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Abstract— The performance of spatial multiplexing systems transmission networks, compared to multi-stream trarsionis
with linear minimum-mean-squared-error receivers is inves- networks. This key result is facilitated by new exact clesed
tigated in ad hoc networks. It is shown that single-stream 4. expressions we derive for the outage probability and

transmission is preferable over multi-stream transmissio, due L . . .
to the weaker interference powers from the strongest inteérers transmission capacity for arbitrary numbers of receive and

remaining after interference-cancelation. This result isobtained ~transmit antennas. o _ _
by new exact closed-form expressions we derive for the outag ~ Prior work on single-stream transmission with multiple

probability and transmission capacity. receive antennas in ad hoc networks and Poisson distributed
transmitting nodes include [1-6], where spectral efficyesed
transmission capacity scaling laws were presented fogrdifft
Multiple antennas can offer significant performance inreceiver structures. In [1], receive antennas are usecphirad
provements in wireless communication systems by providinversity to increase the desired signal power, while in [2]
higher data rates and more reliable links. A practical metheeceive antennas are used to cancel interference from the
which can achieve high data rates is to employ spatial mul§trongest interferer nodes. In [3], MMSE receivers are used
plexing transmission in conjunction with low complexitgdiar and the average spectral efficiency, a per-link performance
receivers, such as the minimum-mean-squared-error (MMShgasure, was obtained in the large antenna regime. In [4—
receiver. The MMSE receiver is particularly important as %], by using sub-optimal and MMSE linear receivers, the
uses its receive degrees of freedom (DOF) to optimally trattansmission capacity was shown to scale linearly with the
off strengthening the energy of the desired signal of isterenumber of receive antennas. In this paper, we extend these
and canceling unwanted interference, such that the sigralprior works to derive new outage probability and transnoissi
interference-and-noise ratio (SINR) is maximized. capacity scaling laws for arbitrary number of data streams
In this paper, we investigate spatial multiplexing systemssing MMSE receivers.
with MMSE receivers in ad hoc networks. The transmitting Multi-stream transmission with multiple receive antennas
nodes are spatially distributed according to a homogenedise been considered in [7-9]. In [7, 8], spatial multiphexi
Poisson point process (PPP) on a 2-D plane with densitysystems were considered where receive antennas are used to
(transmitting nodes per unit area), and send multiple datancel interference from the corresponding transmittgrnbt
streamsN; to their corresponding receiver. Besides corréhe interferers. For these papers, the transmission dgpaci
sponding to realistic network scenarios, modeling the Bodgas shown to scale Bs(e). A better scaling ofo €l
according to a PPP has the benefit of allowing netwokas obtained in [9] by using sub-optimal receivers to ¢ancel
performance measures, such as the transmission capadig), tinterference from the strongest— 1 interferers. This scaling
obtained. The transmission capacity measures the maximiByt was used to show that single-stream transmission was
number of successful transmissions per unit area, assuMijigferable over multi-stream transmission when sub-cgitim
transmission at a fixed data rate, such that a target outaggeivers are used [9]; in this paper we use a similar scaling

I. INTRODUCTION

probability ¢ is attained. _ result to show this is also true using optimal MMSE receivers
To maintain a desired performance level for a fixed number
of data streams per unit arég,\, a natural question arises Il. SYSTEM MODEL

whether it is preferable to have a high density of single- We consider an ad hoc network comprising of transmitter-
stream transmissions, or a low density of multi-streamsirarreceiver pairs, where each transmitter communicates to its
missions. The main finding of this paper is that single-streacorresponding receiver in a point-to-point manner, trepéill
transmission is preferable when the optimal linear prdogss other transmissions as interference. The transmittingesiod

strategy, i.e. the MMSE receiver, is employed. This is duge distributed spatially according to a homogeneous PPP of
to the weaker interference powers from the strongest ietterf

ers remaining after interference-cancelation in singjleasn 1f(z) = o(g(x)) meanslim,_,o L2 = 0.



intensity \ in R2, and each receiving node is randomly placed 1. OUTAGE PROBABILITY

at a distancely away from its corresponding transmitter. We consider the per-stream outage probability, defined for
In this paper, we investigate network-wide performanCehe jth stream as the probability that the mutual information

To characterize this performance, it is sufficient to focus Ggy the kth stream lies below the data rate threshBjd At the

a typical transmitter-receiver pair, denoted by index Othwi receiver, the MMSE filter outputs are decoded independently

the typical receiver located at the origin. The transmittinye assume the data rate thresholds for all streams are thee sam

nodes, with the exception of the typical transmitter, Ci  ang equal toR. The outage probability for each stream can
a marked PPP, which by Slivnyak’s theorem, has the sagpgs pe written as

distribution as the original PPP [10] (i.e., removing thpital
transmitter from the transmit process has no effect). T#is i Fz(z,A) =Pr(SINR < z2) 4)

denoted by® = {(D¢,H,),¢ € IN}, where D, and Hy \wherez = 2% — 1 is the SINR threshold. Note that we have
model the location and channel matrix respectively ofdte gropped the subscrit and 0 from theSINR term as the per-
transmitting node with respect to (w.r.t.) the typical igee stream outage probability is the same for each stream at each
The transmitted signals are attenuated by a fatfof* with  receiving node.
distancer wherea > 2 is the path loss exponent. Before presenting the outage probability, we first intragluc
We consider a spatial multiplexing system where ea@pme notation and concepts from number theory. The integer
transmitting node sends’; independent data streams throughartitions of positive integek: are defined as the different
N, different antennas to its corresponding receiver, which \gays of writing k¥ as a sum of positive integers [11]. For
equipped withV,. antennas. Focusing on thigh stream, the example, the integer partitions of 4 are given by: i) 4, i3+
received N, x 1 signal vector at the typical receiver can bgj) 2+2 jv) 2+1+1 and v) 1+1+1+1. We denote(i, j, k) as

written as the ith summand of thgth integer partition ofk, |k (-, j, k)|
(a) () as the number of summands in thh integer partition ofk
N, and |h(-,-, k)| as the number of integer partitions &f For
Yo = \/Iah(),kx(),k + ia Z ho 40,4 example, wherk = 4, we haveh(2,3,4) = 2, h(2,4,4) =1,
@ 9 ek [h(-,3,4)| = 2 and|h(-,,4)| = 5.

Ny We introduce non-repeatable integer partitions, which we

+ Z N th,qxe,q +ng, (1) define as integer partitions without any repeated summands.

pice V 1PdY = For example, the non-repeatable partitions of 4 are givei) by
4, i) 3+1, iii) 2, iv) 2+1 and v) 1. We denotg(i, j, k) as the

(c) number of times theth summand of theith non-repeatable

wherez, , is the symbol sent from thgth transmit antenna integer partition oft is repeated in theth integer partition of
of the ¢th transmitting node satisfying(|z.q|*] = P, hegq & and|g(-,j, k)| as the number of summands in tja non-
is the gth column of H, £ CNn, n, (On,xn,,In,) and repeatable partition of. For example, whei = 4, we have
o < CNn, 1 (0n, x1, NoIy, ) is the complex additive white 9(1,3,4) = 2, g(1,5,4) = 4 and|g(-,3,4)| = 1. Using these
Gaussian noise vector. We see in (1) that the received vedigfations, we present a theorem for the outage probability
includes: (a) the desired data to be decoded, (b) the self inTheorem 1: The per-stream outage probability of spatial
terference from the typical transmitter and (c) the intenfiee Multiplexing systems with MMSE receivers is given by
from the other transmitting nodes. .ag N1 [Ny (zd3\UE

To obtain an estimate fox,, we consider the use of e~ 7 e OMA Y a— (T)
MMSE linear receivers. The data estimate is thus given By (%) =1~ (1+ 2)Ne—1 > w-1y |~

o = h{ , Ry Lyo.x, from which the SINR can be written as p=0 vt
vt . min(p,N¢—1) N, —1 |n(-;p—q) ‘
SINRo . = ) Ry o @ ¥ ( ) )zq S E g On 0]
=0 j=1
where ! ’ (5)
gl i where
Roji=—o » hoghl,+7 > D “HH] +1x, \
d§ ’ ot (- g,w)| Trh(iniw) (Ne—k+1)(k=1-2)
9=1,q . Hi:1 Hk:l k(Nt+37k)
(3) Siw = : o (6)
_ o _ . 5 H\g(ﬂ/w)lg(v j,w)!
andy = N% is the transmit signal-to-noise ratio. We assume v=1 R
that each receiving node has knowledge of the correspondfil
transmitter channeH, and the interference (plus noise) co- ﬂ(dgz)% r (Nt + 2) T (1 _ 2)
variance matrixR, ;. The practicalities of this assumption are On, = T (Nt)a e (7)

discussed in [5].

4 3We note that the outage probability for the specific case avhér = 1
2The notationX ~ Y means thatX is distributed as Y. was recently independently derived in [6].



Proof: See the appendix. m VU,  is the set of all integer partitions ¢f with £ summands
For a fixed number of data streams per unit area, we can ded |-| denotes the floor function.

termine the optimal number of data streams used for trarsmis Proof: The result is proven by taking a first order
sion by considering the outage probabilfy ( z, N% . Fig. 1 expansion of the outage probability in (5) at high SNR around
plots this outage probability vs. density for different rems A = 0, followed by substituting the resultant expression into
of transmit antennas. The ‘Analytical’ curves are based)n ( (8)- The full proof is omitted due to space limitations. ®
and clearly match the ‘Monte-Carlo’ simulated curves. We se BY observing that the exponent efin (9) is a decreasing
that single-stream transmission always performs betten thfunction of the number of data streams, we see that for
multi-stream transmission. In the next section, we anzaylf 0w outage probability operating values, the transmission
prove this is true using the transmission capacity framkwogapacity is maximized when only one data stream is used
for low outage probability operating values. for transmission. This can be explained by considering the
interference-cancelation properties of the MMSE receifer
the MMSE receiver is the optimal linear processing strategy
the receive DOF is used to optimally trade off canceling the
interference from the strongest interferers and stremisige
the desired signals from the corresponding transmittesh su
that the received SINR is maximized. The MMSE receiver
is capable of completely canceling interference from bbth t
corresponding transmitter and the strondestterferers if and
only if N, > N, — 1+ kN, [12], or equivalentlyN, < ]\123:31-
The receiver can thus cancel interference from the 1
strongest interferers if

i
o
iR
T

0
0
T

Outage probability, F(z ,)\/Nl)
=
o

N=1, N.=2, N=3, N =4 N, 1 N, 1
(B S B — <Ny < — - . 12
ol I T A 12)

It can be shown that the value &fsatisfying the condition

o in (12) corresponds t& = ¢ = | {= |. The MMSE receiver is
Density, A thus capable of canceling interference from £hel strongest
Fo 1 O babil density § S— " interferers.
ig. 1. Outage probability vs. density for spatial multipley systems wit o T :
MMSE receivers, and WithV, — 4, o — 4.6, = — 0 dB. 4 — 20 dB and S the transmission capacity increases vylth the npmber
do = 1. of strongest interferers whose interference is canceled, t
implies the MMSE receiver will utilize the maximum possible
IV. TRANSMISSION CAPACITY DOF to cancel interference from the strongest interfergys.

W ider th . . ¢ noting that the receiver will require a minimumi; DOF to
e consider the transmission capacity, a measure o ttt:‘l‘?sure the desired signals are received interferencetfree

number of successful transmissions per unit area, defined AaximumAN. — N, DOE will be used to cancel interference
r 4Vt

c(e) A NiA(e)(1 — )R (8) from the_ strongest interferer_s. For single-stream tragsion,

) ) . ) the maximum (over all possibl®’;) N, — 1 DOF are used to
wheree is the desired outage probability operating value and\nce| interference. Thus single-stream transmissiorefep
Ale) is the contention density, defined as the inverse @f= 56 oyer multi-stream transmission as there are moreggsin
Fz(2,A) taken w.rt.A. The transmission capacity is given innterferers whose interference are canceled. This implias
the following .Iemma. _ , . the interference powers originating from the strongestact

Corollary 1: In the high SNR regime, the ransmissionyeferers (whose interference is not canceled) are wefake
capacity of spatial multiplexing systems with MMSE reces(e g6 _stream transmission than multi-stream transorissi

subject to a low outage probability operating value, is BiVe  rijgs 2 and 3 plot the transmission capacity vs. outage prob-

by ability and path loss exponent respectively. We observeth b
() = N:R i (6%) ) figures that the transmission capacity is a decreasingifimct
On,Qf of the number of transmit antennas for all outage probaslit
where and path loss exponents. In Fig. 2, the ‘Analytical’ curves a
N, plotted using (9), and closely match the ‘Numerical’ curfas
= {EJ , (10) outage probabilities as high as= 0.1, which are obtained

by numerically taking the inverse afz(z,\) w.r.t. A, and
(~1)! ZN,,_1 (Ntfl)zq ZNT—I—q ) = substituting the resulting expression into (8). Fig. 2 dadiés
0=_ _ a=0 4 p=¢ JEWp e TIP . that the optimality of single-stream transmission is net ju
4 (14 2z)Net applicable to small outage probability operating values the
(11)  whole range of outage probabilities considered,(.8001 <




e < 0.8. Fig. 3 indicates that the transmission capacity is aesult was obtained by new closed-form outage probability
increasing function of the path loss exponent. This impliesd transmission capacity expressions which we derived for
that for increasing path loss exponents, the positive &ffet arbitrary numbers of transmit and receive antennas.

the reduction in interference outweigh the negative effedt
the reduction in desired signal strength between transmitt
receiver pairs.

APPENDIX
The outage probability conditioned ory = |D;|* < q,
wherex; are independent and identically uniformly distributed
with i =1,... L, is given by [12]

ar Ne1 [ SoNeop (ﬂ)v_l
_zdg v= Y
107 F p=0
g x 2PdgP L, (z1, ..., 20, N) (13)
% 107} where
5 _ Cp(xlv"'axL;A)
8 Ip(xlv"wam)Q* L 1
g 1+ )N LI (L dfzy 2)™
8 10°F (14)
=
and Cp(z1,...,z1, ) is the coefficient ofz? in (1 +
N1 —1_\N;
1074 e Numerical | | ) o H (1 + Ly Z) i .
Analytical To proceed, we average out the number of nodes, which
107 107 107 107 follows a Poisson distribution, i@, (x1,...,zL,A). This is
Outage probability, given by
L
. - . - . . . 7)\7ra o
Fig. 2. Transmission capacity vs. outage probability faatisph multiplexing
systems with MMSE receivers, and wif,, = 4, a = 4.5, = = 10 dB, and El(z1,... .20, N)] = 1+ 2)Ne 1 Z L' (15)
do = 1.
L Nt+371

X Cp(z1,...,20,N) gdxl...d:q.
A A : ZHI (zi + dgz)N

To solve the integral in (15), we are required to obtain an
expression foCy(x1, ..., x5, ). To this end, it is convenient
to first use the binomial series expansion to expr@ss-
dy )V L (2t 2) ™ as

L
(1 4dy@z)Net H(l +az; )N = (16)

i 1

e i q=0 q1=0 qr.=0
] We observe that the coefficient aP in (16) can be writ-
ten as a sum ofnin(p + 1, N;) symmetric polynomials in
10° : : : : : \ \ \ it a:; ! corresponding to each term in the outer summa-
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 . Nt
Path loss exponent, o tion > =0 ! These symmetric polynomials can be written as a
sum of monomial polynomials, where the number of monomial
Fig. 3. Transmission capacity vs. path loss exponent foidpaultiplexing ~ Polynomials is equal to the number of integer partitions of
systems with MMSE receivers, and witN, =4, z =15 dB,dp =1 and p — ¢, denoted by|h(.7 “p— q)| As such, we can write the
¢ = 0.00L. integral in (15) as

Transmission capacity, c€)

2 min(p,N¢—1)

V. CONCLUSION e~ Ny -1
. . o E[Ip(.ﬁl’...,.ﬁL,)\)]:m Z (
The main takeaway message is that it is preferable to (1+2) = q
have a high density of single-stream transmissions than a oo A L Ih(-p—0)|
low density _of myltl—stream transmissions using the optima, e Z L' Z / / M;pglar, ... xL)
MMSE receiver in ad hoc networks. This is because the o
interference powers originating from the strongest imtexnfs I Ny+2-1
remaining after interference-cancelation are weakerif@ls- > 33@‘701331 dxg (17)

stream transmission than multi-stream transmission. Kéys i1 (2; + dg )N



where M; ,_q(z1,.. .,
nomial corresponding to thgth integer partition ofp — q.

We see that since the integral in (17) corresponding to the
jth integer partition is symmetric w.r.tzy,...,zp, it is
sufficient to solve this integral using only one monomial in
M;p—qg(z1,...,2r) and multiply the resulting expression
by the number of monomials iM;,_4(z1,...,21). We

xy,) is a monomial symmetric poly- where

i (2)\71'.70)L
A = @
L—|h(jp—q!
P C Rl LGV O]
_ <2>\7T‘70>h('7]',PQ)62A230 (22)
o

see in (16) that the number aof; terms in each monomial To proceed, we take the limit as— oo in (21), since we are

comprising M, , (21, . ..

,xr) is equal to the number of considering an infinite plane. It is thus convenient to nbe t

summands in thgth integer partition ofp — ¢, denoted by following two limit functions,

|h(-,7,p — ¢)|. Without loss of generality, we thus focus on
evaluating the integral of the monomialin, . .., |5 (. j p—q)|-
By observing (16), we finally make note that the coefficient

lim exp
—00

2w 2
(_jo) e—)\waa
(0%

- 2
of each monomial term is given BRI~ (| N ), oy [ AT T (N + Hra-2) (23)
and that the number of monomials M, _g(z1,..., 21 P T (Ny)
is given byA; = Combinin
9 VAL = T ,a,p>|>'n‘9< T g(5.p)! 9 and
these facts, we can express (1
2\ - =
=7 — I 2
vt RGN Jim ST =~ d2) 7 OnA H 24)
, —
Ell(z1,....20,0N)] = /=8 Z ( > - -
(1+ z) t q Substituting (23) and (24) into (21), and substltutlng the
Oo resultant expression into (13), we obtain the desired tesul
1
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