buffer diversity” to allow the
of progress, defined as the product of the spatial intensity of MAC protocol to move the packets the furthest distance.
attempted transmissions times the average per-hop progress of Mathematically, it is perhaps intuitive to see that analysis of
each packet towards its destination. We propose a variant called \5q0m edge and longest edge routing is simpler than analysis
longest edge routing where each transmitter selects its longest .
feasible edge, and then identifies a packet in its backlog WhoseOf MSR-AIoha, on account of the fact that. progress in the
next hop is the associated receiver. The main contribution of this former is measured by the average and maximum edge length,
work (and of Baccelli et al) is the use of stochastic geometry to while progress in the latter involves a projection of that length
identify the optimal MAP and the corresponding optimal spatial  onto the line connecting each packet with its final destination.
density of progress. There are many practical challenges that can be raised
against both MSR-Aloha and our proposed edge routing
protocols. Mobility, for example, must be slow enough so that
the network topology is sufficiently static to allow a routing

A recent paper by Baccelli, Blaszczyszyn, andtNethaler protocol to inform all packets of the locations of their final
[1] introduced the multihop spatial reuse Aloha (MSR-Alohajestinations, and by extension their next hop. Our random and
protocol in the context of an ad hoc network. The maipngest edge protocols assume a packet backlog covering all
idea is to combine an Aloha medium access control (MAGossible next hops, but this assumption raises questions about
protocol with a routing protocol that moves packets alonge stability of the queues in the network, and the effect of
hops that maximize the progress of each packet towards g protocol on delay. Timing and synchronization are also
final destination. Baccellet al. derive the optimal medium jgnored. While these are valid criticisms, the focus of this
access probability (MAP) that maximizes the spatial densipaper is on obtaining closed form expressions for the optimal
of progress, defined as the number of transmissions per squaP for random edge and longest edge routing, as well as ex-
meter times the average progress towards the destinationypdssions for the spatial intensity of progress under the optimal
each transmitted packet. A key contribution of their paper AP, The tractability of the model is necessarily reduced if
the use of stochastic geometry to explicitly incorporate thejs extended to incorporate the drawbacks mentioned above.
effect of node locations on network performance. The rest of this paper is organized as folloi.introduces

In this paper we analyze two related but distinct protocotae mathematical mode§lll presents analytical results on the
termed random edge routing and longest edge routing. A kejtimal MAP and corresponding optimal spatial density of
assumption in [1] is that each transmitter (TX) selects thgogress under random edge and longest edge roujlkg.
next hop receiver (Rx) as the node that carries iead of presents simulation results and shows a good match with the

line packetat the Tx furthest towards its eventual destinatiomnalytical results. A brief conclusion is given§k. The proofs
selected over all Rx such that the received signal to interfefre placed in the Appendix.

ence plus noise ratio (SINR) is sufficiently high to ensure a
successful reception. In contrast, we consider a regime where [I. MATHEMATICAL MODEL

each Tx has a sufficient backlog of packets to ensure it hasconsider an infinitely large ad hoc network where the node
at least one packet in queue for each potential next hop Ryeations at some snapshot in time form a stationary Poisson
Under random edge routing, each Tx selects one of its feasip[gnt process (PPP)I = {xz;} on the plane of intensity.
next hop Rx at random, and selects a packet from its queggrring each time slot each node elects to transmit (Tx) with
appropriate for that Rx. Under longest edge routing, each probability p or receive (Rx) with probabilityl. — p; it follows
selects the Rx furthest away. Both protocols are measufgdt the set of TX's ) and RX's (Igx) are themselves
under the same spatial density of progress employed in [1ktationary PPPs of intensitieg andA(1—p) respectively, with

) ) It UTIg, = II. The success of an attempted communication
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I. INTRODUCTION



Definition 1: The SINR from each Tixto each Rxj is A “fair” comparison of random/longest edge routing with

o d = MSR-Aloha requires selecting a destination for each packet
SINR,; = Y i€l j€llry, (1) in the buffer, then selecting the packet and Rx pair with
ZkeHTx\{i} hkjdkj +n the longest progress towards destination, and then using this

wherea > 2 is the pathloss exponent,; = d(z;, ;) is the projected length in evaluating the spatial density of progress.
distance fromi to j, {hx;} ~ Exp(1) are the iid Rayleigh This would spoil the model tractability while gaining little

fading channel gains, and is the noise power. in insight, and so we simply focus on computing the aver-
age/maximum edge length. That is, we don't consider the
A. MAC: the spatial Aloha graph effect of finite buffers, nor do we project the edge lengths

onto the line towards each packet's destination. Alternately,

We assume a Tx-Rx pair are successful iff the SINR Jhte the unprojected edge length is an increasingly accurate
the receiver exceeds the SINR threshgidThe spatial Aloha \aasure of progress as the buffer length grows large.
graph was introduced by Ganti and Haenggi in [2].

Definition 2: The spatial Aloha graph is an infinite randomIII

geometric directed bipartite grapfi = (Il1x, gy, F), where ) )
edges indicate a sufficiently high SINR: Assumption 2: Throughoufill we assume that there is no

noise,n = 0, and indicate this by writing SIR instead of SINR.
(i,j) € E < SINR;; > 3, i € 1y, j €llrx.  (2) This assumption is realistic in the interference-limited case.
A new realization of this graph is created in each time slah the present case of Rayleigh fading, a noise term contributes
when each node independently decides to Tx or Rx. an independent exponential term to the probability of trans-

Assumption 1: The SINR thresholt,required for success- mission success [1]. The no-noise assumption is unrealistic for
ful reception, is assumed to equal or exceed uniity: 1. This  very smallp, since edges of unbounded length are possible.
ensures each Rx has an in-degree of either zero or one.

The in-degree bound follows from the assumption becauge
reception for3 > 1 requires one node have a signal con- . . )
tribution exceeding the sum interference contribution of all e first summarize key results from [1], [2], [3]. First,
other Txs, and there can necessarily be at most one sie@ccelli et al. [1] established the probability of an edge
node. A realization of this graph is shown in Fig. 1 foP€ween a Tx and a Rx separated by distadice

p € {0.05,0.20,0.50}. Qualitative properties of include: Proposition 1: (from [1]). The probability that a Tx-Rx pair

o Small p: There are few Tx’s and many Rx’s. There is lo i,J) separated by distancé;; has sufficiently high SIR, and
) ' \ence has an edge iA is

interference, and hence longer edges. The Tx's each h

high out-degree, many Rx’s have an in-degree of one. P((i,j) € E) = P(SIRy; > ) = exp {—7d;; Apr},  (3)
« Large p: More Tx's and fewer Rx's. There is higher

interference, and hence only shorter edges are possible. M}gre

_ 55—
Tx’s each have low out-degree, many Tx in fact have zero k= (m0) esce(md)5°, 6 = 2/a. @
out-degree and many Rx have zero in-degree. It is worth noting that the proof of the above result relies

The key tradeoff is that although there are many long edgcrs'tlc.";l"y.On the ass_umed Ray_le|gh fading; for a general fading
istribution (including no fading) one must resort to bounds
for low p, each Tx can make use of only one of them, hence

we wish to have more Tx’s (highes), but the additional Tx's on the above probability, see.g, [4]. We next define the
) . neighbors and degrees for each node.
cause more interference, which reduces the number of edges .. ... ]
efinition 3: The random set of Rx for each Tx, and the

and the average length per edge. random set (of maximum cardinality one) of Tx for each Rx:

OPTIMAL MAP AND SPATIAL DENSITY OF PROGRESS

Preliminary results

B. Routing: selecting an outgoing edge from each Tx MM = {jellpy: (i,j) € E}, i €Ty
Coordination is assumed so that in each time slot each Tx MG = {i€lrc:(3,5) € B}, j€re.  (5)

knows those Rx’s for which the SINR is sufficiently large, am;}he random Tx out-degree and random Rx in-degree:

hence knows the set of potential Rx’s for that time slot. Given ' _

that a Tx may have multiple Rx's, we specify below some M" = M|, i € Tlpy, M = |[M}|, j € llgx. (6)

possible rules for each Tx to select among the various Rx’srhe mean out-degree and in-degree

« MSR-Aloha [1]: each Tx selects the Rx maximizing the _ )
progress of the head of line packet towards its destination. m" = E[M°"], m™ = E[M™] (7)
'TI'Q?ir?]%itlterllledae\?esrl;ygprgé)lgarte;rsolgrtehses 'tgtﬁgrsétgig jgggﬁ;ﬁg% the expected out (in) degree obtained by selecting a Tx
X X) uniforml random over th « (ITRrx).
« Random / longest edge routingeach Tx selects a Rx ata:Q ) uniformly at random over the SHlir (Ix)

random (random edge routing), or selects the Rx that is fLEiogque;r:j gg%r\zes are given by Ganti and Haenggi [2],

thest away (longest edge routing), and then selects a pack " ) )
whose assigned next hop is that Rx. The spatial density of roposition 2: (from [2]). The mean degrees are:

progress is the product of the intensity of successful Tx mout — 1-p1 min — 1 (8)

times the average (or average maximum) edge length. p oK K



It is noteworthy that the mean in-degree is independent of IV. NUMERICAL AND SIMULATION RESULTS

andp. The number of edge heads and tails must match; this isrigyres 2, 3, and 4 present numerical and simulation results
seen by weighing the average out (in) degree with the spafigdm Theorems 1 and 2. Simulation results were obtained by

intensity of Tx (Rx): Apm®** = A(1 — p)m™. Further, since taking a Monte-Carlo average oveiindependent realizations

M}“ is Bernoulli, we in fact know the distribution is

P(MP =1)=1-P(M" =0)=m", jelr. (9)

of a network arenad of size 400 x 400 square meters, with
an intensityA = 0.02. The average number of nodes was
thereforeE[N] = \|.A| = 3200. Figures 2 and 3 were obtained

A lower bound (via Jensen’s inequality) on the probabilitysingo, =3, 3 =1, n= 1079, yielding x ~ 2.4184 (4).
of no outgoing edges is given by Ganti and Haenggi [3], Fig. 2 shows simulation and numerical results for spatial

reproduced below. Note the bound is independent.of

density of progressh(\,p), for RER (12) and LER (16),

Proposition 3: (from [3]). The probability of no outgoing versus the MAR. The approximaté(\, p) is seen to be quite

edges is lower bounded by:

P(Myyy = 0) > e~ ™Momt, (10)

accurate over alp. The optimal LER achieve&5% higher
progress than optimal RER, wits8% fewer attempted Tx.

These three propositions are used in the proofs of our mainfi9- 3 shows simulation and numerical results for expected

results: Theorem 1 (2) on random (longest) edge routing.

B. Random edge routing (RER)

Define the rvL = d;; as the length of an edde, j) selected
uniformly at random from the sef in G.
Theorem 1: The average edge length under RER is

1 Min
E[L] == )
The spatial density of progress is upper bounded by

1
h(\,p) = ApP(Myye > 0)E[L] < im (1 — e mont)
12)

11)

The bound—-optimum MAP is

—1
1 1
P* = 2my (_1 —ow., <_2e—(2+mm))> 7

(13)

where Wy(z) is the k** branch of the Lambert function,

defined as the solution oW (z)e?V(®) = 2.

edge length,E[L],E[L™**], for RER (11) and LER (15),
versus the MAR. The approximations are quite accurate over
all p aside fromp near0. The numerical edge lengths are
unbounded ap — 0 due to the no noise assumption.

Fig. 4 shows numerical results for the optimal medium
access probabilityp*, for RER (13) and LER, versus (4).
The p* for LER is found by numerically maximizing (16):

oo w12 xp
p ER* = arg max /\p/ (1 — exp {—moute e }) di.
pe(0,1] 0
17

The inset shows a plot of versus the SINR requiremept
for pathloss exponents = {2.5,3,4,5}. The inset shows is
increasing in3 and decreasing in, and that > 1. They-axis
for the inset,[1, 20], is used as the-axis for the main figure.
Fora =3 andB =1 (xk ~ 2.4184), we havep"FR* ~ .14
and pRFR* ~ 0.21, a50% increase in the optimal MAP.

V. CONCLUSION
Theorems 1 and 2 give approximate (yet very accurate)

The proof is found in the Appendix. Note that the optimadxplicit expressions for the average edge length, the spatial

MAP depends only om: and not on).

C. Longest edge routing (LER)

density of progress, and the optimal MAP for RER and LER.
The MSR-Aloha protocol proposed in [1] is equivalent to our
proposed RER protocol if we ignore projections of link edges

Define the rvL™2* as the maximum edge length emanatingnto the final destination ling,e., if the whole edge length
from a Tx selected uniformly at random from those Tx withs counted as progress. Our results quantify the improvement

one or more RXx irG, i.e, over the se{i € Tl : MU > 0}.

of LER over RER both in terms of increased spatial density

Theorem 2: The complementary cumulative distributiodf progress and in terms of reduced optimal medium access
function (CCDF) of the maximum edge length under LER Bfobability. This improvement can be thought of as the Aloha-

approximately

_wl2xp
1 —expq —Moute ™in

1 — e~Mout

P(L™> > |) ~ (14)

The average maximum edge length is approximately

f(;)o (1 — exp {—moute i }) dl
. (@5)

1 — e~ Mout

The spatial density of progress is approximately

]E [Lmax] ~

771'1,2Ap
—Mou€ ™in di. (16)

h(\,p) = \p

1 —exp
The proof is f8ung in the Appendix. The approximation in

MAC benefit of exploiting buffer diversity instead of only
considering the head of line packet.
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Fig. 2. Simulation and numerical results for spatial density of progress,
h(A, p), for random edge routing (RER (12)) and longest edge routing (LER
(16)), versus the medium access probabilityOptimal LER achieve25%
higher progress than optimal RER, wi8% fewer attempted transmissions.
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Fig. 3. Simulation and numerical results for expected edge length,
E[L], E[L™2x], for random edge routing (RER (11)) and longest edge routing
(LER (15)), versus the medium access probabifityThe numerical edge
lengths are unbounded @as— 0 on account of the no noise assumption.
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Fig. 1. Arealization of the spatial Aloha graph fer= 0.05 (top),p = 0.20
(middle), andp = 0.50 (bottom). Transmitters are denoted By receivers
by o, and an edge indicates an SINR abg¥e= 1. The square arena has aFig. 4. Numerical results for the optimal medium access probabijlity,

side length 0f200v/2 meters and there are approximate§00 nodes. The for random edge routing (RER (13)) and longest edge routing (LER), versus
pathloss exponent i& = 3 and the noise power is = 10-6. Zooming in  x (4). Inset: x versus the SINR requiremegt for pathloss exponents =

on the bottom plot reveals many very short edges. {2.5,3,4,5}.



APPENDIX with the convention thaL§*** = 0 if the setMg"" is empty.
Let L™»* > (0 be the maximum edge length of those edges

emanating from a Tx selected at random over the set of Tx
Proof of (11). Let Lo be the length of an edge found byith one or more edgesii € Ty, : M2 > 0}. We relate

selecting a Rx at random. Precisely, is the length of the o ccpFs ofLmax and L™ by conditioning on the random

edge associated with the Rx, if any is present, or is zero 6|6%t_degreeMout > 0 of the Tx selected uniformly ovei.:
Let L be the length of an edge found by selecting an edge at 0 =

random. We relat&[L,] andE[L] by conditioning:E[Lo] =  P(Lg™ > 1) = P(Lg™ > I|Mg"* > 0)P(Mg"* > 0), (25)

E[LO‘Min _ O]P(Min — 0) +E[LO‘Min _ 1]P(Min — 1)’ SinCGP(LIOHaX > l|]\4émt = O) =0 for all [ > 0. Then:
(18) P(L2ax > [)
out
P(M™ > O()26)
E[Lo] = KE[Lo]. ~ (19) Define themarked PPP I}, = {(z;,SIRo;), j € Mgy},
, , " o , where the marks are the SIRs from Txto each Rxj. The
Consider a typical Rx 'Iocated at the origin. Definem@rk - ks determine whether each pédir, j) is an edge ink:
on each TxM; = {Hut, let {M;} be the dependent bUt(O,j) € E < SIRy; > . Note the event equivalence:

E

PROOF OFTHEOREM 1

P(L™ > 1) = P(LE™ > [|Mg™ > 0) =

so that

E[L] = E[Lo|Min = 1] =

identically distributed marks for eaghe 111, and definey, .
as the marginal CDF for a typical maid. Write L, in terms  {Lo™* <1} = {z € B(o,l), Vo € Mg™} (27)
of the marked point proceds. = {(z;, M;), i € Iy }: = {15(0,7)1pe(on(z;) =0, Vj € I, }
Lo = |z;|15(4,0) = 74| 1 0s,2s) o>, (20) .
b3 e =TT 0100t =1
JEMR,

where 15(4,0) is the indicator that edgéi,0) € E. Now

_ 2. i
apply Campbell's Theorem [5]; for B(o,l) = {x € R* : d, , <1} the ball of radiud centered

at the origin, andB<(o, 1) its complement. In words, the event

> that the maximum edge length for the Tx at the origin is less
E[Ly] = 1, 12-a>gdF . .
[Eo] AP /Rz/o [ Lo >pd s (m)da than! is the same as the event that there are no edgés in

) P(M |z~ d from o to receivers outsidd (o, 1), which is the same as the
- R2 [e[P(M]2[7* > f)dz event that for each receivgreither the pair0, j) is not in £,
or the receiver is inB(o,1). The CDF,Fy(l) = P(Lg** <)
= Ap /]Rz |2|P(SIRo,c > f)dz can be expressed as an expectation:
= )\p/ |$|e_”‘”|2’\p”dx = % (21) .
R2 2/ Apr Fo() = P J] (1=18(0,5)1peon(x;) =1
€M,

Proof of (12). The upper bound on the spatial density of
progress is obtained by multiplying the intensity of attempted
transmissions\p, times the upper bound on the probability = E
that each transmitter has at least one ed®@/,,; > 0) <

IT (- 1E(07j)1BC(o,l)(xj))] . (28)

€y,

1—exp{—mout }, times the average length of an ed§&L] = This latter expression matches the form required to apply
1/(2v/ ApK). the probability generating function (pgfl) for a (bounded)

Proof of (13). Maximization of (12) wrtp is equivalent to functional of a PPP ([5]):
maximization of
_ Foll) =E [exp{—m—m / 1E<o,x>1Bc<o,l><x>dx} 7
h(p) = 2\/:h()\,p) (1) @) e 9
where the expectation is wrt the markSIR;, j € IIgy}.
Jensen’s inequality yields a lower bound on the CDF:

, 1 (1 1Y\ _i1w
VPh (p) = 5~ <2 + Rp) e, (23) Fy(l) > exp {—/\(1 —p)/ P(SIRg . > ﬁ)lBC(OJ)(x)dxj .
R2
0)

Solving #’(p) = 0 for p yields (13). (
Applying (3) and simplifying yields

Ey(l) > exp {—moute_w} . (31)
Let L§** > 0 be the maximum edge length of those edges
(if any) emanating from a Tx selected at random oveilall. Substituting (31) and (10) into (26) yields (14). One finds the
Let this Tx be labeled), and wlog, located at the origim. approximation for the average maximum edge length (15) by
Letting M3"* be the set of Rx for this Tx, we have: integrating the CCDF (14). Finally, the approximation for the
o spatial density of progress (16) is obtained by multiplying the
L™ = iérj\f}git il (24)  same three quantities as in (12); see the Proof of Theorem 1.

This function has derivative:

PROOF OFTHEOREM 2



