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Abstract— We consider a set of parallel, two-user Gaussian broadcast ~ Finally, we consider MIMO broadcast channels, which in
channels, where the transmitter wishes to send independeirtformation to general are not degraded. Thus, the capacity region with or
each of the receivers and common information to both receive. The ca- . . . . ' :
pacity region of this channel has been implicitly characteized in the past, without Common Informatlo_n is not known fOI’ this Channe_l' We
but we provide an explicit characterization of the power andrate allocation ~ Propose an achievable region based on dirty paper coding. We
schemes that achieve the boundary of the three-dimensionahte region. also consider the maximum common rate achievable on these

Unlike the proadcast channel'wnh o_nly |ndependen't informaion, we f_lnd channels, i.e. the common information capacity.
that the optimal power allocation policy cannot be viewed as generaliza-

tion of si_ngle-user water-filling.‘ We also consider MIMO broa(_jcast ch_an- The remainder of this paper is Organized as follows. In Sec-
nels, which are non-degraded in general. We propose an achible region tion Il we describe the system model, followed by the capacit
based on dirty paper coding, and discuss the maximum commomiforma- . . ! - !

tion rate achievable over these channels. region of the broadcast channel in Ill. In Section IV we diéser
the Lagrangian formulation used to find the optimal power al-
location, along with a method to maximize the Lagrangian. In
Section VI we describe a simple procedure to find the optimal

As wireless networks evolve, it is apparent that multi-§ast  Lagrangian multipliers, followed by some numerical resit
sending a common message to all users on a downlink chamt We briefly discuss MIMO broadcast channels in VIII, fol-
nel) is an important mode of communication that systems wiwed by our conclusions.
require in the future. In cellular networks, for example,ltiru
cast information could be common information such as news
updates or location-based information. It is reasonablasto . SYSTEM MODEL
sume that networks will want to transmit a mixture of common
information to all users and independent information tcheafc . . )
the users. With this in mind, we consider broadcast channelsWe consider the following channel:
with both common and independent information.

We consider parallel two-user Gaussian broadcast channels Y1 (i
where the transmitter wants to send independent informatio
users 1 and 2 at ratd®, and R, respectively, and common in-
formation (decodable by both users) at ratg For degraded
broadcast channels, the common information rate and tfee indihere 2, (i) ~ N(0,Ny(i)) and z9(i) ~ N(0, No(3)). If
pendent information rate to the degraded user are integehan)v, (i) < N, (i) for all 4, then this is alegraded broadcast chan-
able, because the strongest user can decode anythingdlui#-th nel. For such a channel, common information and independent
graded user can. However, we consider parallel channelsswhiaformation sent to User 2 are interchangeable, and thenapti
in some channels User 1 is the degraded user, but in other cheswer allocation is essentially equivalent to that for arels
nels User 2 is the degraded user. The capacity region of thigh only independent information [2, 3]. We will only con-
channel (for both discrete memoryless channels and for -Gasigler the non-degraded case, i.e. where for some have
sian channels) was characterized in [1] in terms of a union of; (i) < N,(i) and for some othei we haveN, (i) < Ny(i).
regions, where the union was taken over different poweridistwe impose an average power constraihton the input, i.e.
butions between the different channels. We first derive aiiveq Zil Elz(i)?] < P.
alent expression for this capacity region that is more ailerta
optimization techniques. We then pose the problem of clerrac
izing the optimal power and rate allocation schemes thaegseh
the boundary of the three-dimensional region using Lagesng
techniques. We then apply the utility function approachduse . . .
for the broadcast channel [2] without common informatiout, b In [1], the capacity region for two parallel Gaussian brcr._axic
we find that this approach does not work in general. We usggannels (non-degraded) with acommon message aqd m_depen-
more direct approach to maximize the Lagrangian functiah aﬂen_t messages for both users is given. This characterizzaio
obtain the capacity region with common information usinig theaSIIy be extended ' parallel channels
approach. Using this method, the optimal allocation is tblop Theorem 1. The capacity region ofN parallel two-user
performing a finite maximization in each channel. broadcast channels is equal to the convex hull of the union of

I. INTRODUCTION

S~—
|

1)
(2)

x(i)+21(1) i=1,...,N
yo(i) = z(i)+z() i=1,...,N

Ill. CAPACITY REGION CHARACTERIZATION
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the regions defined by all power allocations satisfying the average power coirgtra
Since the capacity region is convex, we can fully charaogeiti
< ) ol o Po(i) by maximizing the weighted sum of rates, for different weggh
Rp £ min Z Pi(i) + Po(i) + N1 (1) ) We wish to find the optimal power allocation policy that maxi-
=1 mizes the weighted sum of rates for arbitrary rates. This/syg
ﬁ: o ( Py(4) >> by the following problem;
-1 P (2) + P?(z) + NQ(Z) max _ /LlRl —+ ‘LLQRQ + /LORO (3)
. (R(),Rl,Rz)ECBc(P)
Py (1) Py (i)
Bo< Z ¢ <N1(2-)> T Z <p2(i) T N.(i) Using standard convex optimization techniques, for thegt
i€ i€A: A, this is equivalent to:
Py(i) > ( Py (i) > : :
R, < Cls—%— ]+ C . Ri(P(i)) + poRo(P(3))+ (4
* <X (Fr s o 2.\ By PO k@O @

N
where the union is taken over &y (i), P1(4), P2(7) such that  po(min(Rg1 (P(4)), Ro2(P(i)))) — A <Z P(i) — P)
SN Po(i)+ Pi(i) + Py(i) < P, and whered, is the set of € i=1

1,..., N suchthatV; (i) < N»(i) andA, is the complementary whereR, (P(i)) and R,(P(i)) are defined as:
set, i.e. the set afsuch thatV (i) < Ny (7).
14 P;(i)
N.

N
Proof: The converse for this region is a straightforward .
R;(P(z)) = log ( - ~—
P = 2 )T B E A7

generalization of [1]. Achievability follows from standbargu-
ments similar to [3]. ] ) ) ) ]

The powers(Py(i), Pi(i), P»(i)) can be interpreted as thefor j,0 = 1,2:andl # j, Ro; is defined as:
power allocated to send the common message, the independent N Poli)
message to user 1, and the independent message to user 2, r&y;(P(i)) = Zlog <1 + . ot® . >
spectively. The common message is decoded first (with the pow pa N; (i) + Pi(i) + Pa(i)
ersP; (i) + P»(i) treated as interference), followed by the inderorj — 1,2, and P() is defined asP(i) = Po(i) + Pi(i) +
pendent messages. Foe A,, User 1 can decode and subtracp, (;) This maximization can further be simplified by replacing
out the codeword intended for User 2 before d_ecodmg his OMAL minimum operation with a weighted sum of the two com-
codeword. Foi ¢ A,, User 1 must treabs (i) as interference. mon rates. It can be shown (using standard convex optirizat

For transmission of the independent messages, separ@e cthihods) that the optimal power allocation policy solves
books (and rates) are used for each user on each ofvthe

channels. These codewords are decodwtépendently on ~ max R (P (7)) + paR2(P (7)) + AMRo1(P(i)) +  (5)
each channel. However, the common message codebook can- N
not be broken into different codebooks for each channel, i.e , NS
AaRoa(P(i)) — A (Z P(i) — P>
=1

joint encoding and joint decoding must be performed across

the channels to achieve capacity. If the common message

was broken into different codebooks for each channel, tff the optimal Lagrangian multipliers, A1, A2), which each
common rate transmitted on each channel would be limit8St be non-negative and satisfy+Xy = o = (1—p1—p2).
by the weakest user igach channel (since the stronger usefurthermore, for any, the solution to (4) is equal to the solution
can decode anything that the weakest user can, by degri®i(®) for A; and A, such that the optimizing power allocation

edness). The corresponding common rate would be givéglds eitherRo, = Ro, or A; = 0 for one of the users.
by Zil\il C( Py (3) ) (without any mini- In the next section we describe how to solve (5) for any

S P1(8)+ P2 (0)+max(N1 (9),N2 (7)) /. ) (X, A1, A2). In section VI we describe a simple method to find
mization operation required). This is highly sub-optimahd o optimal Lagrange multipliers.
much higher common information rates can be achieved by
jointly decoding. Each user extracts a different amounhfufri V. MAXIMIZATION OF LAGRANGIAN
mation about the common message from each of the channels, 4. <oction we describe a method to solve (5), i.e. max-
due to the different noise powers of the users on each ch,anlﬂ% ze the weighted sum of rates given the power p,r/icand
and we consider the total amount of mutual information &I0§,o Lagrangian's\, and\,. First note that a power allocation
all channels. This is similar from an information theorgtaint solves (5) if and only if it is the solution to
of view to a flat-fading single-user channel where only the re

ceiver knows the channel state information. In such a segnar. _max Ry (P(i)) + paRa(P(i)) + A1 Ro1 (P(i)) (6)
. . P 8)7131(1)7132(1)
encoding must be done across all different channel fades an , ) ) ,
joint decoding must be performed. +A2Roa(P(i)) = A (Po(i) + P1(i) + Pa(i))
for eachi = 1,..., N. When there is no common informa-

IV. FORMULATION OF OPTIMIZATION tion (i.e. Ay = Ay = 0), (6) can be solved using an intuitive

From the previous section, we see that the capacity region caility function approach [2, 3]. In Section V-A we show that
be defined as the convex hull of the union of all rate points diitis approach does not work in general when there is common
scribed in the previous section, where the union is takem oweformation, and we instead must use a less intuitive method
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A. Utility Function Approach 0T

In this section we attempt to use utility functions to detieren 0ap
the optimal power allocation. We use the procedure develope
in [2], where it was used to find the optimal power allocation
without common information. Without loss of generality, we
consider states whet¥; (i) < Na(i). We define the following
utility functions:

M1

= —— =
b (Z) N1 (Z) +z
H2
= —=— =)
A1 Ao
up(z) = . + , - A
02) Ni(i)+z ' Na(i)+2 B S o e T I T
z
If we let J* denote the solution to (6) anff* is achieved by
(Po(i), Pr(i), P2(i)), then we have Fig. 1. Utility Functions for a sample channel with = 0
Py (i) Py (i) +P2 (i)
J = /ZZO (751 (Z)dZ + /z:P 0 UQ(Z)dZ + B. Direct Approach
Py (i)+P1(i)+ P2 (i) Since the utility function approach does not work in general
/ _ _ ug(2)dz we must consider a more direct approach to maximize the La-
=R grangian function. The most straightforward way of maxintgz
< / [max ui(z)} * d a continuous function is to consider the points where thvaer
T Ja=ol i tives of the function are zero. The only complication is tinet

where the argument of the final integral is a pointwise maﬁéiwefﬁog)é]?ég az:‘.d;?(gg;l:ﬁ;%"bpeec?og}nig?gxe' I:lrjs
mum of the utility functions. This upper bound is achievable J = s vatlv Jective Tunction wi

if the maximum of the utility functions is in order of decreasSPECt 17 (1) must be 'eql.*ja_l t0 0 if the optimd; (i) is strictly
ing channel gains (i.eu (z) is the maximum function initially, positive. Additionally, itP; (2) = 0for some j, then the deriva-
followed by (=) and thenuo(=)). When there is no common V€ with respect ta?; (i) at P; (i) = 0 must be less than or equal

information, then this condition is satisfied and the uppemul toazteé(;‘cg hzr?.'grggr?t;lécgjrz gf tr;j %bjeg:évztf%?ﬁ“oonn:emcl).n
is achievable [2]. Thus, the optimum power allocation can lslg‘. parti vative 1S equ z y ol

found by taking the pointwise maximum of the utility funat® us, itis S“ff'c'e”t to conS|d.er the 8 dlﬁereqt cqmbmasqnf .
corresponding to both users. However, for common informB2Ve" allocations. The maximum of the objective function is

tion, the ordering of the utility functions does not alwagsisfy en equal to the maximum of these 8 possible combinations.

this condition and thus the utility function approach cam ln® W.Ithglrjlt Iosst_ml‘ ger_wer?hty, C]f) %S'der a StatE V_Vhé‘fﬁ(i) =
used in general. There are a number of interesting scenar]ivtfs(l)' € partial derivatives of (6) are given by:

where the utility function approach does work: oJ L1 Lo Lo

- If thi ition is satisfi 25 = + - +
1. po < pr andpug < pe: If this condition is satisfied, then P, PL+N, P +P,+N, P +N,
uo(z) < u;(z) for all z > 0, where Useyj is the user with the A A

larger noise power. Thus no common information is transmit-
ted in each state, and this simplifies to the standard indkgren
information BC, for which the utility function approach vk

2. po > p1 andpg > po: In this scenariopg(z) < wu;(z) for

- +

Po+ PL+ P+ NI Pit+ Pt Iy
A2 e

Po+PL+ P+ Ny Pt Pt Ny

all z > 0, where Useyj is the user with the larger noise power. 97 _ H2 A1 _
Thus we are left with the common rate user and the better of tw@/» P +P,+ N, Py+Pi+P+ Ny
users. In this scenario it can be shown that the utility fiomst A1 " A2 _
are ordered correctly such that the upper bound is achievabl PL+P+N, Py+P +P+N,
This includes the interesting case when> 1 = po. Ao
: o ; — =)
Interestingly, the utility function approach does not work P, + P, + N
. . - . 1 2 2

when eitheru; = 0 or up = 0. In Fig. V-A, utility functions 5 5 A Ay

are shown for a channel wheré = 1.5, No = 1, uy = .54, =5 = A

+ —
A = .1,and\; = .36. For0 < z < 1.25, ug(z) is the largest 0P PBo+Pi+h+N B+P+B+N
utility function, but forz > 1.25, u;(z) is the largest function. Since there are three different powers to be allocatede ther
Therefore, the upper bound* can not be achieved, becauséhree different sets of partial derivatives to considerstton-
User 0 must be allocated power after (i.e. for largeUser 1 is sider the four cases correspondingAp = 0. By setting some
allocated power. It is also possible to find counter-exasfile of these derivatives to zero (i.e. the partials correspundbd
situations where all three priorities are non-zero. users with non-zero power), we find the optimal allocatiams a
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given by the following wherPPy = 0: Furthermore, it can also be shown that the optimizityg in
1L.P=P=0 (4) is a increasing function of; and the optimizingR, is a
2.P>0,P,=0: P =58 —-N; decreasing function of,.
3.P>0,PL=0:P,=5—-Ns Thus, the following procedure can be used to find the optimal
4. P, >0, P, >0 P, = %, Py=" N, P,. Lagrange multiplierg\, A1, \2). First choose an initial positive
When P, > 0 the power allocations are given by: value forA. Then repeat the following algorithm:
1. Py >0,P =P, =0 Py = Pipresh 1. Solve (4) by the following procedure:
2. P, Py > 0, P, = 00 p = 22Nl po— (q) Solve (5) withh, = 0. If Ry > Ros for the optimizing
Piresn — P1 solution, proceed to Step 2.
3.P,P, > 0, Py = 00 P = 2Rl py = (h) Solve (5) withA; = po. If Res > Ros for the optimizing
Pinresn — Po solution, proceed to Step 2.
4. Py,P,P, > 0. P = mRoeli p = (c) Use the bisection method to find such that the optimiz-
W — P\, Py= Pipesh — Pi — Ps ing solution of (5) satisfie®Ry; = Ros.
where 2. If the solution of (4) exactly meets the power constrahn
1 exit. Otherwise, if the solution of (4) is strictly largemigller
Pipresn = ﬁ(uo — ANy + Na) + than the power constraint, then increase/decr@aaed return
to Step 1.

VAW + N2) = p10)? + AA M N + Ao Ny = AN V). Note that the update oA can be performed using a one-

One of these 8 power allocations is guaranteed to achieve @iaensional bisection method, and Step 1(c) can be perfibrme
maximum of (6). Thus we can find the maximum of the Lawith a one-dimensional bisection methodon This procedure
grangian in each state by evaluating all eight power allonat is implemented in order to find numerical results in sectioh V
checking for non-negativity of powers, and then choosirg th

allocation that maximizes the objective. VII. NUMERICAL RESULTS

When there is only independent information, it can be shownp, his section we present numerical results on the capacity
that only one of the four cases is feasible for different galu region of a two-user broadcast channel. In Fig. 2 the capacit
of A (i.e. the spac& > 0 can be decomposed into four Muyegion of a two user channel is shown f§r= 2. In state 1, user
tually exclusive intervals corresponding to the four diéfiet al- 1 has an average SNR of 10 dB and user 2 has an SNR of -10
locations). Thus, a closed form solution for the optimal pow g, | state 2, the SNR's of the users are reversed from state 1
allocation can be given in terms of However, no such sim- Ntice that due to the large difference in SNR of the two users
plification can be done for the situation when there is commege capacity region wheR, = 0 (i.e. no common information)
inform(_:ltion. Thus, in general, the maximum amongst theteigh t4r from the straight line segment connecting the maximum
allocations must be performed. single-user rate to users 1 and 2. HoweveR4f= 0 (or R, = 0
by symmetry), the region is quite close to time-sharing leetw
transmitting only common information and transmittingyoim-

By the KKT conditions, the solution to the original La-gependentinformation to User 1. In Fig. 3 the capacity negio
grangian characterization in (4) for the optinfal A1, A2) will 3 two-user channel is shown where in state 1, user 1 has an SNR
satisfy the power constraint with equality. It is easy to 88# of 0 dB while user 2 has an SNR of -10 dB. In state 2, the roles
the power allocation solving (4) is a decreasing functiol\of of the users are reversed. We again see that the capacioynregi
Thus, the optimah can be found by solving (4) for differentjs rejatively flat in the direction of common informatio®),
values ofA determined by the bisection method (ovgr which implies that time-sharing between sending common in-

~To maximize the Lagrangian function in(4), we work with th@ormation and independent information comes quite clogkeo
simplified maximization in (5), where the minimum is repldceactual capacity-achieving strategy.

with a weighted sum of the common information rates. It can be

shown that for any\, the solution to (4) is equal to the solution VIIl. MIMO C HANNELS
of (5) for Ay and )\ such that the optimizing power allocation
yields Ry1 = Rge or A\; = 0 for one of the two users. This

VI. OPTIMAL LAGRANGE MULTIPLIERS

In this section we consider multiple-input, multiple-outp
follows intuitively because for any power allocation thaglgs (MIMO).broadcast channels. Since MIMO brqadcagt channels
are not in general degraded, the capacity region with common

Ro1 # Roa, we can reallocatéd® (i) over different channels : . N .
(without increasing the sum of power) to increase the smal%nd independent information is unknown even for a single con
ant channel (i.elV = 1). In the following sections we discuss

of the two common rates slightly, and thus increase the ebje% ) . . X e
tive function. However, this is not possible if the allocatiof an achlevable_ region, _followed by dl_scus_smn of_transngttl
power Py(4) is already single-user optimal for the user with thgrr:ly co:nmon information over a multiple-input, single-put
smaller common rate (i.e. no reallocationff(7) increases the channel.
common rate of the user with the smaller common rate). Thjs Capacity Region
corresponds to the scenario where either= 0 or Ay = 0. - apacily Reg

LIn general, the minimum of two concave functions occurs abiatpvhere A,;n acl\f/}llagbklje reglonfoz]the C?mmobn anc,: Igﬁeﬁegderlt m(;g:—
the two functions meet, unless the minimum of the two fumdiis equal to the mation g roa _cas channe _Can e establishe uslmg Ir
maximum of one of the functions. paper coding [4]. Dirty paper coding was shown to achieve the
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for any set of positive semi-definite covariances satigfyin
Tr(Xo + X1 + X2) < P. Additionally, the ordering of users 1
and 2 can be switched so that user 1 sees no interferenceemd us
2 viewsY}; as interference. This region can easily be extended to
parallel broadcast channels. However, the rate equatioes g
above are not concave functions of the input covariances, an
thus finding the boundary region of this achievable regiogite

for N = 1) seems to be difficult from a numerical perspective.

B. Common Information Capacity

Though the above achievable region appears to be difficult
to compute, it is far easier to calculate the common infoionat
capacity (i.e. the maximum common rate) of a MIMO broadcast
channel. Since Gaussian inputs are optimal for MIMO chanel
the common rate capacity offé@-use broadcast channel is given
by:

Co = in log|I+H,ZH|. 10
0 220%5%:)313 P o og| +H Z| (10)

The objective function of this maximization is a minimum of
concave functions, and thus is a concave function. Thexefor
standard convex optimization techniques can be applie@rto p
form the maximization.

For the case of multiple-input, single-output channels. (i.
single antennas at each of the receivers), it can be shown tha
a rank-one covariance matrix (i.e. beamforming) achiekies t
common information capacity when there are two users. Inter
estingly, beamforming does not in general achieve the cammo
information capacity for more than two users. Consider a sys
tem of K unit norm users, each equally spaced around the unit
circle. For anye > 0, we can find large enougR such that
for any choice of a direction vector, min;—q, . x [H;v| < ¢,
since any direction is nearly orthogonal to at least one user
because users are equally spaced around the unit circle. The
common rate when using covarianEe= %va is equal to
min;—1 . x log(1+ £+ H,;vwTHT). Thus, using beamforming,
the common rate goes tbas K — oo. However, by using an
identity covariance, i.eX = ﬁIM, the mutual information of
each user islog(1+ 7 ||H;|[?) = log(1+ 4;) which is indepen-
dent of K. Thus, common information capacity is not achieved
by beamforming for large enoughi. We have seen this to be

sum rate capacity of the MIMO broadcast channel (i.e. the-maxue in general fork' > 2, but there are exceptions for which
imum of Ry+ R1 + R, in the capacity region) in [5—8]. Amraoui beamforming does achieve capacity.

et. al. [9] recently considered the rates achievable usioges-
sive decoding, a technique that is practically easier tdempnt

than dirty paper coding.

By first encoding the common message fo!lowed_ by the 'ndﬁén theorists during the past three decades. Howeverube o
pendent messages, the following rate triplet is achievable

Ry

Ry

Ry

‘1 +H (S0 + % + EQ)HJ-T‘

1
i log

1+ H (2 + To)H|

’I +H (X + EQ)HlT‘
log
‘I n H122H1T‘

log ’I+ H222H2T’

()

(8)

9)

IX. CONCLUSION

Broadcast channels have been heavily studied by informa-

whelming majority of work has concentrated on only indepen-
dent information. In this paper we considered Gaussiandsroa
cast channels with both independent and common information
rate. We first recast the expression for the capacity regian i
more traditional manner, and found the optimal power anel rat
allocation policies that achieve the boundary of the capaet
gion. Interestingly, the simple approaches that worketéreth-
sence of common information no longer work in general when
common information is added to the picture. However, some
intuition can still be gleamed from the optimal power alltboa
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policy. Finally, we considered MIMO broadcast channels and
proposed an achievable rate region based on dirty papergodi
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