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Abstract. We introduce techniques that shed new light on the capacity anal-
ysis of multiuser channels, and apply these techniques to broadcast and mul-
tiple access channels. We �rst determine a duality between broadcast and
multiple access channels that can be used to obtain the capacity region and
optimal transmission strategy for one channel based on the capacity-achieving
transmission strategy and region for the dual channel. This duality result is
applicable to additive Gaussian noise and fading channels for several di�erent
notions of fading channel capacity, including ergodic capacity, outage capacity,
and minimum rate capacity. Duality provides a powerful connection between
the broadcast channel and multiple access channel capacity regions that solves
many open capacity problems, and also greatly simpli�es the calculation of
known regions. We next consider the dirty paper coding strategy of Costa
for broadcast channels. Dirty paper coding exploits the known interference
between users in a broadcast channel to presubtract out this interference. We
apply this coding strategy to broadcast channels with multiple antennas at the
transmitter and receiver (the MIMO channel). We show that dirty paper cod-
ing provides signi�cant rate gains over the high-data-rate (HDR) strategy used
in current cellular systems. We next turn our attention to the MIMO broad-
cast channel capacity region. Since this channel is in general non-degraded,
its capacity region remains an unsolved problem. We �rst establish a duality
between the achievable region of the MIMO broadcast channel using dirty pa-
per coding and the capacity region of the dual MIMO multiple-access channel,
which is easy to compute. We then show that dirty paper coding achieves
sumrate capacity of the MIMO broadcast channel. The proof exploits duality,
dirty paper coding, and clever upper bounding techniques.

1. Introduction

The main focus of this paper is to establish a connection between the capacity
regions of broadcast channels (BCs) and multiple access channels (MACs), then
exploit this connection to solve new capacity problems. Despite extensive study of
the BC and MAC independently, no relationship between them has previously been
discovered. We show that the Gaussian MAC and BC are essentially duals of each
other. As a result, the capacity regions of the BC and the MAC with the same
channel gains and the same noise power at every receiver can be derived from one
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another. In particular, we show that the capacity region of a fading or constant
Gaussian BC is equal to the union of the capacity regions of the dual Gaussian
MAC where the union is taken over power constraints on the individual users of
the MAC that sum up to the BC power constraint. This result allows us to directly
compute the capacity region of a Gaussian BC from the capacity region of its dual
Gaussian MAC. We also show that the capacity region of the Gaussian MAC equals
the intersection of capacity regions of the dual Gaussian BC where the intersection
is taken over appropriately scaled channel gains and the total BC power equals the
sum of powers of the dual MAC users. Moreover, we obtain an explicit relationship
between the optimum power allocation scheme and the decoding order used to
achieve points along the boundary of the dual MAC and BC capacity regions. The
relationships between the capacity regions and optimal transmission strategies for
dual MAC and BCs holds for several di�erent notions of fading channel capacity,
including ergodic capacity, outage capacity, and minimum rate capacity.

The duality relationships between the capacity regions of the Gaussian MAC
and BC are quite powerful and interesting. First they indicate a direct connection
between known capacity results for dual MAC and broadcast channels. More im-
portantly, there are several BCs and MACs where the capacity region and optimal
transmission strategy for one channel is either unknown or very hard to compute,
whereas the regions are known and easy to compute for the dual channel. In these
cases we can use duality to obtain new capacity results. In particular, we will show
that the minimum rate capacity region and optimal transmission strategy for a fad-
ing MAC can be obtained from the dual BC capacity region, yet no direct method
exists to compute this region.

The capacity of a broadcast channel with multiple antennas at the transmitter
and receiver (the MIMO BC) is an open problem due to the lack of a general
theory on the capacity of non-degraded broadcast channels. Pioneering work in this
area by Caire and Shamai [1] developed an achievable set of rates for a broadcast
channel with two transmit antennas and one receive antenna at each node based
on the dirty paper coding result of Costa [2]. This coding strategy allows a channel
with interference known at the transmitter to achieve the same data rate as if the
interference did not exist. The original coding strategy was described as writing
on dirty paper, where the structure introduced by the \dirt" is exploited in the
code design. Computing the corresponding set of achievable rates for the MIMO
BC is extremely complex, especially for a larger number of antennas at either the
transmitter or the receivers.

We establish a duality between the achievable region of the MIMO BC obtained
using dirty paper coding and the capacity region of the dual MIMO MAC for any
number of transmit and receive antennas. This result greatly simpli�es calculation
of the achievable region for the MIMO BC obtained with dirty paper coding, since
we can use recently developed iterative water�lling techniques to obtain the capacity
region for the dual MIMO MAC capacity region [4] and then apply duality [3]. We
also show that dirty paper coding achieves the sumrate point of the MIMO BC
channel capacity region (maximum achievable sum of all users' rates). This proof
applies the Sato upper bound [5] to the broadcast channel by allowing joint signal
detection at all receivers and assuming worst-case noise, a technique �rst proposed
in [1] that we generalize to multiple transmit and receive antennas.

The remainder of this paper is organized as follows. Section 2 introduces the
duality between broadcast and MAC channels and shows how this can be used to
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compute their dual capacity regions. Section 3 describes the di�erent notions of
capacity associated with multiuser fading channels, including the ergodic, outage,
and minimum rate capacities. Sections 4 and 5 derive the ergodic and minimum
rate capacity regions, respectively, for fading broadcast and MAC channels along
with their duality relationship. Section 6 de�nes the dual MIMO MAC and BCs.
Sections 7 outlines the achievable rate region for a broadcast MIMO fading channel
with dirty paper coding, and illustrates the gains of dirty paper coding relative
to the high-data-rate (HDR) scheme currently used in cellular systems. Section
8 establishes a duality between the dirty paper region for the MIMO BC and the
capacity region of the dual MIMO MAC. Section 9 derives an upper bound on
the MIMO BC capacity region based on joint detection and worst-case noise, and
shows that this bound is achievable at the sumrate point using dirty paper coding.
Thus, the sumrate capacity of the MIMO BC is obtained for any number of users,
transmit antennas, and receive antennas. Our conclusions are discussed in Section
8.

2. Duality between Broadcast and Multiple Access Channels

In this section we establish a duality between broadcast and multiple access
channels and show how this duality can be used to compute the capacity of one
channel from the capacity of its dual. A discrete-time BC, where one transmitter
sends information to M receivers, is described mathematically by

Yj [i] =
q
hj [i]X[i] + nj [i];(2.1)

where X[i] is the transmitted signal, Yj [i] is the signal received by the jth user, nj [i]
is the receiver noise sample at time i of the jth user, and hj [i] is the time-varying
channel power gain at time i of the jth user. A discrete-time MAC, where many
transmitters send information to one receiver, is described mathematically by

Y [i] =
MX
j=1

q
hj [i]Xj [i] + n[i];(2.2)

where Xj [i] is the signal transmitted at time i by the jth transmitter, hj [i] is the
channel power gain between the jth transmitter and the receiver, Y [i] is the received
signal at time i, and n[i] is the receiver noise sample at time i. We assume in our
system models that the noise power of all the receivers in the BC and the single
receiver in the MAC are equal to �2. Also, the term hj [i] is the channel power
gain of receiver j in the BC (downlink) and hj [i] is also the channel power gain of
transmitter j in the MAC (uplink). We call this BC the dual of the MAC, and
vice versa. In our broadcast and MAC models the channel gains can be constant
or changing with i (fading). We assume in both cases that all channel gains hj [i]
are known to the transmitter(s) and receiver(s) at time i.

The dual channels have several key di�erences as well as some key similarities.
Speci�cally, the BC has a single power constraint associated with the transmitter,
whereas the MAC has a di�erent individual power constraint for each user. In
addition, the interference signal on the BC has the same channel gain as the desired
signal, whereas in the MAC these signals are received with di�erent powers (the
near-far e�ect). Despite these di�erences, a superposition coding strategy is optimal
for both channels, and the optimal decoders for each channel exploit successive
decoding and interference cancellation. The duality relationship between the two
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channels is based on exploiting their similar encoding and decoding strategies while
bridging their di�erences by summing the individual MAC power constraints to
obtain the BC power constraint and scaling the BC gains to achieve the near-far
e�ect of the MAC.

We now state the explicit duality result, proved in [9], that the capacity region
of a Gaussian BC can be characterized in terms of the capacity region of the dual
MAC. For simplicity the theorem is stated for a two-user channel, but it applies to
any number of users.

Theorem 2.1. The capacity region of a constant Gaussian BC with power P
is equal to the union of capacity regions of the dual MAC with power P1 and P2
such that P1 + P2 = P :

CBC(P ;h1; h2) =
[

0�P1�P

CMAC(P1; P � P1;h1; h2):(2.3)

In [9] it is also shown that the boundary of each MAC capacity region touches
the boundary of the BC capacity region at a di�erent point. More generally, each
point along the BC capacity region boundary is intersected by a di�erent MAC
capacity region boundary. The BC and MAC power schemes corresponding to
the intersection at rate point (R1; R2) are related by the following duality power
transformation [9]:

RBC1 = log

�
1 +

h1P
BC
1

�2

�
= log

�
1 +

h1P
MAC
1

h2PMAC
2 + �2

�
= RMAC

1

RBC2 = log

�
1 +

h2P
BC
2

h2PBC
1 + �2

�
= log

�
1 +

h2P
MAC
2

�2

�
= RMAC

2 :(2.4)

Thus, given the power pair (P1; P2) that achieves rates (R1; R2) for one channel,
the corresponding power allocation to achieve these rates on the dual channel must
satisfy (2.4). Moreover, the decoding order to achieve a given rate (R1; R2) on
the MAC is the opposite of the optimal encoding order to achieve this rate on the
dual BC: in the BC the user with the best channel gain is decoded last, whereas
in the MAC the user with the best channel gain is decoded �rst. More details on
these explicit power and decoding order transformations can be found in [9]. The
duality relationship between the Gaussian BC and MAC de�ned by Theorem 2.1
is illustrated in Figure 1.

We now describe how the capacity region of the MAC can be characterized in
terms of the capacity region of the dual BC. This theorem is also proved in [9].

Theorem 2.2. The capacity region of a constant Gaussian MAC is equal to
the intersection of the capacity regions of the scaled dual BC over all scalings:

CMAC(P1; P2;h1; h2) =
\
�>0

CBC(
P1
�

+ P2;�h1; h2):(2.5)

Moreover, the optimal power allocation and decoding order for the MAC can
be obtained by reversing the dual BC encoding order and applying the power trans-
formation in (2.4). Thus, the optimal transmission strategy to achieve any point
on the MAC capacity region can be obtained from the dual BC channel. Note
that since MAC region is a pentagon, the BC channels characterized by � = 0,
� = h2=h1 and � = 1 are suÆcient to form the pentagon. If � = h2=h1, the
channel gains of both users are the same and the BC capacity region is bounded
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Figure 1. Gaussian BC Capacity Region as Union of Dual MAC Regions

by a straight line segment because the capacity region can be achieved by time-
sharing. It can be shown [9] that as � ! 0, R1 ! log(1 + h1P1

�2 ) and R2 ! 1.

Similarly, as � ! 1, R1 ! 1 and R2 ! log(1 + h2P2
�2 ). These two regions bound

the vertical and horizontal line segments, respectively, of the MAC capacity region.
All scaled BC capacity regions except the � = h2=h1 channel intersect the MAC at
exactly one of the two corner points of the MAC region. The � = h2=h1 channel
intersects the MAC region along its time-sharing line. These boundaries along with
the relationship de�ned by Theorem 2.2 is illustrated in Figure 2.
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3. Capacity of Fading Multiuser Channels

Fading channels exhibit random amplitude variations over time. Capacity for
such channels depends on what is known about the channel fading at both transmit-
ter and receiver, and whether or not capacity can be averaged over many channel
states or must be achieved in each state. We focus on the case where both trans-
mitter and receiver track the channel state perfectly and instantaneously. We also
assume a slowly fading channel relative to codeword length, so the channel is con-
stant for the transmission of a single codeword. For this channel there are four
di�erent de�nitions of capacity region for multiuser channels:

� Ergodic capacity region: The maximum rate region averaged over all
channel states.

� Outage capacity region: The maximum rate region that can be achieved
in all non-outage fading states subject to some outage probability. Under
an outage probability of zero this is called the zero-outage capacity region.

� Minimum rate capacity region: The maximum rate region averaged
over all fading states subject to a minimum rate for each user required in
every fading state.

� Minimum rate capacity region with outage: The maximum rate re-
gion averaged over all fading states subject to some minimum rate for each
user required in all non-outage fading states, with some nonzero outage
probability.

The ergodic capacity region for fading broadcast and multiple access channels
has been derived in [10] and [11] respectively. The optimal power allocation to
achieve this capacity corresponds to a multi-level water-�lling over both time (i.e.
fading states) and users. As expected, users are allocated the most power when their
channels are strong, and little, if any, power when their channels are weak. This
results in a channel-dependent delay, which may not work for delay-constrained
applications like voice and video.

The outage capacity region for fading broadcast and multiple access channels
has been derived in [12] and [13, 14], respectively. For outage capacity each user
maintains a constant rate some percentage of time with no data transmitted the
rest of the time. The optimal power allocation over nonoutage must e�ectively
invert the fading to eliminate channel variations such that a constant rate can be
maintained. Clearly the ergodic capacity region exceeds the outage capacity region,
since outage capacity has an additional constraint of constant rate transmission in
all fading states. Since the weak channel states will e�ectively drive the maximum
constant rate that can be maintained, outage capacity fails to fully exploit good
channel states. However, outage capacity has the advantage that with �xed rate
transmission, there is no channel-dependent delay.

Minimum rate capacity combines the concepts of ergodic and outage capacity to
maximize the rate averaged over all channel states while maintaining some minimum
rate in every fading state. Minimum rate capacity for fading broadcast channels has
been derived in [15]. The optimal power allocation for the broadcast channel is a
two-step process, where �rst the minimum power required to achieve the minimum
rates in all fading states is allocated, and then the excess power to maximize average
rate in excess of the minimum rate is allocated. The optimal allocation of the
excess power is a multi-level water-�lling based on e�ective noise that incorporates
the minimum rate constraints. We will use these results in Section 5 to obtain the
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minimum rate capacity, optimal power allocation, and optimal decoding order of
the MAC using duality.

The minimum rates associated with the minimum rate capacity region must be
within the zero-outage capacity region of the channel. Thus, the boundary of the
minimum rate capacity region lies between the ergodic and zero-outage boundaries.
The di�erence between the ergodic and zero-outage capacity regions is a good
indicator of the degradation in capacity due to minimum rate constraints. If the
zero-outage capacity region is much smaller than the ergodic capacity region, the
minimum rate capacity region is generally signi�cantly smaller than the ergodic
capacity region. Alternatively, if the zero-outage capacity region is close to the
ergodic capacity region, then clearly the minimum rate capacity region will be
close as well. More details on these relationships for the fading BC can be found
in [15].

4. Fading Channel Capacity and Duality

For fading channels the ergodic capacity region is obtained by averaging over
the constant capacity regions. Thus, the duality relationships obtained for BC and
MAC Gaussian channels in the previous section extend to the ergodic capacity re-
gions for fading BC and MAC channels. This extension is captured in the following
theorems, proved in [9].

Theorem 4.1. The capacity region of a fading Gaussian BC with power con-
straint P is equal to the union of ergodic capacity regions of the dual MAC with
power constraints P 1 and P 2 such that P 1 + P 2 = P :

CBC(P ;H1; H2) =
[

0�P1�P

CMAC(P 1; P � P 1;H1; H2):(4.1)

The ergodic BC capacity region obtained by a union of ergodic capacity regions
of the dual MAC is illustrated in Figure 3.
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Figure 3. Ergodic BC Capacity Region as Union of Dual MAC Regions
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The next theorem shows that the ergodic capacity region of the fading MAC
can be obtained as the intersection of the regions for the dual BC.

Theorem 4.2. The ergodic capacity region of a fading MAC is equal to the
intersection of the ergodic capacity regions of the scaled dual BC over all scalings:

CMAC(P 1; P 2;H1; H2) =
\
�>0

CBC(
P 1

�
+ P 2;�H1; H2):(4.2)

The ergodic capacity region of the fading MAC obtained by intersecting the
ergodic capacity regions of the dual BC is shown in Figure 4.
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Figure 4. Ergodic MAC Capacity Region as Intersection of Dual
BC Regions

Note that in addition to the capacity region duality captured in the above two
theorems, explicit power and decoding order transformations between the regions
are also obtained in [9]. Thus, given a point on the capacity region and optimal
transmission strategy (power allocation and decoding order) for one channel, the
corresponding optimal transmission strategy for achieving that same rate point on
the dual channel can be explicitly obtained.

The duality of the Gaussian MAC and BC is a general result that also holds for
all de�nitions of fading channel capacity given in the previous section. The outage
and minimum rate de�nitions of capacity di�er from the ergodic capacity de�nition
since they have restrictions on the instantaneous transmission rates (i.e. the state-
by-state rates). However, as shown in [9], the duality power transformation for
these ergodic regions preserves state-by-state rates (i.e. the same instantaneous
rates are achieved in the dual channels). Thus, Theorems 4.1 and 4.2 hold for
minimum rate and outage capacity as well as ergodic capacity. In the next two
sections we use duality to obtain new capacity results from known results for the
dual channels.
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5. Minimum Rate Capacity

In this section we show that the minimum rate capacity region of the MAC
and BC are duals of each other, so that the capacity region and capacity-achieving
transmission strategy for one channel can be found from the other dual channel. We
then use this result to �nd the minimum rate capacity region of the MAC using the
known minimum rate capacity region of the BC obtained in [15]. The minimum rate
capacity of the MAC and BC, denoted respectively by CminMAC(P 1; P 2;R

�;H1; H2)

and CminBC (P 1 + P 2;R
�;H1; H2), is de�ned as the maximum ergodic capacity that

can be obtained while ensuring that a set of minimum rates R� = (R�1; : : : ; R
�
M ) is

maintained for all users in all fading states. Clearly the minimum rates themselves
must be in the zero-outage capacity of the channel for the rates to be achievable
in all fading states. Every feasible R� de�nes a di�erent minimum rate capacity
region (i.e. the minimum rate capacity region is a function of R� in addition to the
channel and power constraints).

We now state two theorems, proved in [9], indicating the duality between the
minimum rate capacity region of the fading MAC and BC.

Theorem 5.1. The minimum rate capacity region of a fading Gaussian BC
with perfect channel information at the transmitter and receivers is given by:

CminBC (P;R�;H1; H2) =
[

0�P1�P

CminMAC(P 1; P � P 1;R
�;H1; H2);(5.1)

for all R� 2 C0BC(P ;H1; H2).

Theorem 5.2. The minimum rate capacity region of a fading Gaussian MAC
with perfect channel information at the transmitters and receiver is given by:

CminMAC(P 1; P 2;R
�;H1; H2) =

\
��0

CminBC (
P 1

�
+ P 2;R

�;�H1; H2)(5.2)

for all R� 2 C0MAC(P 1; P 2;H1; H2).

While these theorems characterize the relationship between the dual capacity
regions, we also wish to obtain an explicit transformation between the optimal
transmission strategies. The power and decoding order transformations to achieve
any point on the minimum rate capacity region of the fading MAC from the cor-
responding region of the dual BC that intersects that point is obtained in [15].
Thus we can explicitly characterize the MAC minimum rate capacity region and its
corresponding capacity-achieving transmission strategy without having to directly
solve for it. Speci�cally, these results are obtained by applying the power and de-
coding transformations to the known optimal transmission strategies of the dual
BC obtained in [15].

6. Multi-Antenna Multiple Access and Broadcast Channels

Adding multiple antennas to the transmitter and receiver has recently been
shown to greatly increase the capacity of wireless channels [16,17]. As a result, the
capacity and capacity region for single and multiuser multiple input multiple output
(MIMO) systems is of great interest. While the capacity region of the MIMO MAC
has been fully characterized [7,17,18], the capacity of the MIMO BC is diÆcult to
obtain due to a lack of general theory on the capacity of non-degraded broadcast
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channels. However, in the next few sections we show that duality combined with
a novel encoding technique called dirty paper coding can shed much light on the
achievable rates of MIMO BCs and in fact determine their sumrate capacity point.

Consider a K-user MIMO Gaussian BC in which receiver k has rk receive
antennas and the transmitter has t transmit antennas. The rk�t matrixHk de�nes
the channel gains from the transmitter to the rk antennas of receiver k. Each
receiver has additive white Gaussian noise with unit variance. The dual MIMO
MAC channel is arrived at by converting the receivers in the BC into transmitters
in the MAC and converting the t-antenna transmitter into a t-antenna receiver with
additive noise of unit variance. The channel gains of the dual MAC are the same as
that of the broadcast channel. Speci�cally, if Hk is the t � rk matrix de�ning the
channel gains from t-antenna transmitter to the kth receiver with rk antennas in
the BC, then Hk

y is the rk � t matrix de�ning the channel gains from transmitter
k with rk antennas to the t-antenna receiver in the dual MAC.

The MIMO BC is a nondegraded broadcast channel due to the multiple receive
antennas. Thus, receivers are not necessarily \better" or \worse" than one another.
The capacity region of a nondegraded broadcast channel is an open problem in
general. However, the sumrate capacity of the MIMO BC for two transmit antennas
(t = 2) and two users with one receive antenna each (r1 = r2 = 1) was obtained
in pioneering work by Caire and Shamai [1]. In that work a set of achievable rates
(the achievable region) was obtained by using the dirty paper coding technique of
Costa [2] (also known as coding for non-causally known interference). It was also
shown that the dirty paper coding technique at the sumrate point equals the Sato
upper bound with joint receiver decoding and worst-case noise. Thus, dirty paper
coding achieves the sumrate capacity of the MIMO BC for the two-user case with
t = 2 and r1 = r2 = 1. However, computing the dirty paper coding region is
extremely complex and this approach does not appear to work for the more general
class of channels (any number of users with any number of transmit and receive
antennas). However, we will see shortly that exploiting duality can greatly simplify
this calculation. First, however, we must describe dirty paper coding in more detail.

7. Dirty Paper Coding

The basic premise of dirty paper coding is that if interference to a given user is
known in advance, the encoding strategy can exploit the structure of the interference
such that the capacity is the same as if there was no interference at all. The
encoding strategy cleverly distributes the codewords based on the interference, and
the decoder must know how to read these codewords. Dirty paper coding is a
natural technique to use on the broadcast channel since the interference between
all users is known. An achievable region for the MIMO BC based on dirty paper
coding was �rst proposed in [1]. In [19], the region was extended to the more
general multiple-user, multiple-antenna case using the following extension of the
\dirty paper result" [2] to the vector case:

Lemma 7.1. [Yu, CioÆ] Consider a channel with yk = Hkxk+ sk+nk, where
yk is the received vector, xk the transmitted vector, sk the vector Gaussian inter-
ference, and nk the vector white Gaussian noise. If sk and nk are independent and
non-causal knowledge of sk is available at the transmitter but not at the receiver,
then the capacity of the channel is the same as if sk is not present.
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The transmission strategy under dirty paper coding �rst picks a codeword for
receiver 1. The transmitter then chooses a codeword for receiver 2 with full (non-
causal) knowledge of the codeword intended for receiver 1. Therefore receiver 2 does
not see the codeword intended for receiver 1 as interference. Similarly, the codeword
for receiver 3 is chosen such that receiver 3 does not see the signals intended for
receivers 1 and 2 as interference. This process continues for all K receivers. Since
the ordering of the users clearly matters in such a procedure, the following is an
achievable set of rates

R�(i) =
1

2
log

jI+H�(i)(
P

j�i��(j))H
y
�(i)j

jI+H�(i)(
P

j>i��(j))H
y
�(i)j

; i = 1; : : : ;K;

where �(i) is a permutation that depends on the encoding order. The dirty-paper
region Cdirtypaper(P;H) is de�ned as the union of all such rates vectors over all
covariance matrices �1; : : : ;�K such that Tr(�1+: : :�K) = Tr(�x) � P and over
all permutations (�(1); : : : ; �(K)). The transmitted signal is x = x1 + : : : + xK
and the input covariance matrices are of the form �i = E [xixi

y].
Many cellular systems use a technique called high data rate (HDR) on the

downlink for high rate data transmission. HDR is an adaptive technique whereby
the user with the best channel gain is allocated the total bandwidth and power.
When the channel changes, the bandwidth and power are reallocated, and fairness
is achieved over time if all users have the same channel statistics. Dirty paper
coding is a more eÆcient technique since all users are active at the same time,
and the power allocation and encoding/decoding order is optimized relative to the
channel. We have recently computed the gains of dirty paper coding relative to
HDR. Note that computing the dirty paper coding region directly is intractable,
however the duality method described below allows this computation to be made
based on the dual MIMO MAC, whose capacity is easy to compute. The capacity
gains of dirty paper coding relative to HDR are illustrated in Figure 5, where we
see up to a factor of seven capacity increase.

While Figure 5 indicates that dirty paper coding exhibits large gains over other
techniques, we would like to see if it actually achieves Shannon capacity. In order
to address this question, we will �rst establish a duality between the dirty paper
achievable region for the MIMO BC and the MIMO MAC capacity region.

8. MIMO MAC Capacity Region

The capacity region of a general MIMO MAC was obtained in [7, 17, 18]. We
now describe this capacity region for the dual MIMO MAC of our BC model. For
any set of powers (P1; : : : ; PK), the capacity of the MIMO MAC is

CMAC(P1; : : : ; PK ;H
y)
4
=

[
fTr(P1)�Pi 8ig

n
(R1; : : : ; RK) :(8.1)

X
i2S

Ri �
1

2
log jI+

X
i2S

H
y
iPiHij 8S � f1; : : : ;Mg

)
(8.2)

For P > 0, we denote by Cunion(P;H
y)

Cunion(P;H
y) =

[
P

K

i=0
Pi�P

CMAC(P1; : : : ; PK ;H
y):(8.3)
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Figure 5. Capacity Gain of Dirty Paper Coding over HDR

It can be easily shown that this region is the capacity region of a MAC when the
transmitters have a sum power constraint instead of individual power constraints
but are not allowed to cooperate.

Our next theorem, proved in [20], indicates that the capacity region of the
MIMO MAC with a total power constraint of P for the K transmitters is the same
as the dirty paper region of the dual MIMO BC with power constraint P . In other
words, any rate vector that is achievable in the dual MAC with power constraints

(P1; : : : ; PK) is in the dirty paper region of the BC with power constraint
PK

i=1 Pi.
Conversely, any rate vector that is in the dirty paper region of the BC is also in
the dual MIMO MAC region with the same total power constraint.

Theorem 8.1. The dirty paper region of a MIMO BC channel with power con-
straint P is equal to the the capacity region of the dual MIMO MAC with sum power
constraint P .

Cdirtypaper(P;H) = Cunion(P;H
y):

In addition to the capacity region relationships, we also wish to obtain an
explicit transformation between the transmission strategies of dirty paper coding
for the MIMO BC and the corresponding capacity region of the MIMO MAC. These
explicit transformations will be brie
y summarized here, details can be found in [20].
Suppose we are given a rate point in the MIMO MAC, and the corresponding input
covariance matrix and decoding order that achieves this rate point. We need to
�nd the corresponding input covariance matrix and encoding order to achieve the
same rate point on the MIMO BC using dirty paper coding. It is quite diÆcult to
�nd the input covariance matrix that yields the same rates and also satis�es the
power constraint. It turns out that the correct transformation de�nes an e�ective
channel and then 
ips it to obtain the covariance matrix. The encoding order
for the MIMO BC under dirty paper coding is the reverse of the decoding order



DUALITY, DIRTY PAPER CODING, AND CAPACITYFOR MULTIUSER WIRELESS CHANNELS13

for the MIMO MAC. Explicit formulas for these transformations can be found
in [20]. Interestingly, this transformation also shows that beamforming (transmit
covariance matrix of rank one) is optimal for dirty paper coding on the broadcast
channel with multiple transmit antennas but only one receive antenna at each user.
That is because the dual MIMO MAC channel has one transmit antenna and thus
a rank one covariance matrix, and the transformation de�ned in [20] preserves this
rank.

Similarly, suppose a rate point achievable using dirty paper coding on the
MIMO BC and its corresponding input covariance matrix and encoding order is
known. The covariance matrix for the dual MIMO MAC is also obtained by a
\
ipping of the e�ective channel" and decoding based on the reverse order of the
BC dirty paper encoding. In general the MIMO MAC capacity region is easy to
compute, since it is a convex region. In fact, an iterative waterpouring formula was
recently obtained that computes this region very eÆciently [4]. However, the dirty
paper coding achievable region is quite hard to compute since it is nonconvex [1].
Thus, while the dirty paper coding region for the MIMO BC cannot typically be
computed directly for a general number of users and antennas, this region is easily
computed by exploiting duality and the transformations between the MIMO MAC
and this dirty paper coding region [3].

9. Sato Upper Bound and Sumrate Capacity

In the previous sections we showed that the dirty paper region of the BC and
the union of the dual MAC capacity regions are equal. Now we show that dirty
paper coding is the sumrate capacity achieving strategy for the MIMO BC. We do
this based on Sato's upper bound for the capacity region of general BCs [5]. This
bound utilizes the capacity of the cooperative system whereby the di�erent receivers
cooperate to decode the transmitted signal. Since the cooperative system is the
same as the BC, but with receiver coordination, the capacity of the cooperative
system (Ccoop(P;H)) is an upper bound on the BC capacity region (CBC(P;H)).
We now show that the bound can be tightened by introducing noise correlation.

Since the capacity region of a general BC depends only on the marginal transi-
tion probabilities (i.e. p(yijx)) and not on the entire joint distribution p(y1; : : : ; yK jx),
we can introduce correlation between the noise vectors at di�erent receivers of the
BC without a�ecting the BC capacity region. This correlation does, however, af-
fect the capacity of the cooperative system, which is still an upper bound on the
sumrate of the BC. By searching over all feasible positive de�nite noise covariance
matrices, we get the following bound for sum rate capacity, based on the capacity
of the cooperative system with the worst case noise:

CsumrateBC (P;H) � inf
�z

max
�x

1

2
log jI +��1=2z H�xH

T��1=2z j:

An explicit formula for the resulting worst case noise is found in [20]. By using the
fact that the capacity region of the dual MIMO MAC equals the capacity region of
the dirty paper region of the MIMO BC (and therefore the maximum sumrate of the
MAC and the dirty paper region are equal), we are able to show using Lagrangian
duality that this bound is tight for the MIMO BC. The proof that dirty paper
coding achieves the Sato upper bound, and therefore equals the sumrate capacity
of the MIMO BC, is depicted pictorially in Figure 6. Note that a special case of this
proof for a single antenna at each receiver was obtained independently in [21]. This
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Figure 6. MIMO BC Sumrate Capacity Proof

proof is somewhat simpler since beamforming is optimal in this case, and therefore
the covariance matrix transformations described in Section 8 are not needed.

Figure 7 shows the dirty paper region, Sato upper bound, and sumrate point
where the two meet. We conjecture that dirty paper coding achieves the full ca-
pacity region of the MIMO BC and not just the sum rate point. We have obtained
a proof of this result under the assumption that Gaussian inputs are optimal for
the MIMO BC, but we have yet to prove this assumption. More details about this
conjecture, our proof, and the one missing link can be found in [22]

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

R
1

R
2

Sato Upper Bound 

Dirty Paper Region 

Single−User Bounds 

Figure 7. Dirty Paper Region and Sato Upper Bound for MIMO BC

10. Conclusions

Duality is a power technique to relate capacity regions for broadcast and MAC
channels. Duality holds for many notions of capacity, including ergodic, outage,
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and minimum rate capacity. Duality can be used to show the connection between
capacity regions and optimal transmission strategies for BC and MAC channels.
More importantly, it can be used to obtain new capacity results previously thought
intractable for the MAC or BC when results are known and/or easily computable
for the dual channel. This concept is used to obtain the minimum rate capacity
region of a fading MAC channel. We then turn our attention to the MIMO BC.
We introduce the notion of dirty paper coding for this channel, which subtracts
out the e�ect of known interference and thus achieves much higher rates than other
techniques such as HDR. Unfortunately, the rates achievable using dirty paper
coding are hard to compute. However, we show that a duality exists between the
achievable rates of the MIMO BC under dirty paper coding and the capacity region
of the dual MIMO MAC under a sum power constraint. Since this MAC region
is easy to compute, we can obtain the rates of the MIMO BC under dirty paper
coding quite easily using duality. Moreover, using duality and Sato's upper bound
with joint detection and worst case noise, we show that dirty paper coding achieves
the sumrate point of the MIMO BC capacity region. We conjecture that dirty
paper coding achieves the entire region, but this proof requires Gaussian inputs to
be optimal for this channel, which we have not yet shown.
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