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Fractional Power Control for
Decentralized Wireless Networks
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Abstract—We consider a new approach to power control in
decentralized wireless networks, termed fractional power control
(FPC). Transmission power is chosen as the current channel qual-
ity raised to an exponent −s, where s is a constant between 0 and
1. The choices s = 1 and s = 0 correspond to the familiar cases of
channel inversion and constant power transmission, respectively.
Choosing s ∈ (0, 1) allows all intermediate policies between these
two extremes to be evaluated, and we see that usually neither
extreme is ideal. We derive closed-form approximations for the
outage probability relative to a target SINR in a decentralized
(ad hoc or unlicensed) network as well as for the resulting
transmission capacity, which is the number of users/m2 that
can achieve this SINR on average. Using these approximations,
which are quite accurate over typical system parameter values,
we prove that using an exponent of s∗ = 1

2
minimizes the outage

probability, meaning that the inverse square root of the channel
strength is a sensible transmit power scaling for networks with
a relatively low density of interferers. We also show numerically
that this choice of s is robust to a wide range of variations
in the network parameters. Intuitively, s∗ = 1

2
balances between

helping disadvantaged users while making sure they do not flood
the network with interference.

Index Terms—Ad hoc networks, fading, transmission capacity
(TC), power control.

I. INTRODUCTION

POWER control is a fundamental adaptation mechanism
in wireless networks, and is used to at least some extent

in virtually all terrestrial wireless systems. For a single user
fading channel in which the objective is to maximize expected
rate, it is optimal to increase transmission power (and rate) as
a function of the instantaneous channel quality according to
the well-known waterfilling policy [2]. On the other hand,
if the objective is to consistently achieve a target rate (or
SINR), then the power should be adjusted so that this target
level is exactly met. Such an objective is philosophically
the opposite of waterfilling, since power is inversely related
to the instantaneous channel quality: we call this channel
inversion. Although suboptimal from an information theory
point of view, some channel inversion is used in many modern
wireless systems to adapt to the extreme dynamic range (often
> 50 dB due to path loss differences as well as multipath
fading) that those systems experience, to provide a baseline
user experience over a long-term time-scale.
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A. Background and Motivation for Fractional Power Control

In a multi-user network in which users mutually interfere,
power control can be used to adjust transmit power levels so
that all users simultaneously can achieve their target SINR lev-
els. The Foschini-Miljanic algorithm is an iterative, distributed
power control method that performs this task assuming that
each receiver tracks its instantaneous SINR and feeds back
power adjustments to its transmitter [3]. Considerable work
has deeply explored the properties of these algorithms, includ-
ing developing a framework that describes all power control
problems of this type [4], as well as studying the feasibility
and implementation of such algorithms [5], [6], including with
varying channels [7]; see the recent monographs [8][9] for
excellent surveys of the vast body of literature. This body of
work, while in many respects quite general, has been primarily
focused on the cellular wireless communications architecture,
particularly in which all users have a common receiver (i.e.,
the uplink). More recently, there has been considerable interest
in power control for decentralized wireless networks, such as
unlicensed spectrum access and ad hoc networks [10]–[15].
A key distinguishing trait of a decentralized network is that
users transmit to distinct receivers in the same geographic
area, which causes the power control properties to change
considerably.

In this paper, we explore the optimal power control policy
for a multi-user decentralized wireless network with mutually
interfering users and a common target SINR. We do not
consider iterative algorithms and their convergence. Rather,
motivated by the poor performance of channel inversion
in decentralized networks [16], we develop a new transmit
power policy called fractional power control, which is neither
channel inversion nor fixed transmit power, but rather a trade-
off between them. Motivated by a recent Motorola proposal
[17] for fairness in cellular networks, we consider a policy
where if H is the fading coefficient (in power units) between
the transmitter and receiver, a transmission power of H−s

is used, where s is chosen in [0, 1]. Clearly, s = 0 implies
constant transmit power, whereas s = 1 is channel inversion.
The natural question then is: what is an appropriate choice of
s? We presume that s is decided offline and that all users in
the network utilize the same s.

B. Technical Approach

We consider a spatially distributed (decentralized) network,
representing either a wireless ad hoc network or unlicensed
spectrum usage by many nodes (e.g., Wi-Fi or spectrum
sharing systems). We consider a network that has the following
key characteristics.

• Each transmitter communicates with a single receiver that
is a distance d meters away.
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• Channel attenuation is determined by path loss (with
exponent α) and a (flat) fading value H .

• Each transmitter knows the channel power to its intended
receiver, but has no knowledge about other transmissions.

• All multi-user interference is treated as noise.
• Transmitters do not schedule their transmissions based on

their channel conditions or the activities of other nodes.
• Transmitter node locations are modeled by a homoge-

neous spatial (2-D) Poisson process.

These modeling assumptions are made to simplify the analysis,
but in general reasonably model a decentralized wireless net-
work with random transmitter locations, and limited feedback
mechanisms. In particular, the above assumptions refer to the
situation where a connection has been established between a
transmitter and receiver, in which case the channel power can
be learned quickly either through reciprocity or a few bits of
feedback. It is not however as easy to learn the interference
level since it may change suddenly as interferers turn on and
off or physically move (and reciprocity does not help). The
fixed transmit distance assumption is admittedly somewhat
artificial, but is significantly easier to handle analytically, and
has been shown to preserve the integrity of conclusions even
with random transmit distances. For example, [16], [18] prove
that picking the source-destination distance d from an arbitrary
random distribution reduces the transmission capacity by a
constant factor of E[d2]/(E[d])2 ≥ 1. Therefore, although
fixed distance d can be considered best-case as far as the
numerical value of transmission capacity, this constant factor
does not significantly change fractional power control’s rela-
tive effect on the transmission capacity, which is the subject
of this paper.

C. Contributions and Organization

The contributions of the paper are the suggestion of frac-
tional power control for wireless networks and the derivation
of the optimum power control exponent s∗ = 1

2 . The exponent
s = 1

2 is shown to be optimal for an approximation to
the outage probability/transmission that is valid for relatively
low density networks that are primarily interference-limited
(i.e., the effect of thermal noise is not overly large); if the
relative density or the effect of noise is large, then our
numerical results show that no power control (s = 0) is
generally preferred. In the relatively large parameter space
where our primary approximation is valid, fractional power
control with the choice s∗ = 1

2 is shown to greatly increase
the transmission capacity of a 1-hop ad hoc network for small
path loss exponents (as α → 2), with more modest gains for
higher attenuation channels. The results open a number of
possible avenues for future work in the area of power control,
and considering the prevalence of power control in practice,
carry several design implications.

The remainder of the paper is organized as follows. Section
II provides background material on the system model, and
key prior results on transmission capacity that are utilized in
this paper. Section III holds the main results, namely The-
orem 3 which gives the outage probability and transmission
capacity achieved by fractional power control, and Theorem
4 which determines the optimum power control exponent s∗

for the outage probability approximation. Section IV provides
numerical plots that explore the numerically computed optimal
s∗, which provides insight on how to choose s in a real
wireless network. Section V suggests possible extensions and
applications of fractional power control, while Section VI
concludes the paper.

II. PRELIMINARIES

A. System Model

We consider a set of transmitting nodes at an arbitrary
snapshot in time with locations specified by a homogeneous
Poisson point process (PPP), Π(λ), of intensity λ on the
infinite two-dimensional plane, R

2. We consider a reference
transmitter-receiver pair, where the reference receiver, as-
signed index 0, is located without loss of generality, at the
origin. Let Xi denote the distance of the i-th transmitting node
to the reference receiver. Each transmitter has an associated
receiver that is assumed to be located a fixed distance d meters
away. Let Hi0 denote the (random) distance–independent
fading coefficient for the channel separating transmitter i and
the reference receiver at the origin; let Hii denote the (ran-
dom) distance–independent fading coefficient for the channel
separating transmitter i from its intended receiver. We assume
that all the Hij are i.i.d. (including i = j), which implies that
no source-destination (S-D) pair has both a transmitter and
receiver that are very close (less than a wavelength) to one
another, which is reasonable. Received power is modelled by
the product of transmission power, pathloss (with exponent
α > 2), and a fading coefficient. Therefore, the (random)
SINR at the reference receiver is:

SINR0 =
P0H00d

−α∑
i∈Π(λ) PiHi0X

−α
i + η

, (1)

where η is the noise power. Recall our assumption that
transmitters have knowledge of the channel condition, Hii,
connecting it with its intended receiver. By exploiting this
knowledge, the transmission power, Pi, may depend upon the
channel, Hii. If Gaussian signaling is used, the corresponding
achievable rate (per unit bandwidth) is log2(1 +SINR0). The
Poisson model requires that nodes decide to transmit inde-
pendently, which corresponds in the above model to slotted
ALOHA [19]. A good scheduling algorithm by definition
introduces correlation into the set of transmitting nodes, which
is therefore not well modeled by a homogeneous PPP. We
discuss the implications of scheduling later in the paper.

B. Transmission Capacity

In the outage-based transmission capacity framework, an
outage occurs whenever the SINR falls below a prescribed
threshold β, or equivalently whenever the instantaneous mu-
tual information falls below log2(1 + β). Therefore, the
system-wide outage probability is

q(λ) = P(SINR0 < β) (2)

Because (2) is computed over the distribution of transmitter
positions as well as the iid fading coefficients (and conse-
quently transmission powers), it corresponds to fading that
occurs on a time-scale that is comparable or slower than the
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packet duration (if (2) is to correspond roughly to the packet
error rate). The outage probability is clearly a continuous
increasing function of the intensity λ.

Define λ(ε) as the maximum intensity of attempted trans-
missions such that the outage probability is no larger than ε,
i.e., λ(ε) is the unique solution of q(λ) = ε. The transmission
capacity is then defined as c(ε) = λ(ε)(1 − ε)b, which is
the maximum density of successful transmissions times the
spectral efficiency b of each transmission. In other words,
transmission capacity is area spectral efficiency subject to an
outage constraint.

For the sake of clarity, we define the constants δ = 2/α < 1
and SNR = pd−α

η . Now consider a path-loss only environment
(Hi0 = 1 for all i) with constant transmission power (Pi = p
for all i). The main result of [18] is given in the following
theorem.

Theorem 1 ([18]): Pure pathloss. Consider a network
where the SINR at the reference receiver is given by (2) with
Hi0 = 1 and Pi = p for all i. Then the following expres-
sions give bounds on the outage probability and transmission
attempt intensity:

qpl(λ) ≥ qpl
l (λ) = 1 − e−λπd2( 1

β − 1
SNR )−δ

,

λpl(ε) ≤ λpl
u (ε) = − log(1 − ε)

1
πd2

(
1
β
− 1

SNR

)δ

.

Here pl denotes pathloss. The transmission attempt intensity
upper bound, λpl

u (ε), is obtained by solving qpl
l (λ) = ε for

λ. These bounds are quite accurate for small λ, ε respectively,
which is the usual regime of interest. Note also that − log(1−
ε) = ε + O(ε2), which implies that transmission density is
approximately linear with the desired outage level, ε, for small
outages. The following corollary illustrates the simplification
of the above results when the noise may be ignored.

Corollary 1: When η = 0 the expressions in Theorem 1
simplify to:

qpl(λ) ≥ qpl
l (λ) = 1 − e−λπd2βδ

, (3)

λpl(ε) ≤ λpl
u (ε) = − log(1 − ε)

1
πd2βδ

. (4)

III. FRACTIONAL POWER CONTROL

The goal of the paper is to determine the effect that
fractional power control has on the outage probability and
maximum transmission intensity. We first review the key
prior result that we will use, and then derive the maximum
transmission densities λ for different power control policies.
We conclude the section by finding the optimal power control
exponent s.

A. Transmission capacity under constant power and channel
inversion

In this subsection we restrict our attention to two well-
known power control strategies: constant transmit power (or no
power control) and channel inversion. Under constant power,
Pi = p for all i for some common power level p. Under
channel inversion, Pi = p

E[H−1]H
−1
ii for all i. This means

that the received signal power is PiHiid
−α = p

E[H−1]d
−α,

which is constant for all i. That is, channel inversion com-
pensates for the random channel fluctuations between each
transmitter and its intended receiver. Moreover, the expected
transmission power is E[Pi] = p, so that the constant power
and channel inversion schemes use the same expected power.
We would like to emphasize the distribution of H is arbitrary
and can be adapted in principle to any relevant fading or
compound shadowing-fading model. For some possible distri-
butions (such as Rayleigh fading, i.e. H ∼ exp(1)), the value
E[H−1] may be undefined, strictly speaking. In practice, the
transmit power is finite and so Pi = p

E[H−1]H
−1
ii is finite.

The value E[H−1] is simply a normalizing factor and can be
interpreted mathematically to mean that H → min(H, δ) for
an arbitrarily small δ. Such a definition would not affect the
results in the paper.

A main result of [16] extended to include thermal noise is
given in the following theorem, with a general proof that will
apply to all three cases of interest: constant power, channel
inversion and fractional power control. Note that cp and ci
are used to denote constant power and channel inversion,
respectively.

Theorem 2: Constant power. Consider a network where
the SINR at the reference receiver is given by (2) with Pi =
p for all i. Then the following expression lower bounds the
outage probability, i.e., qcp(λ) ≥ qcp

l (λ):

qcp
l (λ) = 1 − P

(
H00 ≥ β

SNR

)
×

E

[
e−λπd2

E[Hδ ](H00
β − 1

SNR )−δ ∣∣∣H00 ≥ β

SNR

]
(5)

Channel inversion. Consider the same network with Pi =
p

E[H−1]H
−1
ii for all i. Then the following expressions give

bounds on the outage probability and transmission attempt
intensity:

qci
l (λ) = 1 − e

−λπd2
E[Hδ]E[H−δ]

(
1
β
− E[H−1]

SNR

)−δ

(6)

λci
u (ε) = − log(1 − ε)

1

πd2

1

E[Hδ]E[H−δ]

(
1

β
− E[H−1]

SNR

)δ

.(7)

where qci(λ) ≥ qci
l (λ) and λci(ε) ≤ λci

u (ε).
Proof: The SINR at the reference receiver for a generic

power vector {Pi} is

SINR0 =
P0H00d

−α∑
i∈Π(λ) PiHi0X

−α
i + η

, (8)

and the corresponding outage probability is

q(λ) = P

(
P0H00d

−α∑
i∈Π(λ) PiHi0X

−α
i + η

< β

)
. (9)

Rearranging yields:

q(λ) = P

⎛
⎝ ∑

i∈Π(λ)

PiHi0X
−α
i ≥ P0H00d

−α

β
− η

⎞
⎠ . (10)

Note that outage is certain when P0H00 < ηβdα. Condition-
ing on P0H00 and using f(·) to denote the density of P0H00
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yields:

q(λ) = P (P0H00 ≤ ηβdα) +∫ ∞

ηβdα

P

⎛
⎝ ∑

i∈Π(λ)

PiHi0X
−α
i ≥ x

βdα
− η

∣∣∣ P0H00 = x

⎞
⎠

f(x)dx.

Recall the generic lower bound from [16]: if Π(λ) =
{(Xi, Zi)} is a homogeneous marked Poisson point process
with points {Xi} of intensity λ and iid marks {Zi} indepen-
dent of the {Xi}, then

P

⎛
⎝ ∑

i∈Π(λ)

ZiX
−α
i > y

⎞
⎠ ≥ 1 − e−πλE[Zδ ]y−δ

, (11)

Applying here with Zi = PiHi0 and y = p0h00
βdα − η:

q(λ) ≥ P (P0H00 ≤ ηβdα) +∫ ∞

ηβdα

(
1 − e−πλE[(PiHi0)δ]( x

βdα −η)−δ)
f(x)dx

= 1 −
∫ ∞

ηβdα

e−πλE[(PiHi0)δ ]( x
βdα −η)−δ

f(x)dx

= 1 − P (P0H00 ≥ ηβdα) ×
E

[
e−λπd2

E[(PiHi0)δ ](P0H00
β − η

d−α )−δ ∣∣∣P0H00 ≥ ηβdα

]
(12)

For constant power we substitute PiHi0 = pHi0 (for all
i) into (12) and manipulate to obtain qcp

l (λ). For channel
inversion, P0H00 = p

E[H−1] while for i �= 0 we have

PiHi0 = p
E[H−1]

Hi0
Hii

. Plugging into (12) and using the fact
that Hii and Hi0 are i.i.d. yields qci

l (λ), and λci
u (ε) is simply

the inverse of qci
l (λ).

Note that channel inversion only makes sense when
SNR

E[H−1] = pd−α

ηE[H−1] , the effective interference-free SNR after
taking into account the power cost of inversion, is larger than
the SINR threshold β.

By applying Jensen’s inequality to qcp
l (λ) we obtain the

following useful approximations:

q̃cp
l (λ) = 1 − P

(
H00 ≥ β

SNR

)
×

e
−λπd2

E[Hδ ]E

[
(H00

β − 1
SNR )−δ

∣∣∣H00≥ β
SNR

]
(13)

λ̃cp(ε) = − log

⎛
⎝ 1 − ε

P

(
H00 ≥ β

SNR

)
⎞
⎠ 1

πd2

1
E[Hδ]

×

E

[(
H00

β
− 1

SNR

)−δ ∣∣∣H00 ≥ β

SNR

]−1

(14)

where λ̃cp(ε) is obtained by solving q̃cp
l (λ) = ε for λ. These

quantities are only approximations, i.e., qcp(λ) ≈ q̃cp
l (λ) and

λcp(ε) ≈ λ̃cp(ε), because Jensen’s actually upper bounds the
outage probability lower bound; however, numerical results in
Section IV confirm that the approximations are quite accurate
for a wide range of system parameters.

When the thermal noise can be ignored, these results
simplify to the expressions given in the following corollary:

Corollary 2: When η = 0 the bounds in Theorem 2 and
(13)-(14) simplify to:

qcp(λ) ≥ qcp
l (λ) = 1 − E

[
e−λπd2βδ

E[Hδ]H−δ
00

]
≈ q̃cp

l (λ) = 1 − e−λπd2βδ
E[Hδ]E[H−δ],

qci(λ) ≥ qci
l (λ) = 1 − e−λπd2βδ

E[Hδ]E[H−δ],

λcp(ε) ≈ λ̃cp(ε) = − log(1 − ε)
1

πd2βδ

1
E [Hδ] E [H−δ]

,

λci(ε) ≤ λci
u (ε) = − log(1 − ε)

1
πd2βδ

1
E [Hδ] E [H−δ]

.

Note that these expressions match Theorem 3 and Corollary
3 of the SIR-analysis performed in [16].

In the absence of noise the constant power outage prob-
ability approximation equals the channel inversion outage
probability lower bound: q̃cp

l (λ) = qci
l (λ). As a result, the

constant power transmission attempt intensity approximation
equals the channel inversion transmission attempt intensity
upper bound: λ̃cp(ε) = λci

u (ε). Comparing λ̃cp(ε) = λci
u (ε)

in Corollary 2 with λpl
u (ε) in (4) it is evident that the impact

of fading on the transmission capacity is measured by the loss
factor, Lcp = Lci, defined as

Lcp = Lci =
1

E [Hδ] E [H−δ]
< 1. (15)

The inequality is obtained by applying Jensen’s inequality
to the convex function 1/x and the random variable Hδ. If
constant power is used, the E[H−δ] term is due to fading
of the desired signal while the E[Hδ] term is due to fading
of the interfering links. Fading of the interfering signal has a
positive effect while fading of the desired signal has a negative
effect. If channel inversion is performed the E[H−δ] term is
due to each interfering transmitter using power proportional
to H−1

ii . When the path loss exponent, α, is close to 2 then
δ = 2/α is close to one, so the term E[H−δ] is nearly equal
to the expectation of the inverse of the fading, which can
be extremely large for severe fading distributions such as
Rayleigh. As a less severe example, α = 3, the loss factor
for Rayleigh fading is Lcp = Lci = 0.41.

B. Transmission capacity under fractional power control

In this section we generalize the results of Theorem 2 by
introducing fractional power control (FPC) with parameter
s ∈ [0, 1]. Under FPC the transmission power is set to
Pi = p

E[H−s]H
−s
ii for each i. The received power at receiver

i is then PiHiid
−α = p

E[H−s]H
1−s
ii d−α, which depends upon

i aside from s = 1. The expected transmission power is p,
ensuring a fair comparison with the results in Theorems 1 and
2. Note that constant power corresponds to s = 0 and channel
inversion corresponds to s = 1. The following theorem gives
good approximations on the outage probability and maximum
allowable transmission intensity under FPC.

Theorem 3: Fractional power control. Consider a network
where the SINR at the reference receiver is given by (2) with
Pi = p

E[H−s]H
−s
ii for all i, for some s ∈ [0, 1]. Then the
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outage probability is lower bounded qfpc(λ) ≥ qfpc
l (λ) with:

qfpc
l (λ) = 1 − P (H00 ≥ κ(s)) ×

E

⎡
⎣e

−λπd2
E[H−sδ ]E[Hδ]

(
H

1−s
00
β − E[H−s]

SNR

)−δ ∣∣∣H00 ≥ κ(s)

⎤
⎦

where κ(s) =
(

β
SNRE[H−s]

) 1
1−s

.
Proof: Under FPC, the transmit power for each user is

constructed as Pi = p
E[H−s]H

−s
ii . Substituting this value into

the proof of Theorem 2 immediately gives qfpc
l (λ).

By again applying Jensen’s inequality we get approxima-
tions qfpc(λ) ≈ q̃fpc

l (λ) and λfpc(ε) ≈ λ̃fpc(ε) with:

q̃fpc
l (λ) = 1 − P (H00 ≥ κ(s)) ×

e
−λπd2

E[H−sδ ]E[Hδ ]E

[(
H

1−s
00
β − E[H−s]

SNR

)−δ
∣∣∣H00≥κ(s)

]

λ̃fpc(ε) = − log
(

1 − ε

P (H00 ≥ κ(s))

)
1

πd2

1
E[H−sδ]E[Hδ]

×
(

E

[(
H1−s

00

β
− E[H−s]

SNR

)−δ ∣∣∣H00 ≥ κ(s)

])−1

As in the previous section, the approximation qfpc
l (λ) ≈

q̃fpc
l (λ) is accurate when the exponential term in qfpc

l (λ) is
approximately linear in its argument and thus Jensen’s is tight.
In other words, this approximation utilizes the fact that e−x is
nearly linear for small x. Looking at the expression for qfpc

l (λ)
we see that this is reasonable when the relative density λπd2

is small. If this is not true then the approximation q̃fpc
l (λ)

is not sufficiently accurate, as will be further seen in the
numerical results presented in Section IV. The FPC transmis-
sion attempt intensity approximation, λ̃fpc(ε), is obtained by
solving q̃fpc

l (λ) = ε for λ. The following corollary illustrates
the simplification of the above results when the noise may be
ignored.

Corollary 3: When η = 0 the expressions in Theorem 3 and
approximations q̃fpc

l (λ) and λ̃fpc(ε) simplify to:

qfpc(λ) ≥ qfpc
l (λ) = 1 − E

[
e−λπd2βδ

E[Hδ]E[H−sδ]H−(1−s)δ
00

]

≈ q̃fpc
l (λ) = 1 − e−λπd2βδ

E[Hδ]E[H−sδ]E[H−(1−s)δ],

λfpc(ε) ≈ λ̃fpc(ε)

=
− log(1 − ε)

πd2βδ

1

E [Hδ] E [H−sδ] E [H−(1−s)δ]
.

The loss factor for FPC, Lfpc, is the reduction in the trans-
mission capacity approximation relative to the pure pathloss
case:

Lfpc(s) =
1

E [Hδ] E [H−sδ] E
[
H−(1−s)δ

] . (16)

Clearly, the loss factor Lfpc for FPC depends on the design
choice of the exponent s.

C. Optimal Fractional Power Control Exponent

Fractional power control represents a balance between the
extremes of no power control and channel inversion. The
mathematical effect of fractional power control is to replace

the E[H−δ] term with E[H−sδ]E[H−(1−s)δ]. This is because
the signal fading is softened by the power control exponent
−s so that it results in a leading term of H−(1−s) (rather
than H−1) in the numerator of the SINR expression, and
ultimately to the E[H−(1−s)δ] term. The interference power
is also softened by the fractional power control and leads to
the E[H−sδ] term.

The key question of course lies in determining the optimal
power control exponent. Although it does not seem possible to
derive an analytical expression for the exponent that minimizes
the general expression for qfpc

l (λ) given in Theorem 3, we
can find the exponent that minimizes the outage probability
approximation in the case of no noise.

Theorem 4: In the absence of noise (η = 0), the fractional
power control outage probability approximation, q̃fpc

l (λ), is
minimized for s = 1

2 . Hence, the fractional power control
transmission attempt intensity approximation, λ̃fpc(ε) is also
maximized for s = 1

2 .
Proof: Because the outage probability/transmission den-

sity approximations depend on the exponent s only through
the quantity E

[
H−sδ

]
E
[
H−(1−s)δ

]
, it is sufficient to show

that E
[
H−sδ

]
E
[
H−(1−s)δ

]
is minimized at s = 1

2 . To do
this, we use the following general result, which we prove in
the Appendix. For any non-negative random variable X , the
function

h(s) = E
[
X−s

]
E
[
Xs−1

]
, (17)

is convex in s for s ∈ R with a unique minimum at s = 1
2 .

Applying this result to random variable X = Hδ gives the
desired result.

The theorem shows that transmission density is maximized,
or equivalently, outage probability is minimized, by balancing
the positive and negative effects of power control, which are
reduction of signal fading and increasing interference, respec-
tively. Using an exponent greater than 1

2 over-compensates for
signal fading and leads to interference levels that are too high,
while using an exponent smaller than 1

2 leads to small inter-
ference levels but an under-compensation for signal fading.
Note that because the key expression E

[
H−sδ

]
E
[
H−(1−s)δ

]
is convex, the loss relative to using s = 1

2 increases monoton-
ically both as s → 0 and s → 1.

One can certainly envision “fractional" power control
schemes that go even further. For example, s > 1 corresponds
to “super" channel inversion, in which bad channels take
resources from good channels even more so than in normal
channel inversion. Not surprisingly, this is not a wise policy.
Less obviously, s < 0 corresponds to what is sometimes
called “greedy" optimization, in which good channels are
given more resources at the further expense of poor channels.
Waterfilling is an example of a greedy optimization procedure.
But, since E

[
H−sδ

]
E
[
H−(1−s)δ

]
monotonically increases as

s decreases, it is clear that greedy power allocations of any
type are worse than even constant transmit power under the
SINR-target set up.

The numerical results in the next section show that FPC is
very beneficial relative to constant transmit power or channel
inversion. However, fading has a deleterious effect relative to
no fading even if the optimal exponent is used. To see this,
note that x− 1

2 is a convex function and therefore Jensen’s
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yields E[X− 1
2 ] ≥ (E[X ])−

1
2 for any non-negative random

variable X . Applying this to X = Hδ we get
(
E

[
H− δ

2

])2

≥(
E[Hδ]

)−1
, which implies

Lfpc(1/2) =
1

E [Hδ]
(

E

[
H− δ

2

])2 ≤ 1.

Although fractional PC cannot fully overcome fading, it is still
a better power control policy than constant power transmission
or traditional power control (channel inversion).

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, the implications of fractional power control
are illustrated through numerical plots and analytical discus-
sion. The tightness of the bounds will be considered as a
function of the system parameters, and the choice of a robust
FPC exponent s will be proposed. As default parameters, the
simulations assume

α = 3, β = 1 (0 dB), d = 10m,

SNR =
pd−α

η
= 100 (20 dB), λ = 0.0001

users
m2

.

Furthermore, Rayleigh fading is assumed for the numerical
results.

A. Effect of Fading

The benefit of fractional power control can be quickly
illustrated in Rayleigh fading, in which case the channel power
H is exponentially distributed and the moment generating
function is therefore

E[Ht] = Γ(1 + t), (18)

where Γ(·) is the standard gamma function. If fractional power
control is used, the transmission capacity loss due to fading
is

Lfpc =
1

E [Hδ] E [H−sδ] E
[
H(1−s)δ

]
=

1
Γ(1 + δ) · Γ(1 − sδ) · Γ(1 − (1 − s)δ)

(19)

In Fig. 1 this loss factor (L) is plotted as a function of s for
path loss exponents α = {2.1, 3, 4}. Notice that for each value
of α the maximum takes place at s = 1

2 , and that the cost of
not using fractional power control is highest for small path
loss exponents because Γ(1+x) goes to infinity quite steeply
as x → −1. This plot implies that in severe fading channels,
the gain from FPC can be quite significant.

It should be noted that the expression in (19) is for the
case of no thermal noise (η = 0). In this case the power
cost of FPC completely vanishes, because the same power
normalization (by E[H−s]) is performed by each transmitting
node and therefore this normalization cancels in the SIR
expression. On the other hand, this power cost does not
vanish if the noise is strictly positive and can potentially be
quite significant, particularly if SNR is not large. A simple
application of Jensen’s shows that the power normalization
factor E[H−s] is an increasing function of the exponent s for
any distribution on H . For the particular case of Rayleigh
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Fig. 1. The loss factor L vs. s for Rayleigh fading. Note that Lcp and Lci

are the left edge and right edge of the plot, respectively.

fading this normalization factor is Γ(1 − s) which makes it
prohibitively expensive to choose s very close to one; indeed,
the choice s = 1 requires infinite power and thus is not
feasible. On the other hand, note that Γ(.5) is approximately
2.5 dB and thus the cost of a moderate exponent is not so
large. When the interference-free SNR is reasonably large,
this normalization factor is relatively negligible and the effect
of FPC is well approximated by (19).

B. Tightness of Bounds

There are two principle approximations made in attaining
the expressions for outage probability and transmission ca-
pacity in Theorem 3 and Corollary 3. First, the inequality
is due to considering only dominant interferers; that is, an
interferer whose channel to the desired receiver is strong
enough to cause outage even without any other interferers
present. This is a lower bound on outage since it ignores
non-dominant interferers, but nevertheless has been seen to
be quite accurate in our prior work [16], [18], [20]. Second,
Jensen’s inequality is used to bound E[exp(X)] ≥ exp(E[X ])
in the opposite direction, so this results in an approximation
to the outage probability rather than a lower bound; numerical
results confirm that this approximation is in fact not a lower
bound in general. Therefore, we consider the three relevant
quantities: (i) the actual outage probability qfpc(λ), which is
determined via Monte-Carlo simulation and does not depend
on any bounds or approximations, (ii) a numerical computation
of the outage probability lower bound qfpc

l (λ), and (iii) the
approximation to the outage probability q̃fpc

l (λ) reached by
applying Jensen’s inequality to qfpc

l (λ). Note that because
of the two opposing bounds (one lower and one upper), we
cannot say a priori that method (ii) will produce more accurate
expressions than method (iii).

The tightness of the bounds is explored in Figs. 2 - 6.
Consider first Fig. 2 for the default parameters given above.
We can see that the lower bound and the Jensen approximation
both reasonably approximate the simulation results, and the
approximation winds up serving as a lower bound as well.
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Fig. 2. The outage probability (simulated, lower bound, and Jensen’s
approximation) vs. FPC exponent s for the default parameters.

The Jensen’s approximation is very accurate for large values
of s (i.e., closer to channel inversion), and while looser for
smaller values of s, this “error" actually moves the Jensen’s
approximation closer to the actual (simulated) outage probabil-
ity. The Jensen’s approximation approaches the lower bound
as s → 1 because the random variable H(1−s)δ approaches
a constant, where Jensen’s inequality trivially holds with
equality. Changing the path loss exponent α, the SNR, the
target SINR β, or the density λ can have a significant effect
on the bounds, as we will see. With the important exception
of high density networks, the approximations are seen to be
reasonably accurate for reasonable parameter values.

Path loss. In Fig. 3, the bounds are given for α = 2.2 and
α = 5, which correspond to much weaker and much stronger
attenuation than the more typical default value α = 3. For
weaker attenuation, we can see that the lower bound holds
the right shape but is less accurate, while the Jensen’s ap-
proximation becomes very loose when the FPC exponent s is
small. For path loss exponents near 2, the dominant interferer
approximation is weakened because the attenuation of non-
dominant interferers is less drastic. On the other hand, both
the lower bound and Jensen’s approximation are very accurate
in strong attenuation environments as seen in the α = 5 plot.
This is because the dominant interferer approximation is very
reasonable in such cases.

SNR. The behavior of the bounds also varies as the back-
ground noise level changes, as shown in Fig. 4. When the SNR
is 10 dB, the bounds are quite tight. However, the behavior of
outage probability as a function of s is quite different from the
default case in Fig. 2: outage probability decreases slowly as
s is increased, and a rather sharp jump is seen as s approaches
one. When the interference-free SNR is only moderately larger
than the target SINR (in this case there is a 10 dB difference
between SNR and β), a significant portion of outages occur
because the signal power is so small that the interference-
free received SNR falls below the target β; this probability is
captured by the P (H00 ≥ κ(s)) terms in Theorem 3. On the
other hand, if SNR is much larger than the target β, outages
are almost always due to a combination of signal fading and
large interference power rather than to signal fading alone (i.e.,
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Fig. 3. The outage probability (simulated, lower bound, and Jensen’s
approximation) vs. FPC exponent s for α = 2.2 and α = 5.

P (H00 ≥ κ(s)) is insignificant compared to the total outage
probability). When outages caused purely by signal fading are
significant, the dependence on the exponent s is significantly
reduced. Furthermore, the power cost of FPC becomes much
more significant when the gap between SNR and β is reduced;
this explains the sharp increase in outage as s approaches one.
When SNR = 30 dB, the behavior is quite similar to the 20
dB case because at this point the gap between SNR and β is
so large that thermal noise can effectively be neglected.

Target SINR. A default SINR of β = 1 was chosen,
which corresponds roughly to a spectral efficiency of 1 bps/Hz
with strong coding, and lies between the low and high SINR
regimes. Exploring an order of magnitude above and below
the default in Fig. 5, we see that for β = 0.1 the bounds are
highly accurate, and show that s∗ = 1

2 is a good choice. For
this choice of parameters there is a 30 dB gap between SNR
and β and thus thermal noise is essentially negligible. On the
other hand, if β = 10 the bounds are still reasonable, but
the outage behavior is very similar to the earlier case where
SNR = 10 dB and β = 0 dB because there is again only a
10 dB gap between SNR and β. Despite the qualitative and
quantitative differences for low SNR and high target SINR
from the default values, it is interesting to note that in both
cases s = 1

2 is still a robust choice for the FPC exponent.
Density. The default value of λ = 0.0001 corresponds

to a somewhat low density network because the expected
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Fig. 4. The outage probability (simulated, lower bound, and Jensen’s
approximation) vs. FPC exponent s for SNR = 10 dB and SNR = 30
dB.

distance to the nearest interferer is approximately 50 m,
while the TX-RX distance is d = 10 m. In Fig. 6 we
explore a density an order of magnitude lower and higher
than the default value. When the network is even sparser,
the bounds are extremely accurate and we see that s∗ = 1

2
is a near-optimal choice. However, the behavior with s is
very different in a dense network where λ = .001 and the
nearest interferer is approximately 17 m away. In such a
network we see that the nearest neighbor bound is quite loose
because a substantial fraction of outages are caused by the
summation of non-dominant interferers, as intuitively expected
for a dense network. Although the bound is loose, it does
capture the fact that outage increases with the exponent s. On
the other hand, the Jensen approximation is loose and does
not correctly capture the relationship between s and outage.
The approximation is based on the fact that the function
e−x is approximately linear for small x. The quantity x is
proportional to πλd2, which is large when the network is dense
relative to TX-RX distance d, and thus this approximation is
not valid for relatively dense networks.

C. Choosing the FPC exponent s

Determining the optimum choice of FPC exponent s is a
key interest of this paper. As seen in Sect. III-C, s∗ = 1

2
is optimal for the Jensen’s approximation and with no noise,
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Fig. 5. The outage probability (simulated, lower bound, and Jensen’s
approximation) vs. FPC exponent s for β = −10 dB and β = 10 dB.

both of which are questionable assumptions in many regimes
of interest. In Figs. 7 – 10, we plot the truly optimal choice of
s∗ for the default parameters, while varying α, SNR, β, and
λ, respectively. That is, the value of s that minimizes the true
outage probability is determined for each set of parameters.
The FPC exponents sl(Δ) and su(Δ) are also plotted, which
provide Δ% error below and above the optimum outage
probability. For the plots, we let Δ = 1 and Δ = 10.

The key findings are: (a) In the pathloss (α) plot, s∗ = 1
2

is a very robust choice for all attenuation regimes; (b) For
SNR, s∗ = 1

2 is only robust at high SNR, and at low SNR
constant transmit power is preferable; (c) For target SINR β,
s∗ = 1

2 is robust at low and moderate SINR targets (i.e. low
to moderate data rates), but for high SINR targets constant
transmit power is preferred; (d) For density λ, s∗ = 1

2 is robust
at low densities, but constant transmit power is preferred at
high densities.

The explanation for findings (b) and (c) is due to the
dependence of outage behavior on the difference between
SNR and β. As seen earlier, thermal noise is essentially
negligible when this gap is larger than approximately 20 dB.
As a result, it is reasonable that the exponent shown to be
optimal for noise-free networks (s = 1

2 ) would be near-optimal
for networks with very low levels of thermal noise. On the
other hand, outage probability behaves quite differently when
SNR is only slightly larger than β. In this case, power is
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Fig. 6. The outage probability (simulated, lower bound, and Jensen’s
approximation) vs. FPC exponent s for λ = 0.00001 and λ = 0.001.

very valuable and it is not worth incurring the normalization
cost of FPC and thus very small FPC exponents are optimal.
Intuitively, achieving high data rates in moderate SNR or
moderate data rates in low SNR are difficult objectives in
a decentralized network. The low SNR case is somewhat
anomalous, since the SNR is close to the target SINR, so
almost no interference can be tolerated. Similarly, to meet
a high SINR constraint in a random network of reasonable
density, the outage probability must be quite high, so this too
may not be particularly meaningful.

To explain (d), recall that the Jensen-based approximation
to outage probability is not accurate for dense networks and
the plot shows that constant power (s = 0) is preferred
at high densities.1 Fractional power control softens signal
fading at the expense of more harmful interference power,
and this turns out to be a good tradeoff in relatively sparse
networks. In dense networks, however, there generally are a
large number of nearby interferers and as a result the benefit
of reducing the effect of signal fading (by increasing exponent

1Based on the figure it may appear that choosing s < 0, which means
users with good channels transmit with additional power, outperforms constant
power transmission. However, numerical results (not shown here) indicate
that this provides a benefit only at extremely high densities for which outage
probability is unreasonably large. Intuitively, a user with a poor channel in a
dense network is extremely unlikely to be able to successfully communicate
and global performance is improved by having such a user not even attempt
to transmit, as done in the threshold-based policy studied in [16].
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with ±1% and ±10% selections for s.

s) is overwhelmed by the cost of more harmful interference
power. Note that this is consistent with results on channel
inversion (s = 1) in [16], where s = 0 and s = 1 are seen
to be essentially equivalent at low densities (as expected by
the Jensen approximation) but inversion is inferior at high
densities.

V. POSSIBLE AREAS FOR FUTURE STUDY

Given the historically very high level of interest in the sub-
ject of power control for wireless systems, this new approach
for power control opens many new questions. It appears that
FPC has potential for many applications due to its inherent
simplicity, requirement for only simple pairwise feedback, and
possible a priori design of the FPC parameter s. Some areas
that we recommend for future study include the following.

How does FPC perform in cellular systems? Cellular
systems in this case are harder to analyze than ad hoc
networks, because the base stations (receivers) are located on
a regular grid and thus the tractability of the spatial Poisson
model cannot be exploited. On the other hand, FPC may be
even more helpful in centralized systems. Note that some
numerical results for cellular systems are given in reference
[17], but no analysis is provided.
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Can FPC be optimized for spectral efficiency? In this
paper we have focused on outage relative to an SINR con-
straint as being the metric. Other metrics can be considered,
for example maximizing the average spectral efficiency, i.e.
max E[log2(1 + SINR)], which could potentially result in
optimal exponents s < 0, which is conceptually similar to
waterfilling.

What is the effect of scheduling on FPC? If scheduling is
used, then how should power levels between a transmitter and
receiver be set? Will s = 1

2 still be optimal? Will the gain be
increased or reduced? We conjecture that the gain from FPC
will be smaller but non-zero for most any sensible scheduling
policy, as the effect of interference inversion is softened.

Can FPC be used to improve iterative power control?
At each step of the Foschini-Miljanic algorithm (as well as
most of its variants), transmitters adjust their power in a
manner similar to channel-inversion, i.e., each transmitter fully
compensates for the current SINR. While this works well
when the target SINR’s are feasible, it does not necessarily
work well when it is not possible to satisfy all users’ SINR
requirements. In such a setting, it may be preferable to perform
partial compensation for the current SINR level during each
iteration. For example, if a link with a 10 dB target is currently

experiencing an SINR of 0 dB, rather than increasing its
transmit power by 10 dB to fully compensate for this gap (as in
the Foschini-Miljanic algorithm), an FPC-motivated iterative
policy might only boost power by 5 dB (e.g., adjust power in
linear units according to the square root of the gap).

VI. CONCLUSIONS

This paper has applied fractional power control as a general
approach to pairwise power control in decentralized (e.g. ad
hoc or spectrum sharing) networks. Using two approximations,
we have shown that a fractional power control exponent
of s∗ = 1

2 is optimal in terms of outage probability and
transmission capacity, in contrast to constant transmit power
(s = 0) or channel inversion (s = 1) in networks with a
relatively low density of transmitters and low noise levels. This
implies that there is an optimal balance between compensating
for fades in the desired signal and amplifying interference.
We saw that a gain on the order of 50% or larger (relative to
no power control or channel inversion) might be typical for
fractional power control in a typical wireless channel.

APPENDIX

We prove that for any non-negative random variable X , the
function

h(s) = E
[
X−s

]
E
[
Xs−1

]
, (20)

is convex in s for s ∈ R with a unique minimum at s = 1
2 . In

order to show h(s) is convex, we show h is log-convex and
use the fact that a log-convex function is convex. We define

H(s) = log h(s) = log
(
E
[
X−s

]
E
[
Xs−1

])
, (21)

and recall Hölder’s inequality:

E[XY ] ≤ (E[Xp])
1
p (E[Y q])

1
q ,

1
p

+
1
q

= 1. (22)

The function H(s) is convex if H(λs1 + (1 − λ)s2) ≤
λH(s1)+(1−λ)H(s2) for all s1, s2 and all λ ∈ [0, 1]. Using
Hölder’s with p = 1

λ and q = 1
1−λ we have:

H(λs1 + (1 − λ)s2) (23)

= log
(

E

[
X−(λs1+(1−λ)s2)

]
E

[
X(λs1+(1−λ)s2)−1

])
= log

(
E

[
X−λs1X(1−λ)s2

]
E

[
Xλ(s1−1)X(1−λ)(s2−1)

])
≤ log

(
E
[
X−s1

]λ
E [Xs2 ]1−λ

E
[
Xs1−1

]λ
E
[
Xs2−1

]1−λ
)

= λ log
(
E
[
X−s1

]
E
[
Xs1−1]) (24)

+(1 − λ) log
(
E [Xs2 ] E

[
Xs2−1])

= λH(s1) + (1 − λ)H(s2). (25)

This implies H(s) is convex, which further implies convexity
of h(s). The derivative of h is

h′(s) = E
[
X−s

]
E
[
Xs−1 log X

]−E
[
Xs−1

]
E
[
X−s log X

]
,

(26)
and it can easily be seen that s∗ = 1

2 is the unique minimizer
satisfying h′(s) = 0.
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