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Abstract—A hard-deadline, opportunistic scheduling problem
in which B bits must be transmitted within T time-slots over a
time-varying channel is studied: the transmitter must decide how
many bits to serve in each slot based on knowledge of the current
channel but without knowledge of the channel in future slots,
with the objective of minimizing expected transmission energy.
In order to focus on the effects of delay and fading, we assume
that no other packets are scheduled simultaneously and no outage
is considered. We also assume that the scheduler can transmit at
capacity where the underlying noise channel is Gaussian such that
the energy-bit relation is a Shannon-type exponential function.
No closed form solution for the optimal policy is known for
this problem, which is naturally formulated as a finite-horizon
dynamic program, but three different policies are shown to be
optimal in the limiting regimes where T is fixed and B is large,
T is fixed and B is small, and where B and T are simultaneously
taken to infinity. In addition, the advantage of optimal scheduling
is quantified relative to a non-opportunistic (i.e., channel-blind)
equal-bit policy.

I. INTRODUCTION

Although the basic tenants of opportunistic communication
over time-varying channels are well understood, much less is
known when short-term delay constraints are imposed. Given
the increasing importance of delay constrained communica-
tion, e.g., multimedia transmission, it is critical to understand
how to optimize communication performance in delay-limited
settings. Thereby motivated, we consider the discrete-time
causal scheduling problem of transmitting a packet of B bits
within a hard deadline of T slots over a time-varying channel.
At each time slot the scheduler determines how many bits
to transmit based on the current channel state information
(CSI), but without future CSI, and the number of unserved
bits, with the objective of minimizing the expected total energy
cost. In order to focus on the interplay between opportunistic
communication and delay, it is assumed that no other packets
are simultaneously transmitted, and the hard deadline must
always be met.

This basic problem was formulated as a finite-horizon
dynamic program in [2], but an analytic form for the optimal
scheduling policy cannot be found for most energy-bit rela-
tionships. Indeed, such a problem is difficult to solve because
the transmitter only has causal CSI and because a particular

A longer version of this work, including detailed proofs, has been submitted
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rate must be guaranteed over a finite time-horizon. In our
earlier work [3], we studied this problem in the setting where
transmission occurs at the capacity of the underlying Gaussian
noise channel and proposed different suboptimal scheduling
policies.

Building upon [3], in this work we prove the optimality of
certain scheduling policies in different asymptotic regimes. In
particular, we show that:
• When the number of bits B is large, the optimal schedul-

ing policy is a linear combination of a delay-associated
term and an opportunistic-term. The opportunistic term
depends on the logarithm of the channel quality, and the
weight of this term decreases as the deadline approaches.

• When the number of bits B is small, a one-shot threshold
policy where all B bits are transmitted in the first slot in
which the channel quality is above a specified threshold
is optimal.

• When the number of bits B and the time horizon T are
both large, a waterfilling-like policy is optimal.

These results are particularly important in light of the
fact that the general optimal solution appears intractable.
In addition, the different asymptotically optimal schedulers
provide an understanding of how the conflicting objectives
of opportunistic communication (i.e. transmit only when the
channel is strong) and delay-limited communication are opti-
mally balanced, and how this balance depends on the time-
horizon and the packet size.

In addition to showing asymptotic optimality, we also
quantify the power benefits of optimal channel- and delay-
aware scheduling relative to non-opportunistic equal-bit/rate
transmission. These results identify that the largest benefits
are obtained for severe fading, small packet size, and large
time horizon.

The basic scheduling problem was first proposed and for-
mulated as a finite-horizon dynamic program (DP) in [2]. In
that work a closed-form solution for the optimal scheduler is
provided for the special case where the number of transmitted
bits is linear in the transmit energy/power and the channel
quality is restricted to integer multiples of some constant. In
[4], the formulation is extended to continuous time; closed-
form descriptions of the optimal policies for some specific
models are found, but these do not directly apply to the
discrete-time problem considered here. In our earlier work
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Fig. 1: Point-to-point delay constrained scheduling

[3], we specialized [2] to the setting where the energy-
bit relationship is dictated by AWGN channel capacity and
proposed several different suboptimal policies. Two of these
policies are shown to be asymptotically optimal in the present
work.

Because transmission scheduling corresponds to power al-
location, it is also useful to put the present work in the context
of prior work on optimal power allocation in fading channels,
with and without delay constraints. In [5] it is established that
waterfilling maximizes the long-term average transmitted rate;
analogously, the long-term average power needed to achieve a
particular long-term average rate is minimized by waterfilling.
At the other extreme, channel inversion is known to be the
optimal policy when a constant rate is desired in every fading
state [6]. The current setting lies between these two extremes,
because our objective is to find a power allocation policy
(based on causal CSI) such that a particular rate (i.e. B/T )
is guaranteed over T fading slots. The case T = 1 clearly
corresponds to zero-outage/delay-limited capacity in [6], while
we intuitively expect T →∞ to correspond to the long-term
average rate scenario of [5]. The latter correspondence is made
precise in Section IV-C.

II. PROBLEM SETUP

This section summarizes the scheduling problem introduced
in [3], which is a discrete-time delay constrained scheduling
problem over a wireless fading channel as illustrated in Fig. 1.
A packet of B bits1 is to be transmitted within a deadline
of T slots. The scheduler determines the number of bits to
allocate at each time slot using the fading realization/statistics
to minimize the total expected transmit energy while satisfying
the delay deadline constraint. We assume no other packets are
to be scheduled simultaneously and that no outage is allowed.

The discrete-time slots are indexed by t in descending order
(i.e., starting at t = T down to t = 1), and thus t represents
the number of remaining slots to the deadline. The channel
state (at slot t) is denoted by gt in power units. We assume that
gT , gT−1, · · · , g1 are independently and identically distributed
(i.i.d.) and the probability density function (PDF) and the
cumulative distribution function (CDF) are denoted by f
and F , respectively2 The scheduler is assumed to have only
causal knowledge of channel states (at time t, gT , · · · , gt
are known but gt−1, · · · , g1 are unknown). Assuming unit

1We operate in “nats” instead of “bits” since we adopt log-base e expression
in the capacity formula to avoid constant factors in the analysis. We use “bits”
and “bit allocation” as generic terms.

2The fading distribution must have a non-zero delay-limited capacity, i.e.,
E[1/g] <∞, for this problem to be feasible.

variance Gaussian additive noise and transmission at capacity,
if energy Et is used under channel state gt, the number of
transmitted bits is given by:

bt = log(1 + gtEt) (1)

By inverting this formula, the required energy Et to transmit
bt bits with channel state gt is:

Et(bt, gt) =
ebt − 1
gt

. (2)

The queue state is denoted by βt, which is the number of
unserved bits at the beginning of slot t. Thus, the number
of bits to allocate at slot t is determined by the queue state
βt and the channel state gt. That is, a scheduling policy is
a sequence of functions, indexed by the time step, that map
from the current queue and channel state to the bit alloca-
tion: {bT (βT , gT ), bT−1(βT−1, gT−1), · · · , b1(β1, g1)}. As for
terminology, the entire set {bT (·, ·), bT−1(·, ·), · · · , b1(·, ·)} is
referred to as a policy or a scheduler, and each element of it
is referred to as a policy function or a scheduling function.

III. OPTIMAL & SUBOPTIMAL SCHEDULERS

In this section we describe the optimal scheduling policy,
two suboptimal policies introduced in [3], and a heuristic
modification of the ergodic (infinite-horizon) policy.

A. The Optimal Scheduler

The optimal scheduler for the hard-deadlined causal
scheduling problem described in Section II can be found by
solving the sequential optimization:

bopt
t (βt, gt) =
arg min

0≤bt≤βt

{
Et(bt, gt) + E

[
t−1∑
s=1

Es(bs, gs)

∣∣∣∣∣bt
]}

,

t = T, . . . , 2,
β1, t = 1.

(3)

where E denotes the expectation operator. Equivalently, this
can be formulated as a finite-horizon dynamic program (DP):

Jopt
t (βt, gt) =

 min
0≤bt≤βt

(
ebt−1
gt

+ J̄opt
t−1(βt − bt)

)
, t ≥ 2

eβ1−1
g1

, t = 1,
(4)

where J̄opt
t−1(β) = Eg[Jopt

t−1(β, g)] is the cost-to-go function,
i.e., the expected cost to serve β bits in t − 1 slots if the
optimal policy is used.

At the final step (t = 1) all β1 remaining bits must be served
because outage is not allowed. At all other steps the optimal
bit allocation is determined by balancing the current energy
cost e

bt−1
gt

and the expected energy expenditure in future slots
J̄opt
t−1(βt−bt). Although the optimal scheduler can be found in

closed form for T = 2 (Section III-A in [3]), it is not possible
to do the same for T > 2 because no close-form expression for
the cost-to-go function is known for T ≥ 2. Nevertheless, the



bopt
t (βt, gt) =


0, gt ≤ 1

(J̄opt
t−1)′(βt)

,

argb
{
eb

gt
= (J̄opt

t−1)′(βt − b)
}
, 1

(J̄opt
t−1)′(βt)

< gt <
eβ

(J̄opt
t−1)′(0)

,

βt, gt ≥ eβ

(J̄opt
t−1)′(0)

,

(5)

optimal scheduling functions can be described as (5), where
argb{·} represents the solution3 of the argument equation [3].
The differentiability of J̄opt

t−1 can be verified by the properties
of convexity and infimal convolution (pp. 254-255 in [7]).

B. The Boundary-relaxed Scheduler

The first suboptimal scheduler is derived by relaxing the
boundary constraints (we no longer require 0 ≤ bt ≤ βt),
while maintaining the deadline constraint

∑T
t=1 bt = B. The

relaxed version of the original optimization (4) is given by

Ut(βt, gt) =

min
bt

(
ebt−1
gt

+ Ūt−1(βt − bt)
)
, t ≥ 2,

eβ1−1
g1

, t = 1,
(6)

where Ūt−1(β) = Eg[Ut−1(β, g)] and can be calculated by
induction [3]:

Ūt(β) = te
β
t G(νt, νt−1, · · · , ν1)− tν1, (7)

where G denotes the geometric mean operator (i.e.,
G(x1, · · · , xn) = (

∏n
k=1 xk)1/n) and ν1, ν2, · · · , νt are the

fractional moments of the fading distribution defined as:

νm =

(
Eg

[(
1
g

) 1
m

])m
, m = 1, 2, · · · . (8)

Due to the simple form of the cost-to-go function Ūt, by
substituting (7) into (6) and solving the minimization we
obtain the following closed-form description of the optimal
policy for the relaxed problem [3]:

bt(βt, gt) =
1
t
βt +

t− 1
t

log
(

gt
ηrelax
t

)
(9)

where ηrelax
t serves as a channel threshold given by

ηrelax
t =

1
G(νt−1, νt−2, · · · , ν1)

. (10)

The policy function in (9) solves the boundary-relaxed prob-
lem but does not guarantee 0 ≤ bt ≤ βt in each slot.

To obtain a policy for the actual unrelaxed problem, we
simply truncate at 0 and βt, and reach what we refer to as the
boundary-relaxed scheduler4:

brelax
t (βt, gt) =

〈
1
t
βt +

t− 1
t

log
gt
ηrelax
t

〉βt
0

(11)

where 〈·〉βt0 denotes truncation below 0 and above βt. Notice
that this policy function is optimal for t = 2, i.e., brelax

2 = bopt
2

for all β2 and g2 since (Ū1)′ = (J̄opt
1 )′.

3Because of the convexity, the solution exists uniquely if it exists.
4This is referred to as the suboptimal II scheduler in [3].

C. The One-shot Scheduler

The second scheduler is derived by modifying the boundary
constraint into a stronger constraint bt ∈ {0, βt} (equivalently,
bt ∈ {0, B}), i.e., in each slot either the entire packet
is transmitted or nothing is transmitted. Then, the dynamic
program is given by

Jone
t (βt, gt) =

 min
bt∈{0,βt}

(
ebt−1
gt

+ J̄one
t−1(βt − bt)

)
, t ≥ 2,

eβ1−1
g1

, t = 1,
(12)

where J̄one
t (β) = Eg[Jone

t (β, g)]. Equivalently, we can express
the above DP as an optimal stopping problem [8] (this can be
shown inductively with βT = B):

Jone
t (B, gt) =

{
min

{
eB−1
gt

, J̄one
t−1(B)

}
, t ≥ 2,

eB−1
g1

, t = 1.
(13)

The optimal solution is a sequential threshold policy [3]:

bt =

{
B, first t such that gt > 1/ωt,
0, otherwise,

(14)

where 1/ωt is the channel threshold in slot t, and is recursively
computed as:

ωt =


E
[
min

(
1
g , ωt−1

)]
, t = T, · · · , 3,

E
[

1
g

]
, t = 2,

∞, t = 1.

(15)

Notice that the thresholds depend only on the channel statistics
and are independent of B, and that the thresholds decrease as
the deadline approaches (i.e., as t decreases) [3].

D. The Delay-constrained Ergodic Scheduler

The above two suboptimal policies are developed to solve
the DP, formulated in (4), by simplifying the cost-to-go
function. Unlike these two policies, we now consider a policy
by modifying the ergodic scheduling policy to meet the hard
deadline constraint. The ergodic policy is the optimal solution
to a problem of minimizing the average energy to transmit
a certain average number of bits (i.e., no hard deadline
constraint). If we denote this average rate constraint as b̄,
the ergodic scheduling policy function b(g), which does not
depend on t and determines how many bits to transmit based
only upon the channel state g, is determined by solving:

Ēerg(b̄) = min
b(g)

Eg
[
eb(g) − 1

g

]
(16)

subject to Eg[b(g)] ≥ b̄, b(g) ≥ 0.



This optimization is readily solvable by standard waterfilling
[9] and the solution is given by

berg(b̄, g) =
〈

log
(

g

ηerg

)〉∞
0

=

{
log
(

g
ηerg

)
, g ≥ ηerg,

0, else,
(17)

where ηerg serves as a channel threshold and is the solution
to:

E[berg(b̄, g)] = b̄. (18)

When the time-horizon T is large, we intuitively expect
the ergodic policy to perform well in the delay-limited setting
considered here. In order to meet the deadline constraint, we
utilize the ergodic policy, with b̄ = B

T + δ for some δ > 0,5 at
each time step with the exception that all remaining unserved
bits are transmitted in the final step:

bconstrained-erg
t

(
B

T
, gt; δ

)
={

berg
(
B
T + δ, gt

)
, t = T, T − 1, · · · , 2,

β1, t = 1,
(19)

which is referred to as the delay-constrained ergodic sched-
uler.

IV. ASYMPTOTIC OPTIMALITY

This section investigates the optimality of the suboptimal
schedulers introduced in the previous section. The optimality
can be analyzed in two ways: optimality in policy and opti-
mality in the associated energy cost. Both forms of optimality
are shown for the boundary-relaxed scheduler and the one-
shot scheduler, whereas energy optimality is shown for the
delay-constrained ergodic scheduler.

A. Large B and Finite T : Asymptotic Optimality of Boundary-
relaxed Scheduler

We first prove that the boundary-relaxed scheduler con-
verges to the optimal policy when T is fixed and the number
of bits B is taken to infinity. When B is large, we intuitively
expect that the optimal policy will allocate strictly positive bits
to all T time slots with high probability due to the nature of the
Shannon energy-bit function. Thus, we expect the boundary-
relaxed scheduler to coincide with the optimal policy when
the number of bits to serve is large. The following theorem
makes this relationship precise:

Theorem 1: Let the PDF f of gt be continuous on
[gmin, gmax] with Support(f) = [gmin, gmax], where gmin > 0
and gmax < ∞. For every time step t, the boundary-relaxed
policy function in (11) converges to the optimal scheduling
policy function uniformly on [gmin, gmax] as the number of

5This policy is motivated by Theorem 3 of [10], where a modified version
of the ergodic rate-maximizing policy is shown to maximize the expected
transmitted rate over a finite time-horizon when the transmitter is subject to
a finite energy constraint (which is the dual of the problem considered here).

unserved bits β goes to infinity: for every given ε > 0, there
exists B0 such that∣∣brelax

t (β, gt)− bopt
t (β, gt)

∣∣ < ε, ∀gt ∈ [gmin, gmax]. (20)

for β > B0.

Proof: By construction, brelax
2 ≡ bopt

2 and brelax
1 ≡ bopt

1 .
We assume that brelax

t−1 (·, gt−1) → bopt
t−1(·, gt−1) uniformly on

[gmin, gmax] holds as an induction hypothesis. From (4) and
(5), we have

J̄opt
t−1(β) =

∫ 1
(J̄opt
t−2)′(β)

0

J̄opt
t−2(β)dF (x)+

∫ ∞
eβ

(J̄opt
t−2)′(β)

eβ − 1
x

dF (x)

+
∫ eβ

(J̄opt
t−2)′(β)

1
(J̄opt
t−2)′(β)

[
eb

opt
t−1 − 1
x

+ J̄opt
t−2(β − bopt

t−1)

]
dF (x) (21)

and

lim
β→∞

(J̄opt
t−1)′(β) = lim

β→∞

∫ eβ

(J̄opt
t−2)′(β)

1
(J̄opt
t−2)′(β)

eb
opt
t−1

x
f(x)dx (22)

since limβ→∞
1

(J̄opt
t−2)(β)

< gmin and limβ→∞
eβ

(J̄opt
t−2)′(β)

>

gmax, where [gmin, gmax] is the support of f . With (7) and
the induction hypothesis, we have

lim
β→∞

[
(Ūt−1)′(β)− (J̄opt

t−1)′(β)
]

=

lim
β→∞

e β
t−1 G(νt−1, · · · , ν1)−

∫ eβ

(J̄opt
t−2)′(β)

1
(J̄opt
t−2)′(β)

eb
relax
t−1

x
f(x)dx


(23)

By substituting (11) into brelax
t−1 and re-writing G(νt−1, · · · , ν1)

as

G(νt−1, · · · , ν1) = (G(νt−2, · · · , ν1))
t−2
t−1

∫ (
1
x

) 1
t−1

f(x)dx,

(24)
we have limβ→∞

[
(Ūt−1)′(β)− (J̄opt

t−1)′(β)
]

= 0. By con-
tinuity, monotonicity, and convexity of Ūt−1 and J̄opt

t−1, we
have limβ→∞

[
(Ūt−1)′(β − brelax

t )− (J̄opt
t−1)′(β − bopt

t )
]

= 0.
Since brelax

t and bopt
t are completely dependent on (Ūt−1)′ and

(J̄t−1)′, respectively (β and g are common), we have the result
by induction. See [1] for technical details.

We now compare the incurred energy costs of the two
polices. We first define the incurred energy with the boundary-
relaxed scheduler as:

J relax
t (βt, gt) ={
eb

relax
t −1
gt

+ J̄ relax
t−1 (βt − brelax

t ), t = T, T − 1, · · · , 2,
eβ1−1
g1

, t = 1,
(25)

where J̄ relax
t−1 (β) = Eg[J relax

t−1 (β, g)]. Notice that (25) is not
an optimization but is instead a calculation based upon the
definition of brelax

t in (11). Also notice that J̄ relax
t denotes the



cost for the actual un-relaxed problem (the energy cost with
a policy satisfying 0 ≤ bt ≤ βt for all t), while the function
Ūt defined in Section III-B denotes the cost for the relaxed
problem (the energy cost with a policy that may not satisfy
0 ≤ bt ≤ βt).

Theorem 2: Let the PDF f of gt be continuous on
[gmin, gmax] with Support(f) = [gmin, gmax], where gmin > 0
and gmax < ∞. For any number of time slots T , the
energy cost of the boundary-relaxed scheduler converges to the
optimal energy cost as the number of bits B goes to infinity:

lim
B→∞

[
J̄ relax
T (B)− J̄opt

T (B)
]

= 0. (26)

Proof: We will prove this by showing
that limB→∞

[
ŪT (B)− J̄opt

T (B)
]

= 0 and
limB→∞

[
J̄ relax
T (B)− ŪT (B)

]
= 0. First, we show

that limB→∞
[
ŪT (B)− J̄opt

T (B)
]

= 0 by induction.
At t = 1, all the bits are to be served and thus:
Ū1 ≡ J̄opt

1 . As an induction hypothesis, we assume that
limβ→∞

[
Ūt−1(β)− J̄opt

t−1(β)
]

= 0. From (4) and (5), we
write the expected cost-to-go as:

J̄opt
t (β) =

∫ 1
(J̄opt
t−1)′(β)

0

J̄opt
t−1(β)f(x)dx

+
∫ ∞

eβ

(J̄opt
t−1)′(0)

eβ − 1
x

f(x)dx

+
∫ eβ

(J̄opt
t−1)′(0)

1
(J̄opt
t−1)′(β)

[
eb

opt
t − 1
x

+ J̄opt
t−1(β − bopt

t )

]
dF (x),

(27)

where bopt
t is a function of β (and x). From Theorem 1 and

the induction hypothesis,

lim
β→∞

[
brelax
t (β, g)− bopt

t (β, g)
]

= 0

uniformly ∀g ∈ [gmin, gmax], (28)

lim
β→∞

[
Ūt−1(β − brelax

t (β, g))− J̄opt
t−1(β − bopt

t (β, g))
]

= 0

uniformly ∀g ∈ [gmin, gmax], (29)

and thus,

lim
β→∞

J̄opt
t (β) =

lim
β→∞

∫ eβ

(J̄opt
t−1)′(0)

1
(J̄opt
t−1)′(β)

[
eb

relax
t − 1
x

+ Ūt−1(β − brelax
t )

]
dF (x)

(30)

Therefore, we have (31). By substituting (11) into brelax
t ,

we have limβ→∞[Ūt(β) − J̄opt
t (β)] = 0 as desired.

Thus, the induction holds. Similarly, we can prove
limB→∞

[
J̄ relax
T (B)− ŪT (B)

]
= 0 by induction. See [1] for

details.

Although the analytic form of the optimal scheduler is not
available, the above two theorems tell us that the boundary-
relaxed scheduler, which has a very simple form that can
be easily implemented, is asymptotically optimal when the
number of bits to transmit (B) is sufficiently large. Further-
more, the scheduling function (11) provides intuition on the
interplay between the channel quality and the deadline. When
the deadline is far away (large t), the bit allocation is almost
completely determined by the channel quality; on the other
hand, as the deadline approaches (small t), the policy becomes
less opportunistic.

B. Small B and Finite T : Asymptotic Optimality of One-shot
Scheduler

We now show that the one-shot scheduling policy is asymp-
totically optimal when T is fixed and B is taken to zero. We
first show convergence in terms of the policy function, and
then in terms of the energy cost.

Theorem 3: For arbitrary time step t, the one-shot policy
function in (14) converges to the optimal scheduling policy
function as the number of unserved bits β tends to zero,
i.e., the optimal policy becomes a threshold policy and the
threshold coincides with the threshold of the one-shot policy:

lim
β→0

sup{g : bopt
t (β, g) = 0} = lim

β→0
inf{g : bopt

t (β, g) = β}

=
1
ωt
, (32)

where 1/ωt is the threshold of the one-shot policy as in (14)
and (15).

Proof: The main idea is

lim
β→0

[
eβ

(J̄opt
t−1)′(0)

− 1
(J̄opt
t−1)′(β)

]
= 0, (33)

which implies that the case of 1/(J̄opt
t−1)′(β) < gt <

eβ/(J̄opt
t−1)′(0) occurs with vanishing probability as β → 0.

Thus, the optimal policy is a threshold policy. The threshold
becomes identical to the threshold of the one-shot scheduler
as B → 0, which can be proved by induction. See [1] for
details.

Furthermore, we claim that the costs of the two policies
also converge to one another. Since the average costs for the
two policies converge to zero as B → 0, cost convergence
is investigated by studying the ratio, rather than the absolute
difference, between the two costs:

Theorem 4: For arbitrary delay deadline T , the energy cost
of the one-shot scheduler converges to the optimal energy cost
as the number of bits B goes to zero:

lim
B→0

J̄one
T (B)
J̄opt
T (B)

= 1. (34)

Proof: Since limB→0 J̄
opt
T (B) = limB→0 J̄

one
T (B) =

0, by L’Hopital’s rule, we have limB→0(J̄opt
T )′(B) =

limB→0(J̄one
T )′(B) > 0. See [1] for details.



lim
β→∞

[Ūt(β)− J̄opt
t (β)] = lim

β→∞

te βt G (νt, νt−1, · · · , ν1)− tν1 −
∫ eβ

(J̄opt
t−1)′(0)

1
(J̄opt
t−1)′(β)

[
eb

relax
t − 1
x

+ Ūt−1(β − brelax
t )

]
dF (x)


= lim
β→∞

te βt G (νt, νt−1, · · · , ν1)−
∫ eβ

(J̄opt
t−1)′(0)

1
(J̄opt
t−1)′(β)

[
eb

relax
t − 1
x

+ (t− 1)e
β−brelax

t
t−1 G (νt−1, · · · , ν1)

]
dF (x)

 (31)

The optimality of one-shot scheduling can also be seen by
upper and lower bounding the energy-bit function by linear
functions. Using x ≤ ex − 1 ≤ xeB for 0 ≤ x ≤ B, we have:

bt
gt
≤ Et(bt, gt) ≤

bte
B

gt
. (35)

If we solve the DP using either of these bounds on the
energy-bit function, the optimization in (4) becomes a linear
program and thus a one-shot policy is optimal because a
constrained linear program has a solution at a boundary of
the constraint. Furthermore, the one-shot policy based on
the upper and lower bounds converge to the one-shot policy
described in Section III-C as B → 0 because the bounds
themselves converge.

C. Large T : Asymptotic Optimality of Causal Delay-
constrained Ergodic Scheduler

When B and T are simultaneously taken to infinity at a
particular ratio (i.e., B, T → ∞ with B = b̄T for some
constant b̄ > 0), we can show the energy-cost optimality of
the ergodic policy in Section III-D.

The average energy cost of the delay-constrained ergodic
scheduler is given by

J̄ constrained-erg
T (b̄T ; δ) = E

[
T∑
t=1

eb
constrained-erg
t − 1

gt

]

= E

[
T∑
t=2

eb
erg
t (b̄+δ,gt) − 1

gt

]
+ E

[
eβ1 − 1
g1

]
, (36)

where β1 denotes the remaining bits at the final slot and the
value of δ is chosen such that

J̄ constrained-erg
T (b̄T ) = inf

δ>0
J̄ constrained-erg
T (b̄T ; δ). (37)

Theorem 5: For any given average rate b̄(> 0), the per-slot
energy cost of the delay-constrained ergodic policy converges
to the optimal ergodic energy cost as T tends to infinity:

lim
T→∞

1
T
J̄ constrained-erg
T (b̄T ) = lim

T→∞

1
T
J̄opt
T (b̄T ) = Ēerg(b̄).

(38)

Proof: See [1].

The effect of the hard-deadline becomes inconsequential for
large T because the channel realizations over the deadline
horizon closely match the fading distribution. As a result,

the delay-constrained ergodic scheduler performs similar to
the ergodic scheduler when T is large. Moreover, the delay-
constrained ergodic scheduler becomes causal optimal since
any causal policy cannot be better than the ergodic policy.

D. Numerical Results: Policy Comparison

In order to compare the different asymptotically optimal
policies, we compare their respective energy costs for different
time-horizons (T ). Since the analytical expression for the
optimal policy is not available for T > 2, we solve the
dynamic programming (4) numerically by the discretization
method [11]. In Fig. 2 the per-slot energy consumption of the
suboptimal schedulers is plotted for T = 5 and T = 50 as-
suming that the fading {gt}Tt=1 are i.i.d. truncated exponential
with a support of [0.001, 106], i.e.,

f(g) =

{
ce−(g−0.001), if 0.001 ≤ g ≤ 106,

0, otherwise,
(39)

where c is a normalization factor. As can be seen, the one-shot
scheduler is near-optimal only when B is small. The other
schedulers performs close to the optimal through all ranges
of B. When T = 5, as in Fig. 2a, the delay-constrained
ergodic scheduler performs worse than the boundary-relaxed
for all B. This is because T = 5 is too small for the delay-
constrained ergodic scheduler to perform like the optimal.
When T = 50, as in Fig. 2b (given the number of bits
are in logarithmic scale), there exists a range of B such
that the delay-constrained ergodic scheduler outperforms the
boundary-relaxed scheduler. As can be seen in Fig. 2b, the
one-shot scheduler performs best for small B (region A) and
the boundary-relaxed scheduler outperforms when B is very
large (region C). In the middle range (region B), the delay-
constrained ergodic scheduler performs better than the other
two.

V. SCHEDULING GAIN

We have shown that the boundary-relaxed and the one-
shot schedulers are asymptotically optimal as B → ∞ and
B → 0, respectively. Another interesting issue is quantifying
the advantage these schedulers provide compared to a non-
opportunistic equal-bit scheduler that simply transmits B/T
bits during each time slot.
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Fig. 2: Per slot energy cost for T = 5 and T = 50 when g is
a truncated exponential variable with support [0.001, 106]

To compare energy performance, we first calculate the
expected energy cost of the equal-bit scheduler, which is

J̄ equal
T (B) = E

[
T∑
t=1

e
B
T − 1
gt

]
= T

(
e
B
T ν1 − ν1

)
, (40)

since the equal-bit scheduler chooses bt = B/T for all t.
Notice that the equal-bit scheduler achieves the delay-limited
capacity [6] [12] (i.e., zero-outage capacity) with rate B/T .

We define the scheduling gain as the ratio between the
expected energy expenditures:

∆opt
T (B) ,

J̄ equal
T (B)
J̄opt
T (B)

(41)

and quantify its behavior in the following theorem:

Theorem 6: For any T , the scheduling gain ∆opt
T (B) is

monotonically decreasing with respect to B. Furthermore, the
limiting scheduling gains are given by:

lim
B→0

∆opt
T (B) = lim

B→0

J̄equal
T (B)
J̄one
T (B)

=
ν1

ωT+1
, (42)

and if the PDF of the fading distribution is compactly sup-
ported and continuous,

lim
B→∞

∆opt
T (B) = lim

B→∞

J̄equal
T (B)
J̄ relax
T (B)

=
ν1

G(νT , · · · , ν1)
. (43)

Proof: See [1].

Since the boundary-relaxed scheduler is optimal as B → ∞,
the scheduling gain of the optimal scheduler and that of the
boundary-relaxed scheduler are the same as B →∞; the same
is true for the optimal and the one-shot scheduler as B → 0.
Intuitively, scheduling delivers a larger power gain for small
B because in such scenarios one can be very opportunistic and
transmit the entire packet once a sufficiently good channel state
is realized. For larger B, however, it is inefficient to transmit
the entire packet in a single slot (because energy increases
exponentially with the number of bits) and thus transmissions
must be spread across many slots (in fact, all slots are used
as B → ∞), which reduces the channel quality during those
transmissions and thus reduces the benefit of scheduling.

VI. CONCLUSION

We have shown the asymptotic optimality of three different
scheduling policies for delay-constrained transmission over
a fading channel. When only a small number of bits need
to be served, a one-shot threshold policy is optimal: once
a sufficiently good channel state is experienced, the entire
packet is transmitted. On the other hand, when the number of
bits is large, the number of transmitted bits at each time step
should be a weighted sum of the unserved bits and a channel
state-related term, where the weight is proportional to the
time to deadline. In each of these two policies, the scheduler
is opportunistic while also being cognizant of the deadline.
Furthermore, a modification of the ergodic waterfilling policy
is shown to be optimal when the number of bits and the time
horizon are both large.

Although problems involving delay-limited communication
are of great practical importance and have been the subject of
considerable research, such problems generally do not have
closed-form solutions. In this work, however, we are able
to circumvent this general difficulty by considering different
asymptotic regimes. It would be interesting to see if the
asymptotically optimal policies identified here, which admit
a very simple analytical form, can be extended to other more
general settings. For example, to scheduling with time-varying
channels and randomly arriving packets [13] [14] and possibly
to multi-user channels [15].
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