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Abstract—This paper studies the tradeoff between channel
coding and ARQ (automatic repeat request) in Rayleigh block-
fading channels. A heavily coded system corresponds to a low
transmission rate with few ARQ retransmissions, whereas lighter
coding corresponds to a higher transmitted rate but more retrans-
missions. The optimum error probability, where optimum refers
to the operating point that maximizes the average successful
throughput, is derived and is shown to be a decreasing function
of the average signal-to-noise ratio and of the channel diversity
order. A general conclusion of the work is that the optimum error
probability is quite large (e.g., 10% or larger) for reasonable
channel parameters, and that operating at a very small error
probability can lead to a significantly reduced throughput.

I. INTRODUCTION

In contemporary wireless systems, simple ARQ (automatic

repeat request) is used above the physical layer in order to

provide reliable data communication. This leads to a natural

tradeoff between the physical layer (PHY) transmitted rate

and the probability of packet error/ARQ retransmissions. A

large transmitted rate (i.e., the number of information bits

per channel symbol) leads to many errors/retransmissions but

also means each successfully received packet contains many

information bits, whereas a small transmitted rate (i.e. heavy

coding) corresponds to few error/retransmissions and packets

with fewer information bits.

We investigate this tradeoff in the context of a wireless chan-

nel where the transmitter knows the channel statistics but does

not have knowledge of the instantaneous channel (e.g., high

velocity mobiles).1 Assuming that the packet error probability

is equal to the mutual information outage probability and that

simple ARQ (incorrectly decoded packets are re-transmitted,

and decoding is based only upon the most recently received

packet) is used, we derive the optimum error probability in

terms of an accurate approximation to the long-term average

successful throughput rate (commonly referred to as goodput).

The optimum error probability is shown to decrease with the

average SNR and the diversity order. Furthermore, our results

show that for reasonable operating conditions (in terms of

average SNR and diversity order), the optimum reliability level

is quite large (10% error rate is reasonably close to optimal

1If instantaneous channel knowledge is available at the transmitter, the
tradeoff is relatively trivial because the error probability vs. transmitted rate
curve is generally close to a step function and thus the optimal rate lies slightly
below this step.

for a wide range of channel parameters) and that choosing an

overly reliable PHY can incur a significant goodput penalty.

A. Prior Work

In [1] the goodput of an IEEE 802.11 system is numerically

optimized when transmission is limited to the finite rate modes

available in the 802.11 standard. More recently, in [2] an on-

line algorithm that dynamically adjusts the rate based upon the

history of ACK/NACK errors is proposed. Our work considers

the limiting, fast fading case where the channel is uncorrelated

across packet transmissions, and thus the ACK/NACK history

does not provide information and adaptation can only be

performed with respect to the channel statistics in an off-

line fashion. As we comment on further in Section III-E,

our work is also closely connected to recent work that has

considered rate/reliability optimization for systems employing

outer erasure codes (e.g., rateless fountain codes) [3] [4].

To some extent, this work is ”reverse engineering” of actual

system designs, in which packet error rates around 10% are

typical. In this light, the novelty of the present work is that

we are able to derive analytical results that cleanly illustrate

(a) the dependence of the optimizing reliability level upon the

average SNR and the channel selectivity/diversity , and (b) the

potentially significant goodput penalty incurred by choosing an

overly reliable PHY operating point.

II. PRELIMINARIES

We consider a Rayleigh block-fading channel which remains

constant within each block but varies independently from one

block to another. The t-th received symbol yt during the ℓ-th

block is given by:

yt =
√

SNR hℓxt + zt, (1)

where SNR represents the average received signal-to-noise

ratio, xt is the unit-power transmitted symbol, zt ∈ CN (0, 1)
is the additive noise (independent across channel uses and

blocks), and the channel fading gain in the ℓ-th block

hℓ ∈ CN (0, 1) is i.i.d. across blocks. Although we focus on

Rayleigh fading and single antenna system, our results can be

easily extended to other distributions and to MIMO systems.

Each packet (i.e., codeword) spans L fading blocks, and

thus L represents the time/frequency selectivity experienced by

each transmitted packet. If a strong channel code (with suitably

long blocklength) is used, it is well known that the packet



error probability is accurately approximated by the mutual

information outage probability. We thus consider a system

where the packet error probability ε for transmitted rate R
(bits/symbol) is precisely equal to the outage probability:

ε = P

[

1

L

L
∑

ℓ=1

log2

(

1 + SNR|hℓ|2
)

≤ R

]

, (2)

where h1, . . . , hL are each CN (0, 1) and i.i.d.. The error

probability ε is clearly increasing in R.

We consider simple ARQ, which is the most basic form

of ARQ. Upon reception of a packet, the receiver attempts to

decode and determines correctness using a standard error de-

tection method (e.g., CRC); perfect error detection is assumed,

i.e., the receiver is able to perfectly determine whether or not

decoding is successful. The receiver then feeds back a one-bit

ACK/NACK to indicate success/failure of the decoding. If an

ACK is received, the transmitter moves on to the next packet.

If a NACK is received, the same packet is re-transmitted (with

no limit on the number of retransmissions) and the receiver

attempts to decode based only on this particular received

packet; we do not consider hybrid ARQ schemes where the

receiver attempts to decode on the basis of all transmissions

of a particular packet. Consistent with the fast fading scenario

of interest, it is assumed that packet errors are independent

across transmissions.

Because ARQ is used, the number of transmission attempts

needed for each packet is a random variable, which we denote

by X . A simple calculation shows that the long-term average

rate at which information is successfully received is [5]:

η =
R

E [X ]
, (3)

where R is the transmitted rate (bits/symbol). The above

quantity, which is also in units of information bits per chan-

nel symbol, is referred to throughout the paper as goodput.

The specific dependence of E [X ] upon R and other system

parameters is specified in subsequent sections.

To summarize, our basic assumptions are as follows:

• The transmitted rate R and the packet error probability

ε are related according to the mutual information outage

probability in (2).

• Each receiver performs perfect error detection.

• Errors occur independently across packets.

• Simple ARQ is used with no limit on the number of

packet retransmissions.2.

We first analyze a system assuming error-free ACK/NACK

feedback, but then generalize to allow for acknowledgement

errors.

III. PHY RELIABILITY WITH PERFECT

ACKNOWLEDGEMENTS

In this section we consider the scenario where acknowl-

edgements (i.e., ACK/NACK) are assumed to be received

2This is quite different from [6], in which authors assume a delay limit and
focus on high SNR behavior.
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Fig. 2: Optimal ε vs. SNR (dB), L = 2, 5, 10

error-free. In this setting, X , the random variable describing

the number of transmissions per data packet, is geometrically

distributed with parameter 1− ε and thus E[X ] = 1
1−ε . Based

upon (3), the goodput is therefore

η = R(1 − ε). (4)

Our objective is to maximize the goodput. Although this

optimization can be phrased in terms of R or ε, we find it

most insightful to deal with ε. Thus, the basic optimization

problem to be solved is:

ε⋆(SNR, L) = arg max
ε

R(1 − ε). (5)

where ε⋆(SNR, L) is the packet error probability that max-

imizes goodput for particular values of SNR and L. The

quantities R and ε are related according to (2), through which

the dependence of the objective function upon SNR and L
arises.

Although this optimization is easily solved numerically, it

does not seem feasible to find an analytical solution because

a closed-form expression for the outage probability exists

only for L = 1.3 However, we are able to gain insight

by performing the optimization based upon the Gaussian

approximation detailed in the following section.

3Although not shown here, when L = 1 the optimizing ε⋆ can be expressed
in closed form in terms of the Lambert W Function.
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Fig. 3: Success probability 1 − ε and η (bits/symbol) vs. R (bits/symbol), SNR = 10 dB

A. Gaussian Approximation

The primary difficulty in solving the optimization in (5)

stems from the fact that the outage probability in (2) can

only be expressed as an L-dimensional integral, except for

the special case L = 1. To circumvent this problem, we

utilize a Gaussian approximation to the outage probability

introduced in prior work [7] [8]. More specifically, we ap-

proximate the random variable 1
L

∑L
ℓ=1 log2

(

1 + SNR|hℓ|2
)

by a Gaussian random variable with the same mean and

variance N
(

µ(SNR), σ2(SNR)
L

)

, where µ(SNR) and σ2(SNR) are

the mean4 and the variance of log2

(

1 + SNR|h|2
)

.

Based on this approximation we have

ε ≈ Q

( √
L

σ(SNR)
(µ(SNR) − R)

)

, (6)

where Q(·) is the tail probability of the standard normal.

Solving this equation for R and plugging into (4) yields the

following approximation for the goodput (denoted ηg):

ηg =

(

µ(SNR) − Q−1(ε)
σ(SNR)√

L

)

(1 − ε), (7)

where Q−1(ε) is the inverse of the Q function.

In Fig. 1, the numerically computed goodput η (solid line)

and the approximation ηg (dotted line) are plotted vs. ε for

L = 2 and L = 5 at SNR = 10 dB, and the approximation is

seen to be quite accurate. The figure also illustrates the basic

tradeoff, as it is apparent that making the physical layer too

reliable or too unreliable yields poor goodput.

B. Goodput Optimization

We can consider the optimization of ηg , which can be

rewritten as

ηg = µ(SNR)
(

1 − κ · Q−1(ε)
)

(1 − ε), (8)

where the constant κ ∈ (0, 1) is the µ-normalized standard

deviation of the instantaneous received mutual information:

κ =
σ(SNR)

µ(SNR)
√

L
. (9)

4Note µ(SNR) is also the ergodic capacity at the given SNR level.

Notice that κ is decreasing in both SNR and L.

We define ε⋆
g as the ηg-maximizing error probability.

ε⋆
g(SNR, L) = arg max

ε

(

1 − κ · Q−1(ε)
)

(1 − ε), (10)

where we have pulled out the constant µ(SNR) from (8) be-

cause it does not affect the maximization. We can immediately

see that ε⋆
g depends on the channel parameters only through

the constant κ. Furthermore, it can be shown that ηg is strictly

concave in ε (see Appendix A for proof).

The derivative of ηg with respect to ε is:

dηg(ε)

dε
= µ

[

κ

(

Q−1(ε) + (ε − 1)
dQ−1(ε)

dε

)

− 1

]

. (11)

Due to strict concavity, ε⋆
g is the unique point where the first

derivative is zero and thus is defined by the following fixed

point equation:
(

Q−1(ε⋆
g) − (1 − ε⋆

g)
dQ−1(ε)

dε
|ε=ε⋆

g

)−1

= κ. (12)

The above equation shows ε⋆
g is only determined by κ.5 Fur-

thermore, the concavity of ηg implies that
dηg(ε)

dε is decreasing

in ε and thus the left hand side of (12) is increasing in ε.

As a result, the Gaussian-optimal error probability ε⋆
g is an

increasing function of κ. This in turn implies that ε⋆
g decreases

in L, the channel selectivity, and SNR.

In Fig. 2, the exact optimal ε⋆ and the approximate-optimal

ε⋆
g are plotted vs. SNR (dB) for L = 2, 5, and 10. The

Gaussian approximation is reasonably accurate, and most

importantly correctly captures the property that the optimal

error probability is decreasing in L and SNR.

In order to gain an intuitive understanding of this optimiza-

tion, in Fig. 3 the success probability 1 − ε (left) and the

goodput η = R(1−ε) (right) are plotted versus the transmitted

rate R for SNR = 10 dB. For each L the goodput-maximizing

operating point is circled.

First consider the curves for L = 5. For R up to approxi-

mately 1.5 bits/symbol the success probability is nearly one,

5The results extend to different fading distributions and multiple antenna
systems by appropriately modifying µ(SNR) and σ(SNR).
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Fig. 4: η (bits/symbol) vs. SNR (dB), ε = 0.001, 0.01, 0.1, and ε⋆

i.e., ε ≈ 0. As a result, the goodput η is approximately equal

to R for R up to 1.5. When R is increased beyond 1.5 the

success probability begins to decrease non-negligibly but the

goodput nonetheless increases with R because the increased

transmission rate makes up for the loss in success probability

(i.e., for the ARQ retransmissions). However, the goodput

peaks at R = 2.3 because beyond this point the increase

in transmission rate no longer makes up for the increased

retransmissions; visually, the optimum rate (for each value of

L) corresponds to a point beyond which the success probability

begins to drop off very sharply with the transmitted rate.

It is also useful to phrase this explanation in terms of

decreasing rate/increasing reliability (1 − ε). If R = µ(SNR)
the error probability is approximately 0.5 and η ≈ 0.5µ. By

decreasing rate/increasing reliability (1 − ε), the goodput is

increased because the increase in reliability (1− ε) makes up

for the decreased transmission rate R. However, as the rate

is decreased below R = 2.3 (i.e., reliability increased above

0.85) the increase in reliability does not make up for the loss

in rate; in other words, the PHY has become too reliable if

one operates at a rate smaller than the optimum.

In order to understand the effect of increasing the selectivity

order L, notice that increasing L leads to a steepening of the

success probability-rate curve (towards a step function at the

ergodic capacity µ(SNR)) and also increases the largest rate for

which the success probability is approximately one. This has

the effect of moving the goodput curve closer and closer to

the transmitted rate, and also leads to a larger optimum rate

and a larger optimum reliability (1 − ε⋆).

To understand why ε⋆ decreases with SNR, based upon

the rewritten version of ηg in (8) we see that the governing

relationship is between the success probability 1 − ε and the

normalized, rather than absolute, transmission rate R/µ(SNR).
Therefore, increasing SNR steepens the success probability-

normalized rate curve (similar to the effect of increasing L)

and thus leads to a smaller value of ε⋆.

Finally, it is important to note that the optimum error prob-

abilities in Fig. 2 are quite large even for large selectivity and

at high SNR levels. This follows from the earlier explanation

that decreasing the error probability (and thus the rate) beyond

a certain point is inefficient because the decrease in ARQ

retransmissions does not make up for the loss in transmission

rate. An extreme example of making the PHY too reliable

would be to choose a transmission rate in the region where the

rate-success probability curve is essentially flat, e.g., R = 1
for L ≥ 5 in Fig. 3(a), because at such a point increasing R
leads to only a negligible decreases in the success probability.

To underscore the importance of not operating the PHY too

reliably, in Fig. 4 goodput is plotted versus SNR (dB) for L = 2
and L = 10 for the optimum error probability, i.e., η(ε⋆), as

well as for ε = 0.1, 0.01, and 0.001. Choosing ε = 0.1 leads

to near-optimal performance for both selectivity values. On the

other hand, there is a significant penalty if ε = 0.01 or 0.001
when L = 2; this penalty is reduced in the highly selective

channel (L = 10) but is still non-negligible.

C. Scaling with L

Although we earlier saw that ε⋆ decreases with L, it is of

interest to quantify how quickly this decrease occurs and also

to study the behavior of the optimized goodput as L → ∞.

In Appendix B, we use the Gaussian approximation and the

fixed-point characterization in (12) to show

ε⋆ ≈ σ

µ
√

L logL
(13)

µ(SNR) − η(ε⋆) ≈ σ ·
√

log L

L
. (14)

It is worth noticing that the gap between ergodic capac-

ity and optimized goodput goes to zero on the order of

O
(

L−1/2 log L
)

rather than O
(

L−1/2
)

, the latter of which

is the speed at which the transmitted rate R approaches the

ergodic capacity for any fixed ε [8].

D. Scaling with SNR

It is also possible to more precisely quantify the behavior

of ε⋆ and η(ε⋆) in the limit as SNR → ∞. In this case the

pre-log factor (1− ε) dominates the behavior of the goodput,

and in order to achieve a pre-log of 1 it is necessary to have



ε⋆ → 0 as SNR → ∞. Using the same approach as in the

previous section, ε⋆ can be approximated as

ε⋆ ≈ 1.85
√

2L log log2(SNR) · log2 SNR
, (15)

where the constant in the numerator comes from the fact that

limSNR→∞ σ(SNR) ≈ 1.85 (see [8]). The optimizing transmis-

sion rate R⋆ and the optimized goodput η(ε⋆) both behave as

log2 SNR − o(log SNR), where the sub-logarithmic o(log SNR)
term goes to infinity. This implies that the optimized goodput

achieves a pre-log of one but does not have a bounded high-

SNR offset, which is consistent with the high-SNR goodput

results for MIMO channels in [9].

E. Applicability to Rateless Coding

If rateless coding is used (e.g., fountain coding without

ARQ), the important quantity is the number of successfully

received packets/information bits. When a very large number

of packets are transmitted, the number of successfully received

packets converges (by the law of large numbers) to the product

of the number of transmitted packets and the per-packet

success probability. This is simply a constant multiple of

goodput, and thus the optimizing rate/reliability quantified in

this work is also optimal for rateless coding when a very large

number of packets are transmitted.

IV. PHY RELIABILITY WITH IMPERFECT FEEDBACK

We now remove the simplifying assumption of perfect

acknowledgement feedback and instead consider the more re-

alistic scenario where the one-bit acknowledgement is received

incorrectly (i.e., an ACK is interpreted by the receiver as a

NACK, or vice versa) with probability θ.

If an ACK→NACK error occurs, instead of moving on to

the next packet the transmitter re-transmits. It is assumed

that the receiver can detect that the same packet is being

transmitted – this could be accomplished by simply correlating

the received packet with the previous packet – in which

case the receiver does not try to decode the packet (since

it has already been successfully decoded); at the end of the

unnecessary retransmission another ACK is sent. This process

is continued until the ACK is correctly received and the

transmitter finally moves on to the next packet.

On the other hand, when a NACK→ACK error occurs the

transmitter erroneously moves on to the next data packet even

though the previous one has not been correctly received. In

this case we assume that such an error does not cause any

harm to the next packet (i.e., the receiver also moves on to

the next packet), and that the transmitter eventually retransmits

the packet which experienced a NACK→ACK error (e.g.,

some higher layer mechanism indicates that the NACK→ACK

packet has not yet been received and eventually triggers a

retransmission). Since the packet is eventually retransmitted,

a NACK→ACK error turns out to have no effect.6

6Since the eventual retransmission may occur much later, a NACK→ACK
error increases the delay of that particular packet. However, such delays do
not affect goodput.
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Fig. 5: η(ε⋆) (bits/symbol) and ε⋆ vs. θ, L = 5, SNR = 5 dB

Based upon these assumptions, the number of rounds (a

round corresponds to a packet transmission followed by an

acknowledgement) needed for each packet is

X = (rounds to decode) + (rounds to correctly ACK) − 1. (16)

This relationship holds because the packet must first be

successfully decoded, after which the acknowledgement must

be successfully received. One round is deducted because the

acknowledgement occurs in the same round as the transmis-

sion. The number of transmissions required for decoding is

again geometric with parameter 1 − ε, whereas the number

of acknowledgements required for success is geometric with

parameter 1 − θ. Therefore, the expected number of rounds

per packet is

E[X ] =
1

1 − ε
+

1

1 − θ
− 1 =

1 − θε

(1 − ε)(1 − θ)
. (17)

and, according to (3), the goodput is

η = R(1 − ε) · 1 − θ

1 − θε
. (18)

Comparing this with (4) we see that acknowledgement errors

reduce goodput by a factor of (1− θ)/(1− θε), which is less

than 1 for positive ε and θ and is decreasing in θ. The goodput

maximization now becomes

ε⋆(SNR, L, θ) = argmax
ε

R(1 − ε) · 1 − θ

1 − θε
, (19)

where we now explicitly note the dependence of ε⋆ on θ.

Although we have not yet been able to characterize ε⋆ using

the Gaussian approximation, we can show (details are omitted

for brevity) that ε⋆ is an increasing function of θ (for fixed

values of SNR and L). In other words, as the feedback channel

becomes less reliable, the PHY should also be made less

reliable. This becomes clear if we re-examine the expression

for E[X ] in (17): if ε << θ, then E[X ] is dominated by

the (1 − θ)−1 term and choosing a larger ε leads to a larger

transmission rate R while barely increasing E[X ].
To verify this point, in Fig. 5 ε⋆ and the optimized through-

put η(ε⋆) (bits/symbol) are plotted versus the probability of

feedback error θ for L = 5 and SNR = 5 dB. When θ ≤ 0.1



it has little effect on ε⋆ and a relatively minor effect on

η(ε⋆); when θ > 0.1, however, the effect on both quantities is

significant.

V. CONCLUSION

In this paper we have conducted a detailed study of the

optimum physical layer reliability when simple ARQ is used to

retransmit incorrectly decoded packets. When the role of ARQ

is not considered, it seems reasonable to make the physical

layer very reliable by decreasing the transmission rate. How-

ever, our findings show that when a cross-layer perspective is

taken and ARQ is accounted for, it is optimal to use a rather

unreliable physical layer (e.g., a packet error probability of

10% for a wide range of channel parameters). Furthermore,

we find that making the physical layer too reliable can actually

lead to a significant throughput penalty. The role of diversity

is also examined, and the optimum reliability level is shown

to increase with the diversity order. Indeed, this leads to the

general message that the physical layer should not be made

very reliable when doing so is rather difficult, e.g., when

diversity is lacking.

APPENDIX A

PROOF OF CONCAVITY OF ηg

For any invertible function f(·), the following holds:

(f−1)′(a) =
1

f ′(f−1(a))
. (20)

By combining this with Q(x) =
∫∞

x
1√
2π

e−
t2

2 dt, we get

(Q−1)′(ε) = −
√

2πe
(Q−1(ε))2

2 , (21)

which is strictly negative. For the second derivative of ηg(ε),

d2ηg(ε)

dε2

= κµ

(

2(Q−1)′(ε) + (ε − 1)

(

−
√

2πe
(Q−1(ε))2

2

)′
)

= κµ(Q−1)′(ε)

(

2 + (1 − ε)
√

2πe
(Q−1(ε))2

2 Q−1(ε)

)

Because κ(Q−1)′(ε) < 0, in order to prove
d2ηg(ε)

dε2 < 0 we

only need to show that the expression inside the bracket of

the last line is strictly positive, i.e.,

(ε − 1)e
(Q−1(ε))2

2 Q−1(ε) <

√

2

π
(22)

Define x = Q−1(ε) so that Q(x) = ε. If we substitute ε with

Q(x) in the above inequality, then we only need to prove

(Q(x) − 1)e
x2

2 x <

√

2

π
(23)

When x ≥ 0, the left hand side is negative (because Q(x) ≤ 1)

and the inequality holds. When x < 0, the left hand side be-

comes Q(−x)e
x2

2 (−x). From [10], Q(−x) < 1√
2π(−x)

e−
x2

2 ,

so if x < 0,

(Q(x) − 1)e
x2

2 x <
1√

2π(−x)
e−

x2

2 e
x2

2 (−x) =
1√
2π

<

√

2

π
.

As a result, the second derivative of ηg(ε) is strictly smaller

than zero and thus ηg is concave in ε.

APPENDIX B

PROOF OF (13) AND (14)

According to (12) and (21), the following holds:

Q−1(ε⋆
g) + (1 − ε⋆

g)
√

2πe
(Q−1(ε⋆

g ))2

2 =
1

κ
. (24)

As L → ∞, ε⋆
g → 0, so Q−1(ε⋆

g) → ∞. Then Q−1(ε⋆
g) in the

left hand side of (24) is negligible compared to the exponential

term, and 1 − ε⋆
g goes to 1. Next, simple algebra shows
√

2 log
1

κ
√

2π
≈ Q−1(ε⋆

g). (25)

If we let Q−1(ε⋆
g) = x, then Q(x) = ε⋆

g. Notice as x → ∞,

it can be shown that Q(x) → 1√
2πx

e−
x2

2 . Combine this with

(25), we get

ε⋆
g ≈ κ

√

2 log 1
κ
√

2π

(26)

Plug κ = σ
µ
√

L
into (26), we obtain an approximation to ε⋆

and complete the proof of (13). Next, we know

µ − η(ε⋆) ≈ µ − µ
(

1 − κ · Q−1(ε⋆
g)
)

(1 − ε⋆
g)

= µ
(

ε⋆
g + (1 − ε⋆

g) · κQ−1(ε⋆
g)
)

(27)

Plug (26) into (27), the proof of (14) is then complete.
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