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Abstract— We consider a MIMO fading broadcast channel and
compare the achievable ergodic rates when the channel state
information at the transmitter is provided by “analog” nois y
feedback or by quantized (digital) feedback. The superiority
of digital feedback is shown, with perfect or imperfect CSIR,
whenever the number of feedback channel uses per channel
coefficient is larger than 1. Also, we show that by proper design
of the digital feedback link, errors in the feedback have a minor
effect even by using very simple uncoded modulation. Finally,
we show that analog feedback achieves a fraction1 − 2F of
the optimal multiplexing gain even in the presence of a feedback
delay, when the fading belongs to the class of “Doppler processes”
with normalized maximum Doppler frequency shift 0 ≤ F < 1/2.

I. M ODEL SETUP AND BACKGROUND

We consider a multi-input multi-output (MIMO) Gaussian
broadcast channel modeling the downlink of a system where
the base station (transmitter) hasM antennas andK user
terminals (receivers) have one antenna each. A channel use
of such channel is described by

yk = h
H

kx + zk, k = 1, . . . ,K (1)

whereyk is the channel output at receiverk, zk ∼ CN(0, N0)
is the corresponding AWGN,hk ∈ C

M is the vector of
channel coefficients from thek-th receiver to the transmitter
antenna array andx is the channel input vector. The channel
input is subject to the average power constraintE[|x|2] ≤ P .

We assume that the channelstate, given by the collection
of all channel vectorsH = [h1, . . . ,hK ] ∈ C

M×K , varies in
time according to a block fading model whereH is constant
over each frame of lengthT channel uses, and evolves from
frame to frame according to an ergodic stationary jointly
Gaussian process; i.i.d. block-fading channel, where the entries
of H are Gaussian i.i.d. with elements∼ CN(0, 1) is a special
case of this.

A. Capacity results

If H is perfectly and instantaneously known to all terminals
(perfect CSIT and CSIR), the capacity region of the channel
(1) is obtained by MMSE-DFE beamforming and Gaussian
dirty-paper coding (see [1, 2] and references therein). Because
of simplicity and robustness to non-perfect CSIT, simpler
linear precodingschemes with standard Gaussian coding have
been extensively considered. A particularly simple scheme
consists of zero-forcing (ZF) beamforming, where the transmit

signal is formed asx = Vu, such thatV ∈ C
M×K is a zero-

forcing beamforming matrix andu ∈ C
K contains the symbols

from K independently generated Gaussian codewords. For
K ≤ M , the k-th columnvk of V is chosen to be a unit
vector orthogonal to the subspaceSk = span{hj : j 6= k}. In
this case, the achievable sum rate is given by

RZF = max
P

k
E[Pk(H)]≤P

K∑

k=1

E

[
log

(
1 +

|hH

kvk|2Pk(H)

N0

)]
.

(2)
We consider the situation whereK = M , and thus do not con-
sider user selection. Furthermore, we are mainly interested in
the high-spectral efficiency regime, where we can characterize
the achievable sum rate asκ logP/N0 + O(1), andκ is the
“system multiplexing gain” or “pre-log factor” of the ergodic
sum rate. Hence, it is well-known that using uniform power
Pk = P/M for all k = 1, . . . ,M , rather than performing
optimal water-filling, incurs a loss only in theO(1) term, and
we shall restrict to this choice in the rest of this paper.

It is well-known that, under perfect CSIT and CSIR, both
the optimal “Dirty-Paper” sum-rateC and the zero-forcing
sum-rateRZF are equal toM logP/N0 + O(1). On the
contrary, under non-perfect CSIT the rate sum may behave
in a radically different way; for example, if there is perfect
CSIR and no CSIT whenH has i.i.d. Gaussian entries, the
sum rate is equal tologP/N0 +O(1) [1]

B. Channel state feedback models

We consider some specific CSIT and CSIR models and
derive lower-bounds to the corresponding achievable ergodic
rates by analyzing anaivebeamforming scheme that computes
a mismatched ZF beamforming matrix̂V from the CSIT. In
particular, we consider an “analog” CSIT feedback scheme
where the transmitter observation at frame timet is given by

{G(τ) =
√
βPH(τ) + W(τ) : τ = −∞, . . . , t− d} (3)

where{W(τ)} is a spatially and spectrally white Gaussian
process with elements∼ CN(0, N0) and d is the feedback
delay. This models the case where the channel coefficients are
explicitly transmitted on the reverse link (uplink) using un-
quantized quadrature-amplitude modulation [3–6]. The power
scaling β corresponds to the number of channel uses per
channel coefficient, assuming that transmission in the feedback
channel has fixed peak powerP and that the channel state
vector is modulated by aβM×M unitary spreading matrix [3].



A simplifying assumption of this work is that we consider no
fading and orthogonal access in the CSIT feedback link, and
we assume that the SNR on the feedback channel is equivalent
to the un-faded downlink SNR (P/N0).

A different CSIT feedback approach is based on quantizing
the channel vector at each receiver and transmitting back tothe
base station a packet ofB bits, representing the corresponding
quantization index. If a random ensemble of quantization
schemes is used (referred to asRandom Vector Quantization,
or RVQ), in [7, Theorem 1] it is shown that the gap between
ZF with ideal CSI and the naive ZF scheme is given by

∆Rquant. ≤ log

(
1 +

P

N0
2−

B
M−1

)
. (4)

II. RATE GAP BOUND FOR ANALOGCSIT FEEDBACK

In the case of i.i.d. block fading and no feedback delay,
the analog CSIT feedback yields the observation ofG =√
βPH+W at the beginning of every frame. The transmitter

computes the MMSE estimate of the channel matrix,Ĥ =√
βP

N0+βP G. Thek-th columnv̂k of V̂ is a unit vector orthogonal

to the subspaceSk = span{ĥj : j 6= k}. Notice that we can
write H = Ĥ + E, whereĤ andE are mutually independent
and have Gaussian i.i.d. components with mean zero and
variance βP

N0σ2
e

andσ2
e = (1 + βP/N0)

−1, respectively.
The signal at thek-th receiver is given by

yk = (hH

k v̂k)uk +
∑

j 6=k

(eH

k v̂j)uj + zk (5)

We assume that the frame duration is long enough such
that some training scheme can be used in the downlink
channel. Training allows each receiver to estimate: 1) the
useful signal coefficient,ak = (hH

k v̂k) and 2) the variance
of the interference plus noiseζk =

∑
j 6=k(eH

k v̂j)uj + zk,

given by Σk = E

[
|ζk|2|ek, Ĥ

]
= N0 +

∑
j 6=k |eH

k v̂j |2P/M .
This conditioning is due to the fact thatΣk is estimated on
each frame, and the coefficients(eH

k v̂j) are constant over
each frame and change from frame to frame, following the
block i.i.d. fading model. The maximum achievable rate of
userk subject to the above assumptions is lowerbounded by
assuming a Gaussian inputuk = uG

k ∼ CN(0, P/M), and by
considering the worst-case noise plus interference distribution
in every frame. Using stationarity and ergodicity, we have1

Rk ≥ E

[
inf

ζk:E[|ζk|2]≤Σk

I(uG
k ; yk|ak,Σk)

]

(a)
= E

[
log

(
1 +

|ak|2P
ΣkM

)]
(6)

where (a) follows from [8], noticing thataku
G
k and ζk are

uncorrelated (even after conditioning onak,Σk).
Next, we shall bound the rate gap incurred by the naive

ZF beamforming and analog feedback with respect to the ZF

1With some abuse of notation, the term in the second line of (6)have the
following meaning:

E
h
infζk:E[|ζk|2]≤Σk

I(uG
k

; yk|ak, Σk)
i

≡R
infζk :E[|ζk|2]≤σ I(uG

k
; yk|ak ,Σk = σ)dF (σ)

whereF (σ) denotes the cdf ofΣk.

beamforming with ideal CSIT. Denoting byRZF
k the rate of

user k with uniform (across users) and constant (in time)
power allocationPk(H) = P/M in (2), we have

∆Ranalog
△
= RZF

k − Rk

≤ E

"
log

 
1 +

|hH

k
vk|

2P

N0M

!#
− E

»
log

„
1 +

|ak|
2P

ΣkM

«–

= E

"
log

 
1 +

|hH

k
vk|

2P

N0M

!#

−E

2
4log

0
@1 +

“P
j 6=k |eH

k
bvj |2 + |ak|

2
”

P

N0M

1
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+E

2
4log

0
@1 +

X
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1
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(a)

≤ E

2
4log

0
@1 +

X

j 6=k

|eH

k
bvj |2P

N0M

1
A
3
5

(b)

≤ log

0
@1 +

P

N0M

X

j 6=k

E[|eH

kbvj |
2]

1
A

(c)
= log

„
1 +

σ2
eP

N0

M − 1

M

«
, (7)

where (a) follows from the fact that
∑

j 6=k |eH

k v̂j |2 + |ak|2
stochastically dominates|hH

kvk|2 since|ak|2 and|hH

kvk|2 are
identically distributed, (b) follows from Jensen’s inequality
and the final expression (c) follows by noticing that theV̂ is a
deterministic function of̂H and therefore it is independent of
E. Therefore, we can writeE[|eH

k v̂j |2] = E[v̂H

j E[eke
H

k ]v̂j ] =
σ2

eE[|v̂j |2] = σ2
e , sincev̂j has unit norm by construction.

III. C OMPARISON WITH QUANTIZED CSIT FEEDBACK

In this section we compare analog and digital feedback
under the assumptions of perfect CSIR, no feedback errors,
and no feedback delay. Replacing the estimation error variance
σ2

e = (1 + βP/N0)
−1 in (7) and further upper bounding we

obtain:

∆Ranalog ≤ log

(
1 +

1

β

)
. (8)

Let us now consider digital feedback over the same channel.
The rate gap obtained in [7, Theorem 1] and reported in (4) is
further upperbounded bylog(1+(P/N0)·2−

B
M ). Let us assume

(very unrealistically) that the digital feedback link can operate
error-free and at capacity, i.e., it can reliably transmitlog(1+
P/N0) bits per symbol. For the same number of feedback
channel periods,βM , the number of feedback bits per mobile
is B = βM log2(1 + P/N0). Replacing this into the rate gap
bound, we obtain:

∆Rquant. ≤ log

(
1 +

P/N0

(1 + P/N0)β

)
. (9)

If β = 1 the quantized and analog feedback achieve essentially
the same rate gap of at most 1 b/s/Hz. However, ifβ > 1,
unlike the analog feedback case, the rate gap of the quantized
feedback vanishes forP/N0 → ∞. and digital is far superior
to analog forβ > 1.

This conclusion finds an appealing interpretation in the
context of rate-distortion theory. It is well-known (see [9]
and references therein) that analog transmission is an optimal
strategy to send a Gaussian source over a Gaussian channel



with minimal end-to-end quadratic distortion. In our case,the
source is the Gaussian channel vectorhk and the noisy channel
is the feedback AWGN channel with SNRP/N0. Hence, the
fact that analog feedback cannot be essentially outperformed
for β = 1 is expected. However, it is also well-known that
if the channel rate is larger than the source rate (i.e., less
than one Gaussian source symbol arrives per channel symbol,
which corresponds toβ > 1 in our case), then analog is
strictly suboptimal as compared to separate source and channel
coding because the distortion with analog transmission scales
as1/β whereas it decreases exponentially withβ (i.e., along
the vector quantizer R-D curve) for digital transmission.

IV. EFFECTS OFIMPERFECTCSIR

We now consider the scenario where each receiver has only
a noisy estimate of its channel acquired via downlink training.
In order to allow for channel estimation,β1M shared pilots
(β1 ≥ 1 symbols per antenna) are transmitted. Each receiver
estimates its channel on the basis ofY =

√
β1PH+Z, which

yields (after MMSE estimation) Gaussian error with variance
(1 + β1P/N0)

−1. Terminals feed back channel information
immediately after completion of this training phase. Afterthe
transmitter has chosen beamforming vectors on the basis of the
channel feedback, an additional round of downlink training
is performed to enable coherent detection and allow each
terminal to estimate its useful signal coefficientak = h

H

k
v̂k.

This can be accomplished inβ2M symbols by transmitting
along each of the beamforming vectors forβ2 symbols. If
MMSE estimation ofak is performed, we haveak = âk + fk

where fk and âk are independent complex Gaussian’s with
varianceσ2

f = N0

N0+β2P and1 − σ2
f , respectively.2

Under this set of assumptions, a lower bound to
I(uk; yk|âk) can be derived using techniques similar to those
in [10, 11]. Using this lower bound and some steps similar to
those leading to (7), the following upper bound to the rate gap
can be reached at:

∆R ≤ log2

(
1 +

P

N0M

(
σ2

f + (M − 1)E[|hH

k v̂j |2]
)
,

)

where the multi-user interference termE[|hH

k v̂j |2] depends on
the CSIT and thus on the channel feedback (β) as well as
the accuracy of the initial training (β1). We again assume that
βM symbols are devoted to channel feedback (per mobile). If
analog feedback is used, we get an upper bound of:

∆Ranalog ≤ log

(
1 +

1

β1
+

1

Mβ2
+

1

β

)
(10)

In the case of digital feedback, under the assumption thatB =
βM log2(1 + P/N0) feedback bits per mobile are sent in an
error-free manner, we get:

∆Rquant. ≤ log

(
1 +

1

β1
+

1

Mβ2
+

P/N0

(1 + P/N0)β

)
. (11)

Comparing (10) and (11) we come to the same general
conclusions as in Section III: ifβ = 1 then digital and analog
are equivalent, but ifβ > 1 digital is superior to analog
because the effect of feedback noise vanishes at high SNR
for digital but does not do so for analog.

2Note that additional training is required because terminals do not know the
channels of other terminals, and thus are not aware of the chosen beamforming
vectors.
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Fig. 1. Quantized vs. Analog Feedback with Imperfect CSIR.

There are, however, some important differences with the
perfect CSIR scenario. First note that the imperfect CSIR leads
to residual interference that does not vanish with SNR; as
a result, the rate gap is not driven to0 even whenβ > 1,
assumingβ1 andβ2 are fixed. In addition, whenβ1 ≈ β2 ≈ 1,
imperfect CSIR seems to have a considerably stronger effect
than feedback noise, thereby reducing the magnitude of digital
feedback’s advantage. These effects are both visible in Fig.
1, where analog and digital feedback curves are plotted for
β1 = β2 = 1 andβ = 1 andβ = 2, along with the throughput
of an imperfect CSIR/perfect FB system.

Finally we comment on the tradeoff between downlink
training (β1) and channel feedback (β). Since downlink pilots
are shared, training consumes onlyβ1M channel symbols.
Channel feedback, on the other hand, requiresβM channel
symbolsper mobile. If the M terminals can simultaneously
transmit on the feedback channel, perhaps utilizing theM -
antenna receive array at the base as described in [3], thenβ
and β1 are equivalent in terms of system resources. For the
case of analog feedback, from (10) we see thatβ and β1

should be chosen equal. On the other hand, if digital feedback
is used, it is only necessary to chooseβ > 1 (so that the
effect of feedback noise vanishes), and the remainder of the
resources should be devoted to downlink training, i.e., toβ1.
This is an additional advantage to digital wheneverβ+β1 > 2.
Note that there is also a tradeoff betweenβ1 andβ2, but that
the effect of the initial training (β1) is considerably stronger
than the second phase.

V. EFFECTS OFCSIT FEEDBACK ERRORS

We now investigate the impact of removing the optimistic
assumption that the quantized feedback channel can oper-
ate error-free at capacity. We consider a very simple CSIT
feedback scheme that certainly represents a lower bound
on the best quantized feedback strategy. The user terminals
perform quantization using RVQ and transmit the feedback
bits using simple uncoded QAM. No intelligent mapping of the
quantization bits onto the QAM symbols is used, and therefore
even a single erroneous feedback bit from userk results in
CSIT that is completely independent (due to the properties
of RVQ) of the actualk-th channel vector. Since uncoded
QAM is used, error detection is not possible and the base
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station computes beamforming vectors based on the possibly
erroneous feedback.

We again useβM symbol periods to transmit the feed-
back bits. There is a non-trivial tradeoff between quanti-
zation and channel errors. In order to maintain a bounded
gap, feedback must be scaled at least as(M − 1) log2(1 +
P/N0) ≈M log2 P/N0. Therefore, we consider sendingB =
αM log2 P/N0 for 1 ≤ α ≤ β bits in βM symbol periods,
which corresponds toαβ log2(P/N0) bits per QAM symbol.

From [12], using the fact that the QAM constellation size is
equal toL = (P/N0)

α
β , we have the following upper bound

to the symbol error probability for QAM modulation:

Ps ≤ 2 exp

(
−3

2

(
P

N0

)1−α/β
)

(12)

For α = β (which means trying to signal at capacity with
uncoded modulation!)Ps does not decreases with SNR and
the system performance is very poor. However, forα/β < 1,
which corresponds to transmitting at a constant fraction of
capacity,Ps → 0 as P/N0 → ∞. The upper bound on the
error probability of the whole quantized vector (transmitted
in βM symbols) is given byPe,fb = 1 − (1 − Ps)

βM . A
lower bound on the achievable ergodic rate is obtained by
assuming that when a feedback error occurs for userk its
SINR is zero while if no feedback error occurs its rate is given
RZF

k −∆Rquant., that is, the rate of ideal ZF decreased by the
(upper bound to) the rate gap. It follows that the ergodic rate
of userk is upperbounded by

Rk ≥ (1 − Ps)
βM
(
RZF

k − log
(
1 + (P/N0)

1−α
))

(13)

Choosing1 < α < β we achieve both vanishingPs and van-
ishing ∆Rquant. asP/N0 → ∞. Thus, even under this very
simple CSIT feedback scheme the optimal ZF performance
can be eventually approached for sufficiently high SNR.

Fig. 2 shows the ergodic rate achieved by ZF beamforming
with quantized CSIT and QAM feedback transmission for
M = K = 4, independent Rayleigh fading,β = 4 and
different values ofα. It is noticed that by proper design of
the feedback parameters the performance can be made very
close to the ideal CSIT case.

VI. EFFECTS OFCSIT FEEDBACK DELAY

We consider now the case of analog feedback (assuming
perfect CSIR) when each entry ofH evolves independently (in
the block-fading way described earlier) according to the same
complex circularly symmetric Gaussian stationary ergodic
random process, denoted by{h(t)}, with mean zero, variance
1 and power spectral density (Doppler spectrum) denoted by
Sh(ξ), ξ ∈ [−1/2, 1/2].

Because of stationarity, without loss of generality we can
focus on t = 0. We are interested in the linear MMSE
estimation ofh(t) from the observation{g(τ) : τ = −∞, t−
d} where, following the analog feedback model (3), we let
g(τ) = h(τ)+w(τ), with w(τ) i.i.d. ∼ CN(0, δ) andδ = N0

βP .
In particular, we consider the case of 1-step prediction (d = 1)
and the case of filtering (d = 0). From classical Wiener
filtering theory [13], we have that the prediction error is given
by

ǫ1(δ) = exp

(∫ 1/2

−1/2

log(δ + Sh(ξ))dξ

)
− δ (14)

and that the filtering MMSE is given by

ǫ0(δ) =
δǫ1(δ)

δ + ǫ1(δ)
. (15)

We shall discuss the rate gap bound (7) lettingσ2
e =

ǫd(N0/(βP )) for d = 0, 1, under different assumptions on
the fading process{h(t)}. We distinguish two cases: Doppler
process and regular process. We say that{h(t)} is a Doppler
process ifSh(ξ) is strictly band-limited in[−F, F ], where
F < 1/2 is the maximum Doppler frequency shift, given
by F = vfc

c Tf , where v is the mobile terminal speed
(m/s), fc is the carrier frequency (Hz),c is light speed (m/s)
and Tf is the frame duration (s). Furthermore, a Doppler
process must satisfy

∫ F

−F
log Sh(ξ)dξ > −∞. Following [14],

we say that{h(t)} is a regular process ifǫ1(0) > 0. In
particular, a process satisfying the Paley-Wiener condition [13]∫ 1/2

−1/2
logSh(ξ)dξ > −∞ is regular.

A Doppler process satisfying our assumptions has prediction
error

ǫ1(δ) = δ1−2F exp

(∫ F

−F

log(δ + Sh(ξ))dξ

)
− δ (16)

No feedback delay (d = 0). In this case

Pσ2
e =

N0

β

ǫ1

(
N0

βP

)

N0

βP + ǫ1

(
N0

βP

) (17)

Hence, limP→∞ Pσ2
e = N0

β for both Doppler and regular
processes. For the latter, this is clear from the fact that
ǫ1(0) > 0. For the former, this follows from (16). Applying
Jensen’s inequality and the fact that

∫
Sh(ξ)dξ = 1, we arrive

at the upper bound

ǫ1

„
N0

βP

«
≤

„
N0

βP

«1−2F
"„

1

2F
+

„
N0

βP

««2F

−

„
N0

βP

«2F
#

(18)

Using the fact thatlog is increasing, we arrive at the lower
bound

ǫ1

„
N0

βP

«
≥

„
N0

βP

«1−2F
"
exp

„Z F

−F

log Sh(ξ)dξ

«
−

„
N0

βP

«2F
#

(19)
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These bounds yield thatǫ1(N0/βP ) = κP−(1−2F )+O(1/P )
for some constantκ. Hence,ǫ1 = O(P−(1−2F )) while δ =
O(1/P ), and the limits holds.

We conclude that in the case of no feedback delay the
estimation error is essentially dominated by the instantaneous
observation and not much improvement can be expected by
taking into account the channel memory if analog feedback
is used. With quantized feedback the same may not be true
because it is possible to exploit memory by feeding back only
the innovation process [15]; this is under investigation.

Feedback delay (d = 1). In this case, the behavior of
Doppler versus regular processes is radically different. For
Doppler processes, using (18) and (19), we have thatPσ2

e =
Pǫ1(N0/βP ) = κP 2F + O(1). It follows that the achievable
rate sum is lowerbounded by

M∑

k=1

Rk ≥M(1 − 2F ) logP +O(1) (20)

which implies a multiplexing gain ofM(1 − 2F ).
For regular processes, on the contrary, we have thatPσ2

e ≥
Pǫ1(0) = O(P ). Hence, the rate gap grows likelogP and
the achieved multiplexing gain is zero. Furthermore, it canbe
shown that the following is actually an upper bound to the
per-user rate, even when the feedback is noiseless:

Rk ≤ log2

(
1

1 − r2
+ (M − 1)

)
− ψ(M)

loge 2
+

1

loge 2

(
1

2M − 1
+

1

2M − 2

)
(21)

In conclusions, the most noteworthy result of this analysis
is that under common fading models (Doppler processes), the
analog feedback scheme achieves a potentially high multi-
plexing gain even with realistic, noisy and delayed feedback.
Notice for example that with mobile speedv = 50 km/h,
fc = 2 GHz, and frame duration1 ms, we haveF = 0.0926.
With M = 4 antennas we achieve a yet respectable pre-log
factor equal to3.26 instead of 4.3

3It is interesting to notice here the parallel with the results of [14] on the
high-SNR capacity of the single-user scalar ergodic stationary fading channel
with no CSIR and no CSIT, where it is shown that for a class ofnon-regular
processes that includes the Doppler processes defined here,the high-SNR
capacity grows likeLlog P , whereL is the Lebesgue measure of the set
{ξ ∈ [−1/2, 1/2] : Sh(ξ) = 0}. In our case, it is clear thatL = 1 − 2F .
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Figs. 3 and 4 show the achievable ergodic rates for the
Jakes’ “J0” correlation (strictly band-limited) and the Gauss-
Markov AR-1 correlation (regular process) for different first-
lag correlation values. For the AR-1 process withd = 1
the system becomes interference limited. On the contrary, the
performance under Jakes’ model degrades gracefully as the
user mobility (Doppler bandwidth) increases.
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