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Energy-Efficient Scheduling of
Delay Constrained Traffic over Fading Channels
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Abstract—A delay-constrained scheduling problem for point-
to-point communication is considered: a packet of B bits must
be transmitted by a hard deadline of T slots over a time-
varying channel. The transmitter/scheduler must determine how
many bits to transmit, or equivalently how much energy to
transmit with, during each time slot based on the current channel
quality and the number of unserved bits, with the objective
of minimizing expected total energy. In order to focus on the
fundamental scheduling problem, it is assumed that no other
packets are scheduled during this time period and no outage
is allowed. Assuming transmission at capacity of the underlying
Gaussian noise channel, a closed-form expression for the optimal
scheduling policy is obtained for the case T = 2 via dynamic
programming; for T > 2, the optimal policy can only be
numerically determined. Thus, the focus of the work is on
derivation of simple, near-optimal policies based on intuition
from the T = 2 solution and the structure of the general
problem. The proposed bit-allocation policies consist of a linear
combination of a delay-associated term and an opportunistic
(channel-aware) term. In addition, a variation of the problem
in which the entire packet must be transmitted in a single slot is
studied, and a channel-threshold policy is shown to be optimal.

Index Terms—Delay effects, dynamic programming, fading,
scheduling.

I. INTRODUCTION

ATime-varying channel is a fundamental feature of
wireless communication. In this context, opportunis-

tic scheduling refers to the idea of transmitting with more
power/higher rate when the channel quality is good and less
power/lower rate when the channel is in a poor state. While
this strategy is efficient from the perspective of long-term aver-
age rate, it is not necessarily appropriate for delay-constrained
traffic which requires guaranteed short-term performance.

In this paper we consider the problem of transmitting a
packet of B bits over T time slots, where the channel fades
independently from slot to slot and the transmitter has perfect
causal channel information (i.e., knowledge of the current
channel, but not of the future channel). During each slot,
the transmitter (or scheduler hereafter) determines how many
bits to transmit based on the current channel quality and the
number of bits yet to be served. The scheduler must balance
the desire to be opportunistic, i.e., wait to serve many of the
bits when the channel is in a good state, with the hard deadline.
We investigate the setting where there is a single packet to be
transmitted (i.e., no other packets are scheduled during the
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T slot delay horizon), the packet must be transmitted by the
deadline, and transmission occurs at capacity of the underlying
Gaussian noise channel. In this framework our objective is to
design a scheduling policy that minimize the expected energy
consumed. This setup reasonably models delay-constrained
applications such as VoIP, where packets arrive regularly and
each must be received within a short delay window. In such
a setting perhaps the most important design objective is to
minimize the resources (in our case, energy) needed to meet
the delay requirements. In the cellular uplink, for example,
an energy-minimizing policy would extend the battery life of
mobile terminals.

Delay constrained scheduling in wireless communication
systems has been actively studied in various network settings
under different traffic models and delay constraints (see for
example [1][2][3][4][5][6][7][8] and references therein). In
[1][2][3], power/rate control policies that minimize average
delay are studied for a fading channel with random packet ar-
rivals. In [4][5][6][7][8] systems with random packet arrivals,
hard delay constraints, and general energy-rate relationships
are studied, but the emphasis is on “offline” algorithms in
which the scheduler has non-causal knowledge of the packet
arrivals and the channel states; heuristic variations of the
optimal “offline” algorithms are also proposed for the more
challenging “online” (i.e., causal) setting.

In this paper, we rather focus on the interplay between
fading, hard deadlines, and causal channel information by
studying transmission of only a single packet, and thus do
not consider random arrivals. Not only is this model more
tractable, but it also more reasonably models applications with
deterministic packet arrivals, e.g., VoIP or video streaming. To
emphasize our treatment of physical-layer issues, we use the
terms causal and non-causal rather than online and offline
to indicate whether the scheduler has knowledge of future
channel states. Recently, Fu et al. [9] considered this problem
(single packet transmission over a block fading channel,
subject to a hard deadline) and formulated it as a finite-horizon
dynamic program (DP). For general energy-bit functions this
DP can only be solved numerically, but in [9] a closed-form
description of the optimal policy is derived for the special case
where the energy-bit relationship is linear and the channel state
is restricted to be an integer multiple of some constant. In this
work we specialize the framework of [9] to the case where
the energy-bit relationship is governed by the AWGN channel
capacity formula, and derive closed-form descriptions of the
optimal policy for T = 2 and sub-optimal policies for T > 2.
In [10] the work of [9] is extended to a setting where the
channel evolves according to a continuous Markov process,
and the optimal scheduler is derived for the case where
the energy-bit relationship is given by the AWGN capacity
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formula under particular assumptions on the channel model
(channels with drift). However, these results do not apply to
the block fading model considered here and the policies are
rather different in structure from those developed here.

In an earlier work, Negi and Cioffi [11] studied the dual
problem of maximizing the expected number of transmitted
bits in a finite number of slots subject to a finite energy
constraint (with the energy-bit relationship described by the
AWGN capacity formula). The optimal policy can generally
only be found by numerical methods (although a threshold
policy is found to be optimal at low SNR; in [12] this
result is extended to multiple-access channels), and thus the
solutions give little insight into how the scheduling parameters
(e.g., channel state, number of bits to serve, number of slots
remaining toward the deadline, and the like) affect the schedul-
ing process. Although we deal primarily with suboptimal
scheduling policies, we are able to deduce the effect of these
parameters on the optimal policy.

A. Summary of Contribution

In this paper, we develop low-complexity and near-optimal
scheduling policies for delay-constrained causal scheduling.
Our main result is the following scheduler: a time-dependent
weighted sum of a delay associated term and an opportunistic
term as

bt =
1
t
βt︸︷︷︸

delay associated

+
t− 1
t

log
gt

ηt︸ ︷︷ ︸
opportunistic

, (1)

where bt is the number of bits to serve (from the remaining βt

bits) at time slot t (t is in descending order and thus represents
the number of remaining slots), gt denotes the current channel
state, and ηt denotes a channel threshold determined by the
channel statistics and the particular policy. If the current
channel quality is equal to the threshold level, then a fraction 1

t
of the remaining bits are transmitted. If the channel quality is
better/worse than the threshold, then additional/fewer bits are
transmitted. The scheduler acts very opportunistically when
the deadline is far away (t large) but less so as the deadline
approaches. The motivation of this form was raised from the
simple T = 2 case, for which this form is shown to be optimal.

Two different suboptimal policies in the form of (1) are
proposed, one through a simple extension of the optimal
T = 2 scheduler and the other by solving a relaxed version of
the optimization. Numerical results are presented to illustrate
that these policies provide a significant advantage over a
naive equal-bit policy, and that they perform quite close to
the optimal for moderate/large values of B. In addition, we
consider the case of one-shot allocation where the entire
packet must be transmitted in only one of the slots. This is an
optimal stopping problem, from which it follows that a simple
channel threshold policy is optimal.

Notations: The operation E[X ] for a random variable X
denotes the expected value. The operation G[X ] for a random
variable X denotes eE[ln X] and the function G(x1, · · · , xm)
for deterministic quantities x1, · · · , xm denotes the geometric
mean (

∏m
i=1 xi)1/m. The operation 〈·〉yx denotes truncation

from below at x and truncation from above at y. The function
1{·} denotes the indicator function, i.e., its value is 1 if the
argument is true and 0 otherwise. The sets R+ and R++

Scheduler
(energy/bit)

,B T User

tg

tn

wireless channel

Fig. 1: Single-user delay constrained scheduling

denote the set of non-negative numbers and the set of positive
numbers, respectively.

II. PROBLEM FORMULATION

We consider a single-user delay constrained scheduling
problem as illustrated in Fig. 1: a packet of B bits must
be transmitted within T time slots through a fading channel,
in which T is referred to as the delay-limit or deadline. We
assume no other packet is scheduled during the T time slots,
and that the packet must be transmitted by the deadline (i.e.,
no outage is allowed). Although these two assumptions may
not be entirely realistic, even for relatively deterministic traffic
(e.g., in VoIP, the next packet generally arrives before the
deadline of the previous has expired; furthermore, a small
percentage of packets are allowed to miss their deadlines),
these set of assumptions allow for a relatively tractable prob-
lem and allow us to focus on the central issue of meeting
deadlines based upon causal channel information. The purpose
of the scheduler is to determine the energy, or equivalently the
number of bits, to be served during each time slot such that
the expected energy is minimized and the bits are served by
the deadline T .

Time is indexed in descending order, i.e., t = T is the
initial slot, t = T − 1 is the 2nd slot, . . ., and t = 1 is the
final slot before the deadline; in doing so, t represents the
number of remaining slots. The channel state, in power units,
is denoted by gt. We assume that the channel states {gt}T

t=1

are independently and identically distributed (i.i.d.) and the
scheduler has causal knowledge of these channel states (i.e.,
at time t, gT , gT−1 · · · , gt are known but gt−1, · · · , g1 are
unknown). In this context, we refer to this type of scheduler
as a causal scheduler. The channel state g is assumed to be a
non-degenerate positive continuous random variable.

Assuming unit variance Gaussian additive noise and trans-
mission at capacity, the number of transmitted bits, denoted as
bt, if Et energy is used, is given by bt = log2(1 + gtEt). By
solving for Et we arrive at a formula for the energy cost in
terms of the channel state gt, and the number of bits1 served
bt:

Et(bt, gt) =
2bt − 1
gt

. (2)

We use βt to denote the queue state; i.e., the remaining
bits at time slot t. Then, βt can be calculated recursively as
βt = βt+1 − bt+1. Given this setup, a scheduler is a sequence
of functions {bt}T

t=1 that maps from the remaining bits and

1An implicit assumption is that each slot spans n channel symbols, for n
reasonably large, and that powerful coding allows for transmission of nbt bits
in the t-th slot. Thus, the quantity bt should be thought of as the number of
bits transmitted per channel symbol during the t-th scheduling slot.
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the current channel state2 to the number of bits served, i.e.,
bt : R+ × R++ → [0, βt]. Then, the optimal energy-efficient
scheduler is the set of scheduling functions {bopt

t (·, ·)}T
t=1 that

minimizes the total expected energy cost (summed over the T
slots): i.e.,

min
bT ,··· ,b1

E

[
T∑

t=1

Et(bt, gt)

]
(3)

subject to
∑T

t=1 bt = B and bt ≥ 0 for all t.
The optimization in (3) can be formulated sequentially

(via dynamic programming) with the remaining bits βt as a
state variable that summarizes the bit allocation up until the
previous time step.

bopt
t (βt, gt) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arg min
0≤bt≤βt

{
Et(bt, gt) + E

[
t−1∑
s=1

Es(bs, gs)

∣∣∣∣∣bt

]}
,

t = T, . . . , 2,

β1, t = 1.
(4)

This is the standard backward iteration: we first determine
the optimal action at t = 1, then find the optimal policy at
t = 2 by taking into account the optimal policy to be used at
t = 1, and so forth. Since gt is known but future channel states
gt−1, . . . , g1 are unknown, the quantity Et is not random but
the future energy costs Et−1, . . . , E1 are random. Note also
that the optimization (4) should be performed for all possible
values of βt and gt. In other words, deriving the optimal
scheduling function bopt

t is equivalent to finding the optimal
decision rule for all possible pairs (βt, gt).

III. OPTIMAL SCHEDULING

In this section we attempt to derive the optimal (causal)
scheduler using the conventional dynamic programming tech-
nique [13]. Unfortunately, an analytic expression is obtained
only when T = 2 (besides the T = 1 trivial case). For T > 2,
we discuss the difficulty in obtaining an analytic expression.
When the scheduler has non-causal knowledge of the future
channel states, however, deriving an optimal scheduler is
possible; the optimal non-causal scheduler provides useful
intuition and is derived in Appendix A. In the present section,
however, we assume causal channel state information at the
scheduler.

A. Optimal Scheduler for T = 2
In the final time slot (t = 1), the scheduler is required to

transmit all β1 unserved bits regardless of the channel state g1,
due to the hard delay constraint. Thus, the energy cost is given
by E1(β1, g1) = (2β1 − 1)/g1 for all g1, and the expected
cost to serve β1 bits in the final slot is Eg1 [E1(β1, g1)] =

E

[
1
g

]
(2β1 − 1).

At t = 2, g2 is known but g1 is unknown. The scheduler
needs to determine b2, based on g2 and B, while balancing

2Because the channel states are assumed to be i.i.d., it is sufficient to
make scheduling decisions based only on the current channel (while ignoring
past channels). If channels are correlated across time slots, then the past and
present channel should be used to compute the conditional distributed of future
channel states and all expected future energy costs should be computed with
respect to these conditional distributions.

the current energy cost (of serving b2 bits in the current slot)
and the expected future cost (of deferring B − b2 bits to the
last slot). Thus, the optimum scheduler is the solution to the
following minimization:

bopt
2 (B, g2) =

arg min
0≤b2≤B

⎛
⎜⎜⎜⎝ 1
g2

(
2b2 − 1

)
︸ ︷︷ ︸
current energy cost

+ E

[
1
g1

] (
2B−b2 − 1

)
︸ ︷︷ ︸

expected future cost

⎞
⎟⎟⎟⎠ . (5)

The objective function in (5) is convex, and therefore the
minimizer is found by setting the derivative to zero while
taking into account the constraints on b2:

b
opt
2 (B, g2) =

〈
1
2
B +

1
2

log2 (g2ν1)
〉B

0

, (6)

where ν1 � E [1/g] is a constant that depends only on the
distribution of the channel state g (see Appendix B for the
definition of constants νm for m = 1, 2, . . .). Note that this
policy depends only on the unserved bits and the current
channel state. This policy is only meaningful when ν1 is finite;
this rules out Rayleigh fading, in which case g is exponentially
distributed and thus E [1/g] is not finite.

Notice that the optimal scheduling function (6) has two
additive terms: (a) 1

2B corresponds to an equal distribution to
time slots t = 1 and t = 2, and (b) 1

2 log2 (g2ν1) associated
with a measure of the channel quality at t = 2. That is, if the
channel quality g2 is bigger than a threshold 1/ν1, then more
bits are allocated than 1

2B; if gt is smaller than the threshold
then fewer bits are allocated and more bits are deferred to the
final slot.

B. Optimal Scheduler for T > 2

From (4), the optimization that the scheduler solves at each
time step is:

Jopt
t (βt, gt) =

⎧⎨
⎩ min

0≤bt≤βt

(
2bt−1

gt
+ J̄

opt
t−1(βt − bt)

)
, t ≥ 2

E1(β1, g1), t = 1,
(7)

where J̄opt
t−1(β) = Eg[J

opt
t−1(β, g)] denotes the cost-to-go func-

tion, which is the expected cost to serve β bits in (t − 1)
slots if the optimal control policy is used at each step. This
is a one-dimensional convex optimization (pp. 87-88 in [14])
over bt and the optimal solution satisfies (8) assuming J̄opt

t−1 is
differentiable (pp. 254-255 in [15]), where argb{·} represents
the solution3 of the argument equation.

When t = 2, the cost-to-go function J̄opt
1 (β) = (2β − 1)ν1

(as well as its derivative) takes on a very simple form and thus
(8) can be solved in closed form as in (6). However, the same
is not true for t > 2. Because the optimal policy for t = 2 is
known, the cost-go-to J̄opt

2 (β) can be written in closed form.
The derivative (J̄opt

2 )′(β) can also be written in closed form
but cannot be analytically inverted; thus, the optimal policy
for t = 3 can only be written in the form of (8) with the

3Because of the convexity, the solution exists uniquely if it exists.
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bopt
t (β, gt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, gt ≤ ln 2
(J̄opt

t−1)
′(β)

,

argb

{
2b

gt
= 1

ln 2 (J̄opt
t−1)

′(β − b)
}
, ln 2

(J̄opt
t−1)′(β)

< gt <
2β ln 2

(J̄opt
t−1)

′(0)
,

β, gt ≥ 2β ln 2
(J̄opt

t−1)
′(0)

,

(8)

second condition given by the following fixed point equation:

2b3

g3
= 2β−b3

∫ 2−(β−b3)
ν1

0

ν1dF (x)+

2
β−b3

2 ν
1
2
1

∫ 2β−b3
ν1

2−(β−b3)
ν1

(
1
x

) 1
2

dF (x)+2β−b3

∫ ∞

2β−b3
ν1

1
x
dF (x),

(9)

where F is the cumulative distribution function of the channel
state g. As a result, no analytical characterization of J̄opt

3 (β)
is possible, and thus neither bopt

t (·, ·) nor J̄opt
t (β) can be found

in closed form for t ≥ 4.
Alternately, we can numerically find the optimal scheduler

by the discretization method [16]. However, large complexity
and memory is required for sufficiently fine discretization.
More importantly, this numerical method gives little insight
on how the delay constraint and channel state affect the
scheduling function.

IV. SUBOPTIMAL SCHEDULING POLICIES

Because the optimal scheduler cannot be written in closed
form, it is of interest to develop suboptimal schedulers. The
first scheduler is based on the intuition from the optimal T = 2
policy, and the second is found by solving a relaxed version
of the optimization.

A. Suboptimal I Scheduler

If we compare the optimal causal scheduler for T = 2
(Section III-A) to the non-causal scheduler (see Appendix
A), we can immediately notice that the optimal scheduler
determines bopt

2 by inverse-waterfilling over channels g2 and
1/ν1, where the non-causal scheduler inverse waterfills over g2
and the actual value of g14. This is because of the particularly
simple form of the expected future cost. Although the expected
future cost does not take on such a simple form for T > 2,
we can get a suboptimal scheduler by simply applying this
inverse-waterfilling at every time slot t. In other words, at
time step t, perform inverse-waterfilling over the following t
channels:

gt,
1
ν1
, . . . ,

1
ν1︸ ︷︷ ︸

t−1

to determine how many of the unserved βt bits to serve now.
We denote this bit allocation policy as b(I)t . Since t− 1 of the

4When both g2 and g1 are known at t = 2, the optimal non-causal

scheduling policy is given by bIWF
2 (B, g2) =

〈
1
2
B + 1

2
log2

(
g2
g1

)〉B

0
from

(31), in which “IWF” stands for inverse waterfilling (see Appendix A for
detail).

t channels are equal, the inverse-waterfilling operation is very
simple and the policy is given by

b(I)t (βt, gt) =

〈
1
t
βt +

t− 1
t

log2

gt

η(I)
t

〉βt

0

, (10)

where η(I)
t = 1/ν1 serves as the channel threshold. Notice that

this threshold value depends only on the channel statistics and
is constant with respect to t.

When the deadline is far away (large t), the first term in (10)
is negligible and the bit allocation is almost completely de-
pendent on the instantaneous channel quality. As the deadline
approaches (t decreases toward 1), the weight of the channel-
dependent second term decreases and the weight of the delay-
associated first term increases.

B. Suboptimal II Scheduler

The inability to find a general analytic solution to the
original optimization (7) is due to complications caused by
the constraint 0 ≤ bt ≤ βt (for each t) in the dynamic
optimization. However, if we relax this constraint (i.e., allow
bt < 0 and bt > βt while maintaining the constraint∑T

t=1 bt = B) we can derive the optimal policy in closed
form.

If we define the function Lt as below, then we can show
inductively that Lt represents the cost-to-go function for the
relaxed optimization:

Lt(βt) = t2
βt
t G(νt, νt−1, . . . , ν1) − tν1 (11)

where ν1, ν2, · · · are the fractional moments defined in Ap-
pendix B and G() represents the geometric mean operation
defined in Section I. When t = 1, (11) holds trivially. If we
assume (11) holds for t− 1, then the relaxed optimization for
the next time step is given by

min
bt

(
2bt − 1
gt

+ Lt−1(βt − bt)
)

(12)

and the solution (i.e., the optimum scheduler for the relaxed
problem) is found by setting the derivative of the objective to
zero:

bt =
1
t
βt +

t− 1
t

log2 (gt G(νt−1, . . . , ν1)) . (13)

By plugging in the optimum value of bt in (13) into (12)
and taking expectation with respect to gt, we reach (11). By
truncating the policy in (13) at 0 and βt we get a policy,
referred to as Suboptimal II, for the original (un-relaxed)
problem:

b
(II)
t =

〈
1
t
βt +

t− 1
t

log2

gt

η
(II)
t

〉βt

0

, (14)
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where

η
(II)
t =

1
G (νt−1, νt−2, · · · , ν1) (15)

denotes the threshold that depends only on the statistics not
the realizations.

C. Remarks on the Suboptimal Schedulers

From (10) and (14), we can see that the two schedulers have
a very similar form with the only difference term being the
threshold ηt. Based on the policy formulations, this subsection
investigates the common and different characteristics of the
suboptimal schedulers.

1) General Framework: The two schedulers can be cast
into a single framework:

bt(βt, gt) =
〈

1
t
βt +

t− 1
t

log2

gt

ηt

〉βt

0

, (16)

where ηt is the channel threshold determined by the individual
algorithms. This simple allocation strategy reveals how the
delay constraint affects the scheduling algorithms: at time
step t serve a fraction 1/t of the remaining bits plus/minus a
quantity that depends on the strength of the current channel
compared to a channel threshold. If the current channel is
good (i.e., gt is bigger than the threshold ηt), additional bits
are served (up to βt), while fewer bits are served when the
current channel is poorer than the threshold. Furthermore, note
that when t is large (i.e., far from the deadline), the first term
βt/t is very small and the number of bits served is almost
completely determined by the current channel conditions. This
agrees with intuition that we should make aggressive, almost
completely channel dependent (and deadline independent)
decisions when the deadline is far away, while we should make
more conservative (more deadline dependent, less channel
dependent) decisions near the deadline (small t).

Using log2 10 ≈ 3 we can rewrite the policy in dB units as:

bt(βt, gt) ≈
〈

1
t
βt +

(
t− 1
t

)(
gdB

t − ηdB
t

3

)〉βt

0

. (17)

For large t, approximately one bit is allocated for every 3 dB
by which the channel exceeds the threshold.

2) Channel Thresholds: The difference between the two
policies is in the threshold values, which are illustrated in
Fig. 2 for a particular channel distribution. Suboptimal I has
a constant threshold η(I)

t = 1/ν1 for all t, whereas Suboptimal
II has a threshold that increases with t (by Proposition 1). It
is intuitive to use a larger threshold when the deadline is far
away (large t), as the scheduler can be more selective because
many different channels remain to be seen before the deadline
is reached.

By using a constant threshold, Suboptimal I is not selective
enough and transmits too many bits when the deadline is
far away. To see this, consider the average number of bits
transmitted in slot t (ignoring truncation):

Egt [bt(βt, gt)] = Egt

[
1
t
βt +

t− 1
t

log2

gt

ηt

]
=

1
t
βt +

t− 1
t

E

[
log2

gt

ηt

]
. (18)
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Fig. 2: Thresholds η(I)
t for the suboptimal I scheduler and η(II)

t

for the suboptimal II scheduler when the channel state has the
truncated exponential with γ0 = 0.001.

Because η(I)
t = 1/ν1 = 1/E [1/g], by Jensen’s inequality

E

[
log2

gt

η(I)
t

]
= E [log2 gt] + log2 E [1/g] > 0. Thus, Subopti-

mal I transmits more than B
T bits on average when scheduling

begins, which is in some sense overly aggressive. On the
other hand, the quantity Egt

[
log2

(
gt/η

(II)
t

)]
decreases as

t increases and the limit is given by (see Proposition 1 in
Appendix B)

lim
t→∞ Egt

[
log2

gt

η(II)
t

]
= 0. (19)

This implies that Suboptimal II allocates B/T bits on the
average when the deadline is far away and thus, unlike
Suboptimal I, is not overly biased, nor overly aggressive.
Numerical results given later support the fact that Suboptimal
II generally performs better than Suboptimal I.

D. Equal-bit Scheduler

For comparison purposes, we consider one of the simplest
causal schedulers: Equal-bit scheduler. This policy allocates
B/T bits in each time slot, regardless of channel conditions,
i.e.,

beqt (β, gt) =
B

T
=

1
t
βt. (20)

The corresponding expected energy is given by

J̄ eq
t (β) = t(2

β
t − 1) E

[
1
g

]
= t(2

β
t − 1)ν1. (21)

Although equal-power scheduling is asymptotically optimal
for the dual problem of maximizing rate over T slots when
given a finite energy budget in the high power regime [11],
it will be seen that equal-bit scheduling is suboptimal even
when B is large.

E. Inverse Waterfilling Interpretation

If Suboptimal I and II and Equal-bit schedulers are com-
pared to the optimal non-causal policy (inverse waterfilling),
one can see that each of the algorithms mimics inverse wa-
terfilling using either the current channel or channel statistics
for the future channels, as summarized in Table I.
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TABLE I: Waterfilling interpretation.

At each t, perform IWF over the following

Equal-bit scheduler gt, gt, gt, · · · , gt︸ ︷︷ ︸
t−1

Suboptimal I scheduler gt,
1

ν1
,

1

ν1
, · · · ,

1

ν1︸ ︷︷ ︸
t−1

Suboptimal II scheduler gt,
1

νt−1
, 1

νt−2
, · · · , 1

ν1
Non-causal IWF gt, gt−1, gt−2, · · · , g1

TABLE II: Average energy offsets for T = 2

J̄
eq
2 (B)/J̄

opt
2 (B)distribution of channel state g

B → 0 B → ∞
truncated exponential with γ0 = 0.1 1.96 dB 0.44 dB
truncated exponential with γ0 = 0.01 3.26 dB 1.04 dB
truncated exponential with γ0 = 0.001 4.32 dB 1.68 dB
1 × 2 Rayleigh fading (g ∼ χ2

4) 1.99 dB 0.52 dB
1 × 3 Rayleigh fading (g ∼ χ2

6) 1.37 dB 0.27 dB
1 × 4 Rayleigh fading (g ∼ χ2

8) 1.10 dB 0.18 dB

V. ANALYSIS & NUMERICAL RESULTS

In this section, we compare the performance of the optimal,
Suboptimal I and II, and Equal-bit schedulers. For T = 2
we are able to quantify the advantage of optimal scheduling
relative to equal bit scheduling in two extreme cases, while
for T > 2 we can only consider numerical results.

A. Asymptotic Analysis for T = 2
From the optimal scheduling expression for T = 2 given

in (6), we can see that the packet is split over both time slots
(i.e., 0 < b2 < B) if and only if 2−B/ν1 < g2 < 2B/ν1. As
B → 0, the probability of this event goes to zero: if g2 < 1/ν1
then all bits are deferred to the final slot, while if g2 > 1/ν1
all bits are served at t = 2. As a result, the expected energy
cost takes on a rather simple form as B → 0 (the derivation
is provided in Appendix C):

J̄opt
2 (B) ∼= (2B − 1) E

[
min

(
1
g2
, ν1

)]
, (22)

where ∼= represents equivalence in the limit (i.e., the ratio
between both sides converges to 1 as B → 0). This implies
that the corresponding effective channel is max(g2, 1/ν1). On
the other hand, when B → ∞ the probability of only utilizing
one slot goes to zero and the limiting expected cost can be
derived. The following theorem quantifies the power advantage
of optimal scheduling:

Theorem 1: The energy savings of optimal scheduling with
respect to equal bit scheduling in extremes of B → 0 and
B → ∞ is given by:

lim
B→0

J̄ eq
2 (B)

J̄
opt
2 (B)

=
ν1

E

[
min

(
1
g , ν1

)] , (23)

lim
B→∞

J̄ eq
2 (B)

J̄opt
2 (B)

=
√
ν1
ν2
. (24)

Proof: See Appendix C.
Table II summarizes typical values of the energy savings

(at the extremes of B → 0 and B → ∞) for several
fading distributions, as given by Theorem 1. As intuitively
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Fig. 3: Average total energy consumptions for T = 2 and
average energy offset when g is a truncated exponential
variable with threshold γ0 = 0.001

expected, the energy advantage is larger for more severe
fading distributions. In other words, optimal scheduling is
more beneficial in more severe fading environments.

Figure 3 contains a plot of expected energy versus B for
the optimal and Equal-bit schedulers as well as a plot of the
energy difference between the two schedulers as a function of
B, for channel state g distributed as a truncated exponential
with the threshold γ0 = 0.001. The energy advantage is seen
to decrease from its B → 0 advantage of 4.32 dB to the large
B asymptote of 1.68 dB.

B. Numerical Results for T > 2

Throughout the simulations, we assume that the channel
state gt is a truncated exponential with parameter λ = 1 and
threshold γ0 = 0.001. The factional moments of this truncated
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exponential variable can be calculated as:

νm =

{
λeλγ0E1(λγ0), m = 1,
λ
[
eλγ0Γ

(
m−1

m , λγ0

)]m
, m > 1,

where E1(·) and Γ(·, ·) denote the exponential integral and
the incomplete gamma function, respectively, and its limit is
given by ν∞ = 1

γ0
e−eλγ0E1(λγ0).

Figures 4a and 4b compare the energy consumption of
the four different algorithms (Equal-bit, Suboptimal I and
II, optimal causal) for T = 5 and T = 50, in which the
optimal scheduler is calculated by numerical methods. The x-
axis denotes the total number of bits B transmitted in T time
slots, and thus B/T can be thought of as the average bits per
channel use. The y-axis denotes the average total energy cost
J̄

eq
T , J̄ (I)

T , J̄ (II)
T , and J̄opt

T .
From Fig. 4a we see that both Suboptimal I and II perform

nearly as well as the optimal scheduler, although Suboptimal
II performs better than I. There are significant differences
between Equal-bit and optimal schedulers, which is to be
expected given the time diversity available over the five time
slots. In Fig. 4b we see even larger differences between equal-
bit and optimal causal, which can be explained by the even
larger degree of time diversity (T = 50). Furthermore, Sub-
optimal II significantly outperforms Suboptimal I for T = 50
due to the over-aggressive nature of Suboptimal I. Suboptimal
II performs nearly as well as the optimal scheduler when B is
approximately 50 or larger (i.e., B/T ≥ 1), but is sub-optimal
for smaller values of B.

Figure 5 shows the expected bit allocation E[bt] for the
different algorithms for T = 10 slots when B is large
(B = 50, upper) and small (B = 2, lower). While the optimal
causal scheduling policy allocates roughly an equal number of
bits (averaged across different realizations, and not for each
particular realization) to each of the slots, Suboptimal I is
immediately seen to allocate too many bits (on average) to
early time slots which agrees with our earlier claim that this
algorithm is often overly-aggressive as explained in Section
IV-C2. For B = 50 the bit allocation of Suboptimal II
is very similar to that of the optimal policy. However, for
B = 2 Suboptimal II is also overly-aggressive as compared to
the optimal. We suspect that the performance of Suboptimal
II could be further improved by performing some heuristic
modifications to the algorithm, but this is beyond the scope
of the paper and is left to future work.

To summarize, the numerical results indicate that (a) Sub-
optimal II is nearly optimal for moderate to large values of B,
(b) Suboptimal II outperforms Suboptimal I, and (c) neither
suboptimal algorithm is near optimal for small values of B.
In the next section, we will consider a policy that performs
close to the optimal when B is small.

VI. ONE-SHOT ALLOCATION

In some settings it may be undesirable to split the packet
across multiple time slots, e.g., because there is a large
overhead associated with each slot used for transmission. In
this scenario we may wish to find only one time slot among
the T slots for the transmission of B bits; i.e., the action bt
can be either 0 or B.
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Fig. 4: Average total energy consumption for T = 5 and T =
50
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The dynamic program in this setting can be written as

J1(B, g1) =
2B − 1
g1

, (25)

Jt(B, gt) = min
{

2B − 1
gt

, J̄t−1(B)
}
, t = 2, · · · , T, (26)

where J̄t−1(B) = Eg[Jt−1(B, g)], which is precisely an
optimal stopping problem [13]. Thus, a threshold policy is
optimal: allocate all B bits at the first slot t such that
gt > 1/ωt, where 1/ωt is the threshold. That is,

bt =

{
B, t = max {s : gs > 1/ωs} ,
0, elsewhere.

(27)

At t = 1 a packet must be served and thus ω1 is infinite.
Because the expected cost-to-go decreases as t increases, the
threshold also decreases with t. In Appendix D we show the
thresholds are given by the following recursive formula.

ωt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E

[
1
g

]
, t = 2,

E

[
1
g

∣∣∣ 1
gt
< ωt−1

]
Pr

{
1
gt
< ωt−1

}
+

ωt−1 Pr
{

1
gt

≥ ωt−1

}
,

t = 3, · · · , T.

(28)
Notice that the threshold 1/ωt depends only on the channel
statistics and does not depend on B.

Figure 6 illustrates the thresholds for the truncated expo-
nential g (with λ = 1 and γ0 = 0.001) and the chi-squared
g (with 4 degrees of freedom). Figure 7 illustrates the energy
usage (normalized by T ) of the optimal one-shot allocation
policy and the multiple slot policies. The B/T = 0.1 and
B/T = 1 curves illustrate performance for relatively small and
large values of B, respectively. When B is small, the energy
of the one-shot allocation is nearly the same as the optimal
policy that allows for multiple slots to be used. However, this
one-shot allocation is not appropriate when B is relatively
large because the required energy of the one-shot policy grows
exponentially with B.

VII. CONCLUSION

In this paper we considered the problem of bit/energy
allocation for transmission of a finite number of bits over a
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Fig. 7: Performance of the optimal one-shot allocation com-
pared with multi-slot allocation algorithms

finite delay horizon, assuming perfect instantaneous channel
state information is available to the transmitter and that the
energy and rate are related by the Shannon-type (exponential)
function. We derived the optimal scheduling policy when the
deadline spans two time slots, and derived two near-optimal
policies for general deadlines. The proposed schedulers have
a simple and intuitive form that gives insight into the opti-
mal balance between channel-awareness (i.e., opportunism)
and deadline-awareness in a delay-limited setting. We also
considered the same problem under the additional constraint
that only a single of the available time slots can be used, and
in this case found the optimal threshold-based policy. Based
upon the policy constructions and the numerical results, we
observed that the suboptimal II scheduler is near-optimal for
large/moderate values of B while the one-shot policy is near-
optimal for small values of B.

Given the increasing volume of delay-limited traffic over
packet-switched wireless networks (e.g., VoIP or multimedia
transmission in 3G systems), we expect problems of this sort
to become increasingly important. Of course, the problem
considered here represents only a particular instance of the
rich space of delay-limited scheduling problems. Interesting
extensions include consideration of discrete code rates, peak
power constraints, and multi-user issues, and we hope this
work provides useful insight for some of these other formu-
lations.

APPENDIX A
NON-CAUSAL SCHEDULING

If the channel states are known non-causally, i.e., gT , . . . , g1
are known at t = T , the optimal scheduling/allocation is
determined by waterfilling because each time slot serves as
a parallel channel. While conventional waterfilling maximizes
rate subject to a power constraint, this is the dual of minimiz-
ing power/energy subject to a rate/bit constraint and is referred
to as inverse-waterfilling (IWF):

J IWF
T (B, {gt}T

t=1) = min
bT ,··· ,b1

T∑
t=1

2bt − 1
gt

, (29)

subject to
∑T

t=1 bt = B and bt ≥ 0. This is a convex
optimization problem and can be easily solved using the
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standard Lagrangian method:

bIWF
t =

〈
log2

(
gt

gth

)〉∞

0

, (30)

where gth is the solution to
∑T

i=1

〈
log2

(
gi

gth

)〉∞

0
= B. A time

slot t is called utilized if a positive bit is scheduled at t, i.e.,
bt > 0 or equivalently gt > gth. With algebraic manipulations,
we can express this IWF policy in (30) sequentially like other
causal scheduling policies as

bIWF
t (βt, gt) =

1
t′
βt +

t′ − 1
t′

log2

gt

ηIWF
t

, if gt > gth,

(31)
otherwise bIWF

t (βt, gt) = 0, where t′ =
∑t

i=1 1{gi≥gth} and

ηIWF
t =

(
t−1∏
i=1

g
1{gi>gth}
i

)1/(t′−1)

. Notice that gt−1, · · · , g1 are

relatively future quantities at slot t.
Like causal scheduling, the bit allocation process is de-

scribed in two stages: first the remaining bits are di-
vided equally amongst the utilized slots and then bits are
added/subtracted depending on the channel state.

APPENDIX B
CHANNEL CHARACTERIZATION BY FRACTIONAL

MOMENTS

We characterize the statistics of the channel states by using
the fractional moments of the inverse of the channel states g.
We define the following quantity for m = 1, 2, . . .,

νm =

(
E

[(
1
g

) 1
m

])m

. (32)

Then, the properties of these quantities are summarized as
follows:

Proposition 1: The channel statistics defined according to
(32) for a non-degenerate5 positive random variable have the
following properties:
(a) the sequence {νm} is strictly decreasing and the limit

exists (denote the limit as ν∞),
(b) the sequence {(νmνm−1 · · · ν1)1/m} is also strictly de-

creasing and its limit is also ν∞.
Proof:

(a) First, we show the sequence {νm} is monotonically de-
creasing. Let Y = 1/g and fY (y) be the pdf of Y . By
the Hölder’s inequality [17],

E

[
Y

1
m+1

]
=

∫ ∞

0

y
1

m+1 fY (y)dy

=

∫ ∞

0

(
y

1
m fY (y)

) m
m+1

(fY (y))
1

m+1 dy

<

(∫ ∞

0

y
1
m fY (y)dy

) m
m+1

(∫ ∞

0

fY (y)dy

) 1
m+1

=
(

E[Y
1
m ]
) m

m+1
.

The strict inequality is due to the fact that Y is not a point-
mass density. Raising both sides to the power (m+1) gives
νm+1 < νm.

5This eliminates a delta-type density (point-mass) function.

Second, we show convergence of the sequence. Let
φm(y) = y

1
m for y > 0 and ψ(y) = 1 + y for y > 0.

Then, it is clear that limm→∞ φm(y) = 1 for all y > 0,
and 0 < φm(y) ≤ ψ(y) for all y > 0. Additionally,∫∞
0 ψ(y)fY (y)dy < ∞. By the dominated convergence

theorem [17], we have

lim
m→∞ E[Y

1
m ] = lim

m→∞

∫ ∞

0

φm(y)fY (y)dy

=
∫ ∞

0

1 · fY (y)dy = 1.

Let x be a positive real number. By the continuity of the
logarithmic function, we have limx→0 ln E[Y x] = 0. By
L’Hospital rule,

lim
x→0

ln E[Y x]
x

= lim
x→0

E[Y x lnY ]
E[Y x]

= E[lnY ]

since limx→0 E[Y x] = 1 and limx→0 E[Y x lnY ] =
E[lnY ] (due to the dominated convergence theo-
rem). By the continuity of the exponential function,
limx→0 e

1
x ln E[Y x] = eE[ln Y ]. Since the above limit exists

and x is in the superset of integers, we have the result.
(b) The monotonicity of the sequence {(νmνm−1 · · · ν1)1/m}

follows immediately from the monotonicity of the se-
quence {νm} and its positivity.
By the property of the exponential function, we
have (νmνm−1 · · · ν1)

1
m = e

1
m ln(νmνm−1···ν1) =

e
1
m

∑m

n=1
ln νn . Since limm→∞ νm = ν∞ and log is

continuous, limm→∞ ln νm = ln ν∞. By Cesáro mean,
limm→∞ 1

m

∑m
n=1 ln νn = ln ν∞. From the continuity of

the exponential function, we have the result.

Notice that ν1 and ν∞ represent the arithmetic mean and
the geometric mean of random variable 1/g, respectively. All
other values in the sequence {νm} lie between these two
means.

APPENDIX C
PROOF OF THEOREM 1

For simple derivation, we work in units of nats rather than
bits. From (6), the energy cost can be derived as

Jopt
2 (g2, B) =

⎧⎪⎨
⎪⎩

(eB − 1)ν1, g2 ≤ e−B

ν1
,

2e
B
2
(

1
g2

ν1

)1/2 − 1
g2

− ν1,
e−B

ν1
< g2 < eB

ν1
,

eB−1
g2

, g2 ≥ eB

ν1
.

(33)
Thus,

J̄opt
2 (B) = Eg2

[
Jopt

2 (g2, B)
]

=
∫ e−B

ν1

0

(eB − 1)ν1dF (x)

+
∫ eB

ν1

e−B

ν1

[
2e

B
2

(
1
x
ν1

)1/2

− 1
x
− ν1

]
dF (x)

+
∫ ∞

eB

ν1

eB − 1
x

dF (x),

(34)

where F is the cumulative distribution function (CDF) of the
channel state g.
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By the limit rules,

lim
B→0

J̄opt
2 (B)
eB − 1

= lim
B→0

{∫ e−B

ν1
0 (eB − 1)ν1dF (x) +

∫∞
eB

ν1

eB−1
x dF (x)

}
eB − 1

= lim
B→0

∫∞
0 (eB − 1)min

(
1
x , ν1

)
dF (x)

eB − 1

= E

[
min

(
1
g
, ν1

)]
(35)

and

lim
B→0

eB − 1
2(eB/2 − 1)

= 1. (36)

With (21), we obtain (23). Likewise,

lim
B→∞

J̄opt
2 (B)

2e
B
2 (ν2ν1)1/2

= lim
B→∞

∫ eB

ν1
e−B

ν1

[
2e

B
2
(

1
xν1

)1/2 − 1
x − ν1

]
dF (x)

2e
B
2 (ν2ν1)1/2

= lim
B→∞

2e
B
2 (ν2ν1)

1/2 − 2ν1
2e

B
2 (ν2ν1)1/2

= 1 (37)

and

lim
B→∞

J̄ eq
2 (B)

2e
B
2 ν1

= 1 (38)

Thus, we have shown (24).

APPENDIX D
DERIVATION OF (28)

From (26) the threshold ωt is related to the expected cost-
to-go by ωt = 1

2B−1 E[Jt−1(B, g)]. The one-step cost-to-go

is E[J1(B, g)] = (2B − 1) E

[
1
g

]
and therefore ω2 = E

[
1
g

]
.

For t > 2, we expand the cost-to-go in terms of ωt−1 to give:

ωt =
1

2B − 1
E[Jt−1(B, g)]

=
1

2B − 1

(
E

[
2B − 1

gt−1

∣∣∣∣∣ 1

gt−1
< ωt−1

]
Pr

{
1

gt−1
< ωt−1

}
+

E

[
E[Jt−2(B, g)]

∣∣∣∣∣ 1

gt−1
< ωt−1

]
Pr

{
1

gt−1
≥ ωt−1

})

By substituting E[Jt−2(B, g)] = (2B − 1)ωt−1, we have the
result.
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