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Abstract— The behavior of the multiple antenna broadcast
channel at high SNR is investigated. The multiple antenna
broadcast channel achieves the same multiplexing gain as the
system in which all receivers are allowed to perfectly cooperate
(i.e. transforming the system into a point-to-point MIMO system).
However, the multiplexing gain alone is not sufficient to accu-
rately characterize the behavior of sum rate capacity at high
SNR. An affine approximation to capacity which incorporates
the multiplexing gain as well as a power offset (i.e. a zero-order
term) is a more accurate representation of high SNR behavior.
The power offset of the sum rate capacity is shown to equal the
power offset of the cooperative MIMO system when there are less
receivers than transmit antennas. In addition, the power offset
of using the sub-optimal strategy of beamforming is calculated.
These calculations show that beamforming can perform quite
well when the number of antennas is sufficiently larger than the
number of receivers, but performs very poorly when there are
nearly as many receivers as transmit antennas.

I. I NTRODUCTION

We consider a multiple antenna broadcast channel (BC),
in which the transmitter has multiple antennas and each of
the receivers has a single antenna. It is now well known that
dirty paper coding (DPC) achieves the sum capacity of the
multiple antenna broadcast channel as well as the full capacity
region [12] [1] [10] [11] [13]. Though this channel has been
extensively studied, there is no general closed form expression
for the sum capacity, and it can be expressed in general only
as the solution to a convex optimization problem.

In this paper, we investigate the high SNR behavior of the
sum capacity of the multiple antenna broadcast channel. We
study the sum rate capacity (achieved using DPC) as well
as the sum rate achievable using linear beamforming (without
DPC). It is well known that the sum rate capacity of the MIMO
BC achieves the same multiplexing gain as a system where all
receivers are allowed to cooperate. However, the multiplexing
gain, which quantifies the rate of increase of capacity as a
function of the SNR, is not sufficient to capture all relevant
high SNR features.

A more accurate representation of high SNR behavior
is provided by an affine approximation to capacity, which
includes both the multiplexing gain (i.e. slope) as well as a
power offset (i.e. zero-order term). Such an affine approxi-
mation is useful because: (i) it is able to capture the non-
negligible effect of different fading models and increasing the
number of transmit antennas beyond the number of receive
antennas, or vice versa, which the multiplexing gain does
not reflect, and (ii) the high SNR approximation provides

accurate results for even moderate SNR values, and thus is of
practical interest [8]. This approximation was first developed
for randomly spread CDMA channels in [5], and has been
applied to different CDMA models [7] [9] as well as point-
to-point MIMO channels [8] [4].

We consider MIMO downlink channels in which the number
of receivers is no larger than the number of transmit antennas.
In this scenario, we show that the affine approximation to the
sum rate capacity is identical to the affine approximation of
the cooperative MIMO channel, which is the resultant point-to-
point channel when all receivers are allowed to cooperate. In
addition, we study the maximum sum rate achievable using
beamforming, and provide closed form expressions for the
power offset relative to the true sum rate capacity.

II. SYSTEM MODEL

We consider anM transmit antenna, single receive antenna
broadcast channel withK receivers, withK ≤ M . The
assumption on the number of users is crucial to this work.
The broadcast channel is mathematically described as:

yi = hix + ni, i = 1, . . . , K (1)

where h1,h2, . . . ,hK are the channel vectors (withhi ∈
C1×M ) of users 1 throughK respectively on the downlink,
the vectorx ∈ C

M×1 is the downlink transmitted signal, and
n1, . . . ,nK are independent complex Gaussian noise terms
with unit variance. There is a transmit power constraint ofP ,
i.e. the input must satisfyE[||x||2] ≤ P .

We denote the concatenation of the channels byH† =
[h†

1h
†
2 · · ·h

†
K ], i.e. H is K × M with the i-th row equal to

the channel of thei-th receiver. We consider a slowly fading
channel, and assume the transmitter and receivers have perfect
and instantaneous channel knowledge.

III. H IGH SNR APPROXIMATION

In [5], the following approximation to capacity was pro-
posed for asymptotically large SNR:

C(P ) = S∞ (log2(P ) − L∞) + o(1)

= S∞

(

PdB

3dB
− L∞

)

+ o(1), (2)

whereS∞ represents the multiplexing gain,L∞ represents the
power offset (in 3 dB units), and theo(1) term vanishes as



P → ∞. The multiplexing gainS∞ and the power offsetL∞

are defined as:

S∞ = lim
P→∞

C(P )

log2(P )
, (3)

L∞ = lim
P→∞

(

log2(P ) −
C(P )

S∞

)

. (4)

The capacity achieving strategy of dirty paper coding and
the sub-optimal technique of beamforming both achieve a
multiplexing gain of min(M, K). In the remainder of this
paper, we characterize the power offset termL∞ for the sum
rate capacity and the beamforming sum rate.

IV. SUM RATE CAPACITY

The sum rate capacity of the MIMO BC (denoted
CBC(P,H)) is given by the following expression [10]:

CBC(P,H) = max
{Pi}K

i=1
:
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∣

, (5)

where the maximization is performed over powersP1, . . . , PK .
This expression is the capacity of the dual MIMO multiple-
access channel, which is equal to the capacity of the MIMO
broadcast channel [10].

WhenK = 2, a closed-form expression for this maximiza-
tion can be calculated [1]. In addition, the optimum power
policy that maximizes the dual MAC expression in (5) has
a waterfilling interpretation, in that it is optimal to allocate
all power to the user with the larger channel norm up to
some point, after which any additional power should be split
evenly between both users. WhenK > 2, however, no closed
form expression exists for sum rate capacity. In addition, by
examining the KKT conditions that characterize the solution to
(5), we can show that the optimum power allocation does not
follow the waterfilling form, though it is numerically found
to be extremely close to waterfilling. However, we are able to
show that (5) has a unique solution:

Theorem 1: There exists a unique solution to the sum
rate capacity maximization in (5) if{h†

ihi}
K
i=1 are linearly

independent. Furthermore, if the vectors{hi}
K
i=1 are linearly

independent, then the outer products are independent as well.
Proof: See [3].

Let us now move on to the calculation of the power offset
L∞ for the sum rate capacity. In order to do so, we first define
the capacity of the point-to-point MIMO system with channel
matrix H:

CMIMO(P,H) = max
Q≥0, Tr(Q)≤P

log
∣

∣I + HQH†
∣

∣ . (6)

This capacity is referred to as thecooperative upper bound,
because it is the capacity if allK receivers are allowed
to perfectly cooperate. Clearly we haveCMIMO(P,H) ≥
CBC(P,H), since receiver cooperation can only help per-
formance. Note that the reciprocity of MIMO capacity
implies CMIMO(P,H) = CMIMO(P,H†) [6]. The term
CMIMO(P,H) is the capacity of the point-to-point MIMO

capacity when the transmitter is given channel state informa-
tion (CSI) and is allowed to optimize its input to the channel
(i.e. waterfill along the eigenvalues of the channel). It is often
simpler to study the mutual information achieved using an
isotropic input. We are interested in the mutual information of
the reciprocal channel (i.e.H†), which is defined as:

IMIMO(P,H†) = log

∣
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∣

∣
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P

K
H†H
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∣

∣

∣

. (7)

Note that channel reciprocity does not hold for the mutual
information, and we in fact have (with probability one)
IMIMO(P,H†) > IMIMO(P,H) when K < M and H is
iid Rayleigh distributed.

Theorem 2: At high SNR, the sum rate capacity of the
MIMO BC with M ≥ K and concatenated channel matrixH

behaves identically to the mutual information achieved with an
isotropic input of theK × M point-to-point MIMO channel
with gain matrixH†, in the sense that both capacities have
the same affine high-SNR approximation (as defined in (2)).

Proof: This result essentially follows from Theorem 3
of [1], which shows that ifH is full row rank, then:

lim
P→∞

[CMIMO(P,H) − CBC(P,H)] = 0.

The reciprocity of MIMO channels givesCMIMO(P,H) =
CMIMO(P,H†), and we also have

lim
P→∞

[

CMIMO(P,H†) − IMIMO(P,H†)
]

= 0

since waterfilling leads to a vanishing increase in capacity
at asymptotically high SNR when there are more receive
antennas than transmit antennas (whereK and M are the
numbers of transmit and receive antennas, respectively, inthe
reciprocal channel). Thus the sum rate capacity of the MIMO
BC and the mutual information of the reciprocal MIMO
channel have the same asymptotic (in SNR) behavior for each
instantiation ofH. This equivalence also holds in the expected
value sense, i.e.E[CBC(P,H)] and E[IMIMO(P,H†)] are
asymptotically equal.

As a result of Theorem 2, the power offset for the sum
rate capacity of the MIMO BC is equal to the power offset of
the mutual information of theK × M point-to-point MIMO
capacity, a number of which are known in closed form.

To gain some intuition, consider the affine approximation
of the sum rate capacity for a specificH:

CBC(P,H) ∼= CMIMO(P,H)

∼=

K
∑

i=1

log2

(

P

K
λi

)

= K log2(P ) + log2 |HH†| − K log2 K

where λ1, . . . , λK denote the eigenvalues of theK × K
Wishart matrixHH†, and∼= refers to equivalence in the limit
(i.e. the difference between both sides converges to zero as
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P → ∞). Thus the power offset term for a specificH is
given by:

L∞(H) = log2 K −
1

K
log2 |HH†|. (8)

When considering fading channels, the power offset is given
by the expected value ofL∞(H). This term has in fact
been computed in closed-form (in the context of point-to-
point MIMO channels) for the iid Rayleigh distribution ( [8]
and references therein), Rayleigh with antenna correlation [4],
and for the Ricean distribution [8]. In Rayleigh fading, for
example, the power offset in 3-dB units is [8]:

Liid
∞ = log2 K +

(

γ + 1 −

M−K
∑

l=1

1

l
−

M

K

M
∑

l=M−K+1

1

l

)

log2 e

whereγ ≈ 0.5772 is the Euler-Mascheroni constant.
In Fig. 1, average sum capacity is plotted for systems with

M = 5, K = 5 and M = 10, K = 5 and iid Rayleigh
fading. In addition, the reference curve, with a slope of
5 bps/Hz/ 3 dB, is also plotted. Notice that both systems
have a multiplexing gain of 5, but there is a power shift
of approximately 5.6 dB. Increasing the number of transmit
antennas does not change the multiplexing gain, but has a
significant effect on the power offset term.

Using Theorem 2, we are also able to show that power
optimization is not asymptotically necessary when using DPC:

Corollary 1: The difference between the sum rate capacity
and the sum rate achieved with equal power allocation in (5)
converges to zero.

lim
P→∞

[

CBC(P,H) − log

∣

∣
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∣
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∣

∣

]

= 0 (9)

Proof: See [3].

Note that this corollary refers to using equal power on the dual
MAC, and not directly on the downlink channel. The downlink
covariance matrices are related to the dual MAC powers by
the transformations in [10] [11].

Though we focus on single antenna receivers in this work,
Theorem 2 applies to MIMO downlink channels with multiple
receive antennas if the total number of receiver antennas isno
larger thanM . For example, if each receiver hasN antennas
and NK ≤ M , then the theorem applies. This implies that
such a channel behaves identical to aNK×M MIMO channel.
Thus, the high SNR capacity only depends on the product
N and K and not on their specific values; for example, if
the transmitter has 8 antennas, then a system with 8 single-
antenna receivers is equivalent to a system with four dual-
antenna receivers.

V. BEAMFORMING SUM RATE

We now analyze the performance of transmit beamforming,
and quantify the loss relative to DPC at high SNR. Transmit
beamforming differs from DPC in that no interference is pre-
cancelled at the transmitter. As a result, each user experiences
interference from every other user. The dual MAC expression
for the beamforming capacity (denotedCBF (P,H)) is:

CBF (P,H) = max
{Pi:

P

K

i=1
Pi≤P}

K
∑

j=1

log

∣

∣

∣
I +

∑K

i=1 Pih
†
ihi

∣

∣

∣

∣

∣

∣
I +

∑

i6=j Pih
†
ihi

∣

∣

∣

(10)
In order to maximize rates when using beamforming, the trans-
mit beamformers (in the downlink) or the receive beamvectors
(in the dual uplink) should be chosen using the MMSE
criterion.

In order to make this comparison, we also consider the
rates achievable using zero-forcing beamforming. When zero-
forcing is used, the beamforming directions are chosen such
that each receiver experiences no multi-user interference. The
maximum sum rate achievable using zero-forcing is given by:

CZF (P,H) = max
{Pi:

P

K

i=1
Pi≤P}

K
∑

j=1

log
(

1 + Pi||gi||
2
)

(11)

where gi is the orthogonal complement ofhi with respect
to the space spanned by{hj}j 6=i (i.e. the projection ofhi

onto the nullspace of span({hj}j 6=i)). Notice that we have
||gi||

2 = 1/[(HH†)−1]ii.
The following theorem proves that the difference between

transmit beamforming using MMSE vectors (i.e. rates of the
form in (10)) and zero-forcing beamforming converges to zero.
Note that this is a formal statement of the well known fact that
an MMSE receiver converges to a zero-forcing receiver at high
SNR.

Theorem 3: The rates achievable using zero-forcing beam-
forming and MMSE beamforming using any power allocation



of the formPi = αiP converge at asymptotically high SNR:

lim
P→∞



log

∣
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−
K
∑

j=1

log
(

1 + αjP ||gj ||
2
)



 = 0,

for j = 1, . . . , K.
Proof: See [3]

This theorem proves the equivalence of MMSE beamform-
ing and zero-forcing beamforming for each power allocation.
It is intuitively clear that the same statement holds if the best
power allocation is considered for both strategies, but there are
some mathematical technicalities that make rigorously proving
this difficult. Thus, though the proceeding theorem is for zero-
forcing beamforming, it is understood to hold for optimal
transmit beamforming as well.

Theorem 4: The use of zero-forcing leads to a loss of
log2

|HH†|
Q

K

i=1
||gi||2

bps/Hz in spectral efficiency relative to DPC.

Proof: Since waterfilling has no effect at high SNR, we
haveCZF (P,H) ∼=

∑K

i=1 log
(

P
K
||gi||

2
)

, while CBC(P,H) ∼=
log
(

P
K
|HH†|

)

. Thus we have the result.

We denote the loss term asβZF , log2
|HH†|

Q

K

i=1
||gi||2

. Thus,
the sum rate achieved using ZF can be approximated at high
SNR as:

CZF (P,H) ≈ CBC(P,H) − βZF . (12)

When H is iid Rayleigh, a simple expression for the
expected loss can be found.

Theorem 5: The expected loss in Rayleigh fading due to
beam-forming is given by:

EH[βZF ] = log2 e
K−1
∑

j=1

j

M − j
bps/Hz, (13)

which corresponds to a power offset of

3 log2 e

M

K−1
∑

j=1

j

M − j
dB. (14)

Proof: The result follows from the fact that||gi||
2

is chi-square with two degrees of freedom for alli, while
|HH†| is the product ofK chi-square rv’s with2M, 2(M −
1), . . . , 2(M − K + 1) degrees of freedom.

Furthermore, whenM = K, we have

EH[βZF ] ≈ M log2 M (15)

in the sense that the ratio of both sides converges to one asM
grows large. This corresponds to a power offset of3 log2 M
dB, which can be extremely large. Note that the approximation
3 log2 M dB overstates the power penalty by 1 - 1.5 dB for
reasonable values ofM (< 20), but does capture the growth
rate. Such a large penalty is not surprising, since the use of

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

SNR (dB)

C
ap

ac
ity

 (
bp

s/
H

z)

Sum Rate vs. SNR

M=5, K=5

ZF

DPC

M=10, K=5

DPC
ZF

5.55 dB

9.88 dB

Fig. 2. DPC vs. Zero-Forcing at High SNR

zero-forcing requires inverting theM × M matrix H, which
is poorly conditioned with high probability whenM is large.

These results are quite insightful as they give the loss
incurred by using beamforming without interference cancel-
lation relative to using DPC in a very simple form. In a
five transmit antenna, five receiver system for example, the
expected power penalty of beamforming is 5.55 dB (whereas
the approximation in (15) gives 6.97 dB), which is rather
significant. This gap is shown in Fig. 2, along with curves fora
M = 10, K = 5 system. For this system, the penalty for using
zero-forcing is only 1.26 dB. Increasing the number of transmit
antennas from 5 to 10 shifts the sum rate capacity curve by
5.59 dB, but improves the performance of zero-forcing by 9.88
dB. This is because zero-forcing gains the increase in theL∞

term of sum-rate capacity (5.59 dB, also seen in Fig. 1), along
with the significantly decreased zero-forcing penalty due to
the increased number of transmit antennas (5.55 dB to 1.26
dB). Thus adding transmit antennas has the dual benefit of
increasing the performance of dirty paper coding, as well as
significantly decreasing the gap between the computationally
simpler technique of zero-forcing beamforming and DPC.

If the number of users and transmit antennas are taken
to infinity at a fixed ratio (i.e.M = αK with K → ∞)
with α > 1, then the power offset between DPC and zero-
forcing is found to be bounded. For example, ifα = 2, or
the number of transmit antennas is double the number of
receivers, the zero-forcing penalty is no larger than 1.67 dB,
and monotonic convergence to this asymptote is observed.
Table I contains the asymptotic power penalty for different
values ofα. Note that the penalty for any finiteM is no
larger than the asymptotic value. Thus for large systems, zero-
forcing is a viable low-complexity alternative to DPC if the
number of transmit antennas can be made suitably large. A
similar conclusion was drawn in [2] where the ratio of the rates
achievable with zero-forcing relative to the sum rate capacity



TABLE I

ASYMPTOTICBEAMFORMING PENALTY (M = αK, M → ∞)

α Power Penalty

1 ∞ (≈ 3 log
2

M )

1.1 7.1 dB

1.33 3.7 dB

1.5 2.8 dB

2 1.7 dB

3 0.9 dB

is studied. It should also be noted that using zero-forcing and
linear MMSE beamforming on the downlink channel is nearly
identical to using a decorrelating receiver or a linear MMSE
receiver, respectively, for an uplink MIMO or randomly spread
CDMA channel. See [5] for similar asymptotic CDMA results.

The expected power penalty of beamforming under non-iid
fading models is also of interest. As mentioned earlier, closed-
form expressions for the MIMO power offset for Ricean fading
and antenna correlation are known. In order to derive such
expressions, one must compute the expected value of the
matrix HH†. To computeβZF , however, one must perform
computations on the inverse of this matrix, which are in
general difficult. As a result, the beamforming power offsetfor
either Ricean fading or antenna correlation are still unknown.

In Ricean fading, the effect of the line-of-sight (LOS) com-
ponent on the gap between beamforming and DPC strongly de-
pends on the specific LOS matrix. If the LOS matrix has rows
that are roughly orthogonal, which implies that beamforming
and DPC are nearly equivalent on the LOS matrix, then a
larger K factor will decrease the gap between beamforming
and DPC; asK → ∞, the channel is deterministically equal to
the mean matrix, for which there is only a small gap between
DPC and beamforming, by assumption. If, on the other hand,
the mean matrix is itself poorly suited for beamforming
(i.e. the rows are very far from orthogonal to each other,
corresponding to a largeβZF term), then we would expect
the beamforming power offset to increase with the K factor.
Thus, no simple explanation for the effect of Ricean fading on
beamforming can be given. Notice the same statement is also
true for MIMO capacity: certain LOS components increase
capacity, while others decrease capacity [8].

It is also difficult to ascertain the effect of antenna correla-
tion on beamforming. Since receivers are not co-located in a
MIMO downlink channel, only the transmit antennas can be
correlated. Transmit correlation implies that the columnsof the
concatenated matrixH are correlated. This might intuitively
seem to decrease the orthogonality of the rows ofH, thereby
making beamforming more sub-optimal, but this has not been
analytically verified.

VI. CONCLUSION

In this paper we studied the high SNR behavior of the
multiple antenna broadcast channel. We showed that the sum

rate capacity of a multiple antenna broadcast channel (with
more transmit antennas than receivers) behaves asymptotically
identically to the cooperative point-to-point MIMO systemat
high SNR. Thus, we were able to directly apply all high-SNR
MIMO results to the downlink channel. In addition, we studied
the rates achievable using linear beamforming. We computed
closed-form expressions for the power offset of beamforming
relative to sum rate capacity, and found that beamforming is
a viable alternative to dirty paper coding only if the number
of transmit antennas is substantially higher than the number
of receivers.

An obvious extensions of this work is to analyze MIMO
downlink channels with more receivers than transmit antennas.
In this regime, however, no simple equivalence to the cooper-
ative point-to-point MIMO channel can be made. As a result,
a completely different approach is necessary to characterize
the power offset of such channels, and preliminary results do
indeed show significant differences from the scenario analyzed
in this paper. For example, the number of antennas per receiver
does affect the power offset when there are more aggregate re-
ceive antennas than transmit antennas; in the scenario analyzed
in this paper, only the aggregate number of receive antennas
is of importance.
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