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Abstract— This paper studies the performance of transmission
schemes that have rate that increases with average SNR while
maintaining a fixed outage probability. This is in contrast to the
classical Zheng-Tse diversity-multiplexing tradeoff (DMT) that
focuses on increasing rate and decreasing outage probability.
Three different systems are explored: antenna diversity systems,
time/frequency diversity systems, and automatic repeat request
(ARQ) systems. In order to accurately study performance in the
fixed outage setting, it is necessary to go beyond the coarse,
asymptotic multiplexing gain metric. In the case of antenna
diversity and time/frequency diversity, an affine approximation
to high SNR outage capacity (i.e., multiplexing gain plus a
power/rate offset) accurately describes performance and illus-
trates the very significant benefits of diversity. ARQ is also seen
to provide a significant performance advantage, but even an affine
approximation to outage capacity is sometimes unable to capture
this advantage and outage capacity must be directly studied in
the non-asymptotic regime.

I. INTRODUCTION

In many time-varying communication systems, the receiver
has accurate instantaneous channel state information (CSI),
generally acquired from received pilot symbols, while the
transmitter only knows the channel statistics (e.g., average
received SNR and the fading distribution) but has no instanta-
neous CSI. Performance in such a setting is generally dictated
by fading and the relevant performance metric is known to
be the outage probability, which is the probability that the
instantaneous mutual information is smaller than the trans-
mission rate, because this quantity reasonably approximates
the probability of decoder (frame) error if a strong channel
code is used [1]. Such systems have traditionally been studied
by considering outage probability versus average SNR for a
fixed transmission rate, leading to measures such as diversity
order (generally defined as the slope of the outage vs. SNR
curve in log-scale).

In modern communication systems, however, transmission
rate is generally adjusted according to the average SNR (via
adaptive modulation and coding) and thus systems need to be
studied at various rates and SNR levels. The seminal work of
Zheng and Tse [2] took precisely this viewpoint in introducing
the diversity-multiplexing tradeoff (DMT). Loosely speaking,
the DMT framework considers the performance of a family
of codes indexed by average SNR such that the coding rate
increases as r log2 SNR, and the outage/error probability of
the code decreases approximately as SNR−d. The quantity r
is the multiplexing gain while d is the diversity order (of the

family of codes, not of a particular code). The DMT region is
the set of (r, d) pairs achievable by any family of codes, and
can be simply quantified in terms of the number of transmit
and receive antennas, Nt and Nr respectively, and the receiver
strategy for MIMO systems.

Over the past few years the DMT framework has become the
benchmark for comparing different transmission strategies for
different systems (MIMO, cooperative transmission, multiple
access channel). Although the DMT framework has been
incredibly useful in this role by providing a meaningful and
tractable metric to compare different schemes that simultane-
ously achieve increasing rate and decreasing outage proba-
bility, one very important paradigm not sufficiently captured
by the DMT are codes that achieve increasing rate and fixed
outage probability.

Families of codes that achieve a fixed rather than decreasing
outage are important because they are used in a number of
important wireless systems, most prominently in the cellular
domain. In this setting, as the average SNR of a user increases
(i.e., as a user moves closer to the base station), it is desirable
to use the additional SNR to increase rate but not to decrease
outage probability (i.e., packet error rate); indeed, many sys-
tems continually adjust rate precisely to maintain a target error
probability (e.g., 10−2). In a voice system, for example, the
voice decoder may be able to provide sufficient quality if no
more than 1% of packets are received incorrectly and thus
there is no benefit to decrease outage below 1%. Therefore,
serving each user at the largest rate that maintains 1% outage
minimizes per-user resource consumption (i.e., time/frequency
slots) and thereby maximizes system capacity.

In order to accurately study fixed-outage schemes, it is nec-
essary to directly study the manner in which outage capacity
scales with SNR. We denote outage capacity as R(P, ε), where
this quantity is the rate that achieves an outage probability of
ε at an average SNR of P . In the context of the DMT, fixed
outage systems (for any ε > 0) achieve zero diversity (d = 0)
and thus can achieve the maximum multiplexing gain. In other
words, the DMT tells us that R(P, ε) ≈ rmax log2 P for any
ε > 0, where rmax is the maximum multiplexing gain, but can-
not provide a more precise characterization than multiplexing
gain (or pre-log factor). In many scenarios of interest, such a
characterization is not sufficient to meaningfully characterize
performance. Prasad and Varanasi were perhaps the first to
recognize the need to go beyond the multiplexing gain [3]
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Fig. 1. Full multiplexing performance in the diversity-multiplexing tradeoff

[4], and our work follows along these lines.
To further illustrate the need to directly study outage ca-

pacity, let us consider a simple example. For a 1 × 1 system
the maximum diversity order is d∗(r) = 1 − r, while for
a 2 × 1 (Nt = 2, Nr = 1) system d∗(r) = 2(1 − r) [2].
The DMT regions for both systems are shown in Fig. 1 (a).
Because min(Nt, Nr) = 1 both regions share the same full
multiplexing point (r = 1, d = 0), a DMT-based comparison
would indicate that the systems are equivalent in a fixed outage
setting. However, the plot of R(P, ε) for ε = 0.01 in Fig. 1
(b) shows that there is a huge power gap (≈ 8.5 dB) between
the two systems; it clearly is not sufficient to consider only
the multiplexing gain, which is the slope of the R(P, ε) curve.

Motivated by this example, one step in the right direction is
to consider affine rather than linear approximations to outage
capacity (at high SNR):

R(P, ε) = rmax log2 P + O(1), (1)

where the non-vanishing O(1) term, which depends on ε
and the system configuration (i.e., Nt and Nr), is capable
of capturing power/rate offsets such as that seen in Fig. 1
(b). This affine approximation, first proposed in [5], has been
extremely useful in analysis of the ergodic capacity of CDMA
systems [5] and MIMO systems [6] [7]. More recently, the
affine approximation has also been employed to study the
outage capacity of MIMO systems at asymptotically high SNR
[4]. In [4], an expression for the constant term in (1) is given
in terms of the statistics of the channel matrix (more precisely,
in terms of the distribution of the determinant of HHH where
H is the channel matrix).

A. Contribution and Organization

In this paper, we first consider the case of antenna diversity
(SIMO or MISO; Section III) and show that fixed outage
capacity can be exactly specified in terms of the inverse of the
fading CDF. Although this result can be viewed as a special
case of [4] (see also [9, Section 5.4]), it is useful to consider
this base case to more precisely illustrate the importance of
fixed-outage analysis (thus this section should be treated as
background material). Next we consider systems with time
and/or frequency diversity (Section IV), which are modeled as
block-fading channels. Finally, we consider the performance

of systems using hybrid ARQ (automatic repeat request) for
incremental redundancy as well as Chase combining.

II. SYSTEM MODEL

We consider a block-fading channel, denoted by H, which is
randomly drawn according to a known probability distribution
(e.g., spatially white Rayleigh fading) and then fixed for
the duration of a codeword. Furthermore, the receiver is
assumed to have perfect channel state information (CSI) but
the transmitter has no instantaneous knowledge of the channel
realization and is only aware of the probability distribution.
The received signal y is given by:

y =
√

PHx + z, (2)

where the input x is constrained to have unit norm, z is
the complex Gaussian noise and P represents the (average)
received SNR. We consider cases where the input is Gaussian
and further specify its structure where needed.

The outage probability is the probability that the instanta-
neous mutual information is smaller than the transmission rate
R:

Pout(R,P ) = P[I(X;Y |P ) < R], (3)

and the outage capacity R(P, ε) is defined as the maximum
rate that achieves the desired outage probability:

R(P, ε) � sup
Pout(R,P )≤ε

R. (4)

Note that this quantity is essentially the same as the ε-capacity
defined by Verdú and Han [8]1, denoted by Cε in the following
parts.

III. ANTENNA DIVERSITY

We begin by examining antenna diversity, which is one of
the commonly employed diversity techniques. If the transmit-
ter has Nt > 1 antennas while Nr = 1, the mutual information
for a spatially white Gaussian input (components of x are
iid Gaussian with variance 1

Nt
) is log2

(
1 + ||H||2 P

Nt

)
and

therefore the outage probability is given by:

Pout(R,P ) = P
[
log2

(
1 + ||H||2 P

Nt

)
< R

]
. (5)

By setting this quantity to ε and solving for R, we get:

CNt×1
ε (P ) = log2

(
1 + F−1

||H||2(ε)
P

Nt

)
, (6)

where F−1
||H||2(·) is the inverse of the CDF of random variable

||H||2. In iid Rayleigh fading the components of H are iid

1In some cases we compute outage probability assuming the input x
is Gaussian and spatially white, while the precise definition of ε-capacity
requires an explicit optimization over the input distribution. This choice of
input is easily shown to be optimal when Nt = 1, but is not necessarily
optimal for Nt > 1.



CN (0, 1) and thus ||H||2 is chi-square with 2Nt degrees of
freedom and has the following CDF:

F||H||2(x) = 1 − e−x
Nt∑

k=1

xk−1

(k − 1)!
. (7)

If Nt = 1 the channel gain is exponential and the inverse CDF
can be written in closed form to yield:

C1×1
ε (P ) = log2

(
1 + ln

(
1

1 − ε

)
P

)
, (8)

while for Nt > 1 the inverse CDF needs to be computed
numerically.

It can be convenient to relate the outage capacity to the
AWGN capacity at SNR P : CAWGN (P ) = log2(1 + P ):

Cε(P ) = CAWGN (ΓεP ) = log2(1 + ΓεP ) (9)

where the gap to capacity is:

ΓNt×1
ε =

F−1
||H||2(ε)

Nt
. (10)

For small ε we can approximate the CDF of ||H||2 as
F||H||2(x) ≈ xNt

Nt!
and therefore the gap can be approximated

as:

ΓNt×1
ε ≈ ε

1
Nt

(Nt!)
1

Nt

Nt
. (11)

In the case of receive diversity (Nt = 1, Nr > 1) the
achieved mutual information is log2

(
1 + ||H||2P ), because

using optimal maximum-ratio combining prevents the power
loss experienced with transmit diversity, and therefore:

C1×Nr
ε (P ) = log2

(
1 + F−1

||H||2(ε)P
)

, (12)

where ||H||2 is chi-square with 2Nr degrees of freedom.
As expected, there is a log10(Nt) dB power gap between
C1×Nr

ε (P ) and CNt×1
ε (P ).

In Fig. 2 the outage capacity of 2 × 1, 1 × 2, and 1 × 1
systems are plotted for ε = 0.01. The capacity gap for the
1× 1 system is approximately 20 dB (Γε = − ln(1− ε) ≈ ε),
while it is about 11.5 dB for the 2 × 1 system (Γε ≈ √

ε
2 ).

Fixed outage analysis very clearly illustrates the advantage of
antenna diversity.

IV. TIME / FREQUENCY DIVERSITY

Another very common method of realizing diversity is
through time or frequency, i.e., by coding across multiple
coherence times/bands. If a codeword spans L coherence
bands (in time and/or frequency), the outage probability is
given by [9, Equation 5.83]:

Pout(R,P ) = P
[

1
L

L∑
i=1

log2(1 + P |hi|2) < R

]
(13)

where hi is the channel gain over the i-th band, each hi is unit
variance complex Gaussian (Rayleigh fading), and h1, . . . , hL

are assumed to be iid. It is important to note that this outage
probability expression approximates the performance of a
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strong channel code that is interleaved across the L bands,
and not that of a sub-optimal repetition code.

For notational convenience we define the function GL(R)
to be equal to the outage expression in (13). In terms of this
function

Cε(P ) = G−1
L (ε). (14)

Although we cannot reach a closed form for G−1
L (ε), this

quantity can be computed numerically by noting that Cε(P )
is equal to R that satisfies:

ε =
∫ ∫

· · ·
∫

1
L

∑L
i=1 log2(1+xi)<R

1
PL

e−
x1+x2+··· xL

P

dx1dx2 · · · dxL. (15)

It can be shown that the affine approximation to outage
capacity is quite useful in the high SNR analysis. Besides, a
simple application of Jensen’s inequality shows that the mutual
information achieved with L-order time/frequency diversity is
smaller than that achieved in a L × 1 system:

1
L

L∑
i=1

log2(1 + P |hi|2) ≤ log2

(
1 +

P

L

L∑
i=1

|hi|2
)

. (16)

As a result, the outage probability is larger for time/frequency
diversity and therefore the outage capacity of a L × 1 sys-
tem is no smaller than the outage capacity of an L-order
time/frequency diversity system. In Fig. 3, outage capacity is
shown for L = 1, 2 and 3 along with the outage capacity of
2 × 1 and 3 × 1 systems for ε = 0.01. The time/frequency
diversity curve is smaller than the corresponding antenna
diversity system, but the difference is relatively small for low
and moderate SNR. However, there is a nontrivial gap at high
SNR that can be explained by the concavity of the log function.

V. ARQ

ARQ protocols can significantly improve performance by
allowing for retransmission of packets or transmission of
additional parity symbols when an initial transmission is un-
successful. We are particularly interested in the performance of
hybrid ARQ (H-ARQ) protocols that allow for decoding on the
basis of multiple received packets. Upon reception of a packet,
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the receiver attempts to decode and feeds back a one-bit
ACK/NACK message (often based on the success or failure of
a CRC check). If an ACK is received the transmitter moves on
to the next message, while a NACK results in retransmission
of the same packet (Chase combining) or transmission of
additional parity symbols (incremental redundancy). There
generally is a limit to the number of ARQ rounds for the same
message, denoted by L, and an outage occurs whenever the
message cannot be successfully decoded after L ARQ rounds.

If each message contains b bits and each transmitted packet
is T symbols long, then the initial rate of transmission is R �
b
T . If random variable X is used to denote the number of ARQ
rounds used for a particular message (clearly X ≤ L), then
the long-term transmitted rate is [10]:

η =
R

E[X]
. (17)

To see why this is the case, note that the number of packet
transmissions used to attempt to transmit N messages is∑N

i=1 Xi, where Xi is the number of ARQ rounds used
for the i-th message. Thus, the average transmission rate (in
bits/channel symbol) is:

Nb

T
∑N

i=1 Xi

=
R

1
N

∑N
i=1 Xi

, (18)

and this quantity converges (by the law of large numbers) to
R

E[X] as N → ∞.

A. Incremental Redundancy

We first investigate incremental redundancy techniques,
in which the transmitter sends additional parity bits (rather
than retransmitting the same packet) whenever a NACK is
received. In this setting it has been shown that the total mutual
information is the sum of the mutual information received
in each ARQ round, and that decoding is possible once the
accumulated mutual information is larger than the number of
information bits [10]. In other words, the number of ARQ
rounds X is the smallest number l such that:

l∑
i=1

log2(1 + P |hi|2) > R. (19)

The constraint caps this quantity by L, and an outage occurs
whenever the mutual information after L rounds is smaller
than R:

Pout(R) = P
[

L∑
i=1

log2(1 + P |hi|2) < R

]
. (20)

For simplicity we consider single antenna systems (Nt =
Nr = 1), and use hi to denote the channel during the i-th
ARQ round. In the following sections we consider the case
where the channel is iid across ARQ rounds. Similar to the
definition in Section IV, here we use GIR,i(R) to denote the
probability that the sum of mutual information is less than the
first round rate R after i rounds. Then, R = G−1

IR,L(ε). Go
back to the definition of η, we have2

ηIR = CIR,L
ε =

G−1
IR,L(ε)

1 +
∑L−1

i=1 GIR,i(G−1
IR,L(ε))

(21)

It is useful to compare performance to a system without
ARQ that always codes over the L available slots (whereas
ARQ allows for early completion), which precisely corre-
sponds to L-order time/freq diversity (Section IV). After
properly normalizing rates, we get:

CIR,L
ε

CnARQ
ε

=
L

E[X]
(22)

where CnARQ
ε is the outage capacity of a corresponding no

ARQ protocol. Since L ≥ E[X], then

CIR,L
ε ≥ CnARQ

ε (23)

Actually, the quantity L
E[X] determines the advantage of ARQ,

and it is not difficult to show the following limit:

lim
P→∞

E[X] = L (24)

Note that R is set such that the mutual information accumu-
lated over L ARQ rounds is very likely (i.e., with probability
equal to 1 − ε) to be larger than R. In order for ARQ to
terminate after a single round, the received mutual information
in a single round needs to be L times larger than that expected
across L rounds. At high SNR this occurs with very low
probability because the received mutual information received
in a single round is well approximated as log2 P + log2 |hi|2;
the probability that this quantity is larger than R, which
is of order L log2 P , is extremely rare because log2 P >>
log2 |hi|2 for large P . Indeed, it can further be shown that the
rate advantage of ARQ also vanishes at asymptotically high
SNR:

lim
P→∞

[CIR,L
ε (P ) − CnARQ

ε (P )] = 0 (25)

In other words, the high SNR affine approximation is the
same regardless of whether ARQ is used3. On the other

2Strictly speaking, outage capacity is different from the long-term trans-
mitted rate. But for convenience here we still use outage capacity to denote
the fixed-outage transmitted rate.

3Somewhat counter-intuitively, the performance of ARQ at very high SNR
can be improved by selecting the initial rate R strictly smaller than G−1

IR,L(ε)
(which means the outage probability is strictly smaller than the constraint).
Although space constraints preclude further discussion here, this point is
investigated in detail in [11].
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hand, the number of expected ARQ rounds is less than L at
asymptotically low SNR.

Based on these asymptotic results one might conclude that
ARQ provides a benefit only at relatively low SNR’s. However,
numerical results indicate that the high SNR asymptotics kick
in only for very large SNR’s. Indeed, ARQ does achieve a
significant advantage for a relatively large range of SNR’s. In
Fig. 4 the outage capacity is shown for ε = 0.01 and L = 1, 2
and 3. Note that 2 rounds of ARQ provide a significant power
advantage relative to no ARQ up to approximately 30 dB,
while the advantage lasts past 40 dB for L = 3. Asymptotic
measures such as multiplexing gain and rate/power offset are
clearly misleading in this context.

B. Chase Combining

If Chase combining is used, the transmitter retransmits the
same packet whenever a NACK is received and the receiver
performs maximal-ratio-combining (MRC) on all received
packets. As a result, SNR rather the mutual information is
accumulated over ARQ rounds and the outage probability is
given by:

Pout(R) = P
[
log2(1 + P

L∑
i=1

|hi|2) < R

]
(26)

Note that this strategy essentially allows a repetition code to
be used up to L times. A straightforward derivation shows the
outage capacity of CC in the iid Rayleigh fading channel is:

CCC,L
ε (P ) =

R

L − e−
2R−1

P

∑L−1
k=1 (L − k) (2R−1)k−1

P k−1(k−1)!

(27)

where R has to be obtained from G−1
CC,L(ε) numerically.

Chase combining indeed provides some advantage at low and
moderate SNR, but performs poorly at high SNR because
of the sub-optimality of the repetition codes. In Fig. 5 we
compare the performance of IR, CC and no ARQ strategy for
L = 4 and ε = 0.05. We see that CC performs reasonably at
low SNR but trails off at high SNR.
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VI. CONCLUSION

In this paper we have studied open-loop communication
systems under the assumption that the rate is adjusted such
that a fixed outage probability is maintained. The over-arching
takeaways of this work are two-fold. First, we have argued
that schemes that increase rate but have a fixed rather than
decreasing outage probability may be more practically relevant
than the increasing rate/decreasing outage schemes addressed
by the diversity-multiplexing tradeoff. Second, we have shown
that asymptotic measures should be used very carefully in
analysis of fixed-outage systems. Multiplexing gain is certainly
too coarse in this context, while high SNR rate/power offsets
are sometimes meaningful (antenna diversity, time/frequency
diversity) but can also be misleading in other settings (e.g.,
ARQ systems) due to their asymptotic nature.
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