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Abstract— This paper addresses the following question, which
is of interest in the design and deployment of a multiuser
decentralized network. Given a total system bandwidth of W Hz
and a fixed data rate constraint of R bps for each transmission,
how many frequency slots N of size W/N should the band
be partitioned into to maximize the number of simultaneous
transmissions in the network? In an interference-limited ad-hoc
network, dividing the available spectrum results in two competing
effects: on the positive side, it reduces the number of users on
each band and therefore decreases the interference level which
leads to an increased SINR, while on the negative side the
SINR requirement for each transmission is increased because
the same information rate must be achieved over a smaller
bandwidth. Exploring this tradeoff between bandwidth and SINR
and determining the optimum value of N in terms of the system
parameters is the focus of the paper. Using stochastic geometry,
we analytically derive the optimal SINR threshold (which directly
corresponds to the optimal spectral efficiency) on this tradeoff
curve and show that it is a function of only the path loss
exponent. Furthermore, the optimal SINR point lies between the
low-SINR (power-limited) and high-SINR (bandwidth-limited)
regimes. In order to operate at this optimal point, the number of
frequency bands (i.e., the reuse factor) should be increased until
the threshold SINR, which is an increasing function of the reuse
factor, is equal to the optimal value.

I. INTRODUCTION

We consider a spatially distributed network, representing
either a wireless ad hoc network or unlicensed (and uncoordi-
nated) spectrum usage by many nodes (e.g., WiFi), and con-
sider the tradeoff between bandwidth and SINR. We ask the
following question: given a fixed total system bandwidth and a
fixed rate requirement for each single-hop transmitter-receiver
link in the network, at what point along the bandwidth-
SINR tradeoff-curve should the system operate at in order
to maximize the spatial density of transmissions subject to
an outage constraint? Note that the outage probability is
computed with respect to random user locations as well as
fading.

For example, given a system-wide bandwidth of 1 Hz and
a desired rate of 1 bit/sec, should (a) each transmitter utilize
the entire spectrum (e.g., transmit one symbol per second) and
thus require an SINR of 1 (utilizing R = W log(1+SINR) if
interference is treated as noise), (b) the band be split into two
orthogonal 0.5 Hz sub-bands where each transmitter utilizes
one of the sub-bands with the required SINR equal to 3, or
(c) the band be split into N > 2 orthogonal 1

N Hz sub-bands

where each transmitter utilizes one of the sub-bands with
the required SINR equal to 2N − 1? Note that an equivalent
formulation is to optimize the bandwidth-SINR operating point
such that the outage probability is minimized for some fixed
density of transmissions.

We consider a network with the following key characteris-
tics:
• Transmitter node locations are a realization of a homo-

geneous spatial Poisson process.
• Each transmitter communicates with a single receiver that

is a reference distance d meters away.
• All transmissions are constrained to have an absolute rate

of R bits/sec regardless of the bandwidth.
• All multi-user interference is treated as noise.
• The channel is frequency-flat, reflects path-loss and pos-

sibly fast and/or slow fading, and is constant for the
duration of a transmission.

• Transmitters do not have channel state information and no
transmission scheduling is performed, i.e., transmissions
are independent and random, conceptually like an Aloha
system.

The last assumption should make it clear that we are con-
sidering only an off-line optimization of the frequency band
structure, and that no on-line (e.g., channel- and queue-based)
transmission or sub-band decisions are considered.

These assumptions are chosen primarily for tractability and
their validity will not be assured in all implementations, but
generalizations are left to future work.

A. Related Work

The transmission capacity framework introduced in [1] is
used to quantify the throughput of such a network, since
this metric captures notions of spatial density, data rate,
and outage probability, and is more amenable to analysis
than the more popular transport capacity [2]. Using tools
from stochastic geometry [3], the distribution of interference
from other concurrent transmissions at a reference receiving
node1 is characterized as a function of the spatial density of
transmitters, the path-loss exponent, and possibly the fading
distribution. The distribution of SINR at the receiving node can

1The randomness in interference is only due to the random positions of the
interfering nodes and fading.



then be computed, and an outage occurs whenever the SINR
falls below some threshold β. The outage probability is clearly
an increasing function of the density of transmissions, and the
transmission capacity is defined to be the maximum density
of successful transmissions such that the outage probability is
no larger than some prescribed constant ε.

The problem studied in this work is essentially the opti-
mization of frequency reuse in uncoordinated spatial (ad hoc)
networks, which is a well studied problem in the context of
cellular networks (see for example [4] and references therein).
In both settings the tradeoff is between the bandwidth utilized
per cell/transmission, which is inversely proportional to the
frequency reuse factor, and the achieved SINR per transmis-
sion. A key difference is that in cellular networks, regular
frequency reuse patterns can be planned and implemented,
whereas in an ad hoc network this is impossible and so the
best that can be hoped for is uncoordinated random frequency
reuse. Another crucial difference is in terms of analytical
tractability. Although there has been a tremendous amount of
work on optimization of frequency reuse for cellular networks,
these efforts do not, to the best of our knowledge, lend
themselves to clean analytical results. On the contrary, in this
work we are able to derive very simple analytical results in the
random network setting that very cleanly show the dependence
of the optimal reuse factor on system parameters such as path
loss exponent and rate.

Perhaps the most closely related work is [5][6], in which a
one-dimensional (i.e., linear), evenly spaced, multi-hop wire-
less network is studied. In finding the optimal (in terms of
total energy minimization) number of intermediate relay nodes
in an interference-free network (i.e., each hop is assigned
a distinct frequency or time slot), their analysis (rather re-
markably) coincides almost exactly with our analysis of an
interference-limited, two-dimensional, random network. The
issue of frequency reuse in interference-limited 1-D networks
is also explicitly considered in [5], and some of the general
insights are similar to those derived in this work.

II. KEY INSIGHTS

The bandwidth-SINR tradeoff reveals itself if the system
bandwidth is split into N non-overlapping bands and each
transmitter transmits on a randomly chosen band with some
fixed power (independent of N ). This splitting of the spectrum
results in two competing effects. First, the density of trans-
mitters on each band is a factor of N smaller than the overall
density of transmitters, which reduces interference and thus
increases SINR. Second, the threshold SINR must be increased
in order to maintain a fixed rate while transmitting over 1

N -th
of the bandwidth. This requires a reduced network density in
order to meet the prescribed outage constraint.

Although intuition from point-to-point AWGN channels –
for which capacity is a strictly increasing function of band-
width if transmission power is fixed – might cause one to
think that the optimum solution is trivially to not split the
band (N = 1), this is generally quite far from the optimum
in ad hoc networks. Our analysis shows that N should be

chosen such that the required threshold SINR lies between the
low-SNR (power-limited) and high-SNR (bandwidth-limited)
regimes, for example in the range of 0 - 5 dB for reasonable
path loss exponents. This approximately corresponds to the
region where the function log(1 + SINR) transitions from
linear to logarithmic in SINR.

The intuition behind this result is actually quite simple:
if N is such that the threshold SINR is in the wideband
regime (roughly speaking, below 0 dB), then doubling N
leads to an approximate doubling of the threshold SINR, or
equivalently a 3 dB increase. Whenever the path-loss exponent
is strictly greater than 2, doubling the threshold SINR reduces
the allowable intensity of transmissions on each band by
a factor strictly smaller than two. On the other hand, the
doubling of N increases the total intensity by exactly a factor
of two because the number sub-bands is increased by the a
factor of two; the combination of these effects is a net increase
in the allowable intensity of transmissions. Therefore, it is
beneficial to continue to increase N until the point at which
the required SINR threshold begins to increase exponentially
rather than linearly with N .

III. PRELIMINARIES

A. System Model

We consider a set of transmitting nodes at an arbitrary
snapshot in time with locations specified by a homogeneous
Poisson process of intensity λ on the infinite two-dimensional
plane. We consider a reference receiver that is located, without
loss of generality, at the origin, and let Xi denote the distance
of the i-th transmitting node to the reference receiver. The
reference transmitter is placed a fixed distance d away. Re-
ceived power is modelled by path loss with exponent α > 2
and a distance-independent fading coefficient hi (from the i-th
transmitter to the reference receiver). Therefore, the SINR at
the reference receiver is:

SINR0 =
ρd−α|h0|

η +
∑

i∈Π(λ) ρX−α
i |hi|

,

where Π(λ) indicates the point process describing the (ran-
dom) interferer locations, and η is the noise power. If Gaussian
signalling is used by all nodes, the mutual information condi-
tioned on the transmitter locations and the fading realizations
is:

I(X0; Y0|Π(λ),h) = log2(1 + SINR0),

where h = (h0, h1, . . .). Notice that we assume that all nodes
simultaneously transmit with the same power ρ, i.e., power
control is not used. Moreover, nodes decide to transmit inde-
pendently and irrespective of their channel conditions, which
corresponds roughly to slotted ALOHA (i.e., no scheduling is
performed).

A few comments in justification of the above model are in
order. Although the model contains many simplifications to
allow for tractability, it contains many of the critical elements
of a real ad hoc network. First, the spatial Poisson distribution
means that nodes are randomly and independently located; this



is reasonable particularly in a network with substantial mobil-
ity or indiscriminate node placement (for example a very dense
sensor network). The fixed transmission distance of d is clearly
not a reasonable assumption; however our prior work [1], [7]
has shown rigorously that variable transmit distances do not
result in fundamentally different capacity results, so a fixed
distance is chosen because it is much simpler analytically and
allows for crisper insights. A similar justification can be given
for ignoring power control, although power control is often
not used in actual ad hoc networks either. Finally, scheduling
procedures (e.g., using carrier sensing to intelligently select a
sub-band) may significantly affect the results and is definitely
of interest, but this opens many more questions and so is left
to future work.

B. Transmission Capacity Model

In the outage-based transmission capacity framework, an
outage occurs whenever the SINR falls below a prescribed
threshold β, or equivalently whenever the instantaneous mu-
tual information falls below log2(1+β). Therefore, the system-
wide outage probability is:

P

(
ρd−α|h0|

η +
∑

i∈Π(λ) ρX−α
i |hi|

≤ β

)
.

This quantity is computed over the distribution of transmitter
positions as well as the iid fading coefficients, and thus
corresponds to fading that occurs on a slower time-scale
than packet transmission. The outage probability is clearly an
increasing function of the intensity λ.

If λ(ε) is the maximum intensity of attempted transmissions
such that the outage probability (for a fixed β) is no larger
than ε, then the transmission capacity is then defined as
c(ε) = λ(ε)(1 − ε)b, which is the maximum density of
successful transmissions times the spectral efficiency b of each
transmission. In other words, transmission capacity is like area
spectral efficiency subject to an outage constraint. Using tools
from stochastic geometry, in [1] it is shown that the maximum
spatial intensity λ(ε) for small values of ε is:

λ(ε) =
c

πd2

(
1
β
− η

ρd−α

) 2
α

ε + O(ε2), (1)

where c is a constant that depends only on the distribution
of the fading coefficients [7]. In the proceeding analysis, the
key is the manner in which the transmission capacity varies
with the SINR constraint β; for small noise values, which
is the case in the interference-limited scenarios we are most
interested in, intensity is proportional to β−

2
α . Because fading

has only a multiplicative effect on transmission capacity, it
does not effect the SINR-bandwidth tradeoff and thus is not
considered in the remainder of the paper.

IV. OPTIMIZING FREQUENCY USAGE

In this section we consider a network with a fixed total band-
width of W Hz, and where each link has a rate requirement of
R bits/sec and an outage constraint ε. Assuming the network
operates as described in the previous section, the goal is to

determine the optimum number of sub-bands N into which the
system bandwidth of W Hz should be divided while meeting
these criteria. By optimum, we mean the choice of N that
maximizes the intensity of allowable transmissions λ(ε, N).
As we will see, due to our constraint that the data rate on each
link is the same regardless of λ and N , this also corresponds
to maximizing transmission capacity.

A. Definitions and Setup

In performing this analysis, we assume that there exist
coding schemes that operate at any point along the AWGN
capacity curve.2 To facilitate exposition, we define the spectral
utilization R̃ to be the ratio of the required rate relative to the
total system bandwidth:

R̃ , R

W
bps/Hz/user.

Note that we intentionally refer to R̃, which is externally
defined, as the spectral utilization; the spectral efficiency, on
the other hand, is a system design parameter determined by
the choice of N .

If the system bandwidth is not split (N = 1), each
node utilizes the entire bandwidth of W Hz. Therefore, the
required SINR β is determined by inverting the standard rate
expression:

R = W log2(1 + β),

which gives β = 2
R
W − 1 = 2R̃ − 1. The maximum intensity

of transmissions can be determined by plugging in this value
of β into (1), along with the other relevant constants.

More generally, if the system bandwidth is split into N
orthogonal sub-bands each of width W

N , and each transmitter-
receiver pair uses only one of these sub-bands at random,
the required SINR β(N) is determined by inverting the rate
expression:

R =
W

N
log2(1 + β(N)),

which yields:

β(N) = 2
NR
W − 1 = 2NR̃ − 1.

Notice that the spectral efficiency (on each sub-band) is b =
R

W/N bps/Hz, which is N times the spectral utilization R̃.
The maximum intensity of transmissions per sub-band for
a particular value of N is determined by plugging β(N)
into (1) with noise power η = W

N N0. Since the N sub-
bands are statistically identical, the maximum total intensity
of transmissions, denoted by λ(ε, N), is the per sub-band
intensity multiplied by a factor of N . Dropping the second
order term in (1), we have:

λ(ε, N) ≈ N
( ε

πd2

) (
1

β(N)
− 1

N · SNR

) 2
α

, (2)

2In Section V-B we relax this assumption by allowing for operation at a
constant coding gap (i.e., power offset) from AWGN capacity, and see that
this has no effect on our analysis.



where the constant SNR , ρd−α

N0W is the signal-to-noise ratio
in the absence of interference when the entire band is used.

B. Optimization

Optimizing the number of sub-bands N therefore reduces
to the following one-dimensional maximization:

N∗ = arg max
N

λ(ε, N), (3)

which yields a solution that depends only on the path-loss
exponent α, the spectral utilization R̃, and the constant SNR.

In general, the interference-free SNR can be ignored be-
cause the systems of interest are interference- rather than
noise-limited. Assuming SNR is infinite we have:

λ(ε,N) ≈
( ε

πd2

)
N · β(N)−

2
α (4)

=
( ε

πd2

)
N(2NR̃ − 1)−

2
α . (5)

The leading factor of N represents the fact that total trans-
mission intensity is N times the per-band intensity, while the
(2NR̃ − 1)−

2
α term, which is a decreasing function of N , is

the amount by which intensity must be decreased in order to
maintain an outage probability no larger than ε in light of the
monotonically increasing (in N ) SINR threshold β(N).

Since R̃ is a constant, we can make the substitution b = NR̃
and equivalently maximize the function b(2b − 1)−

2
α . Taking

the derivative with respect to b we get:

∂

∂b

[
b(2b − 1)−

2
α

]
=

(2b − 1)−
2
α

[
1− 2

α
b(1− 2−b)−1 loge 2

]
.

Since the first term is strictly positive for b > 0, we set
the second term to zero to get a fixed point equation for the
optimal spectral efficiency b∗:

b∗ = (log2 e)
α

2
(1− e−b∗), (6)

which has solution

b∗ = log2 e
[α

2
+ W

(
−α

2
e−

α
2

)]
, (7)

where W (z) is the principle branch of the Lambert W function
and thus solves W (z)eW (z) = z.3

Because 1− 2
αb(1−2−b)−1 loge 2 is strictly decreasing and

(2b − 1)−
2
α is strictly positive, the first derivative is strictly

positive for 0 < b < b∗ and is strictly negative for b > b∗.
Therefore, the b∗ in (7) is indeed the unique maximizer.
Furthermore, it is easily shown that the optimizing b∗ is an
increasing function of α, is upper bounded by α

2 log2 e, and
that b∗/(α

2 log2 e) converges to 1 as α grows large.

3Equation (7) is nearly identical, save for a factor of 2, to the expression
for the optimal number of hops in an interference-free linear network given
in equation (18) of [5]. This similarity is due to the fact that the objective
function in equation (17) of [5] coincides almost exactly with (5).
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Fig. 1. Optimal Spectral Efficiency vs. Path-Loss Exponent

Recalling that b = NR̃ is the spectral efficiency on each
sub-band, the quantity b∗, which is a function of only the path-
loss exponent α, is the optimum spectral efficiency.4 Therefore,
the optimal value of N (ignoring the integer constraint) is
determined by simply dividing the optimal spectrum efficiency
b∗ by the spectral utilization R̃:

N∗ =
b∗

R̃
. (8)

To take care of the integer constraint on N , the nature of
the derivative of b(2b − 1)−

2
α makes it sufficient to consider

only the integer floor and ceiling of N∗ in (8). Note that the
optimal number of sub-bands depends only on the spectral
utilization R̃ (inversely) and on b∗, which is a function of
the path-loss exponent; there is no dependence on either the
outage constraint ε or on the transmission range d.

If the spectral utilization is larger than the optimum spectral
efficiency, i.e., R̃ ≥ b∗, then choosing N = 1 is optimal. On
the other hand, if R̃ ≤ 1

2b∗, then the optimal N is strictly larger
than 1. In the intermediate regime where 1

2b∗ ≤ R̃ ≤ b∗, the
optimal N is either one or two.

In Fig. 1 the optimal spectral efficiency b∗ is plotted (in
units of bps/Hz) as a function of the path-loss exponent α,
along with the quantity b∗(2b∗ − 1)−

2
α , which is referred

to as the density constant because the optimal density λ∗(ε)
is this quantity multiplied by

(
ε

R̃πd2

)
. The optimal spectral

efficiency is very small for α close to 2 but then increases
nearly linearly with α; for example, the optimal spectral
efficiency for α = 3 is 1.26 bps/Hz (corresponding to β =
1.45 dB).

C. Interpretation

To gain an intuitive understanding of the optimal solution,
first consider the behavior of λ(ε,N) when the quantity NR̃
is small, i.e. NR̃ ¿ 1. In this regime, the SINR threshold

4An optimal spectral efficiency is derived for interference-free, regularly
spaced, 1-D networks in [6]; however, these results differ by approximately a
factor of 2 from our results due to the difference in the network dimensionality.



β(N) grows approximately linearly with N :

β(N) = 2NR̃ − 1 = eNR̃ loge 2 − 1

=
∞∑

k=1

(NR̃ loge 2)k

k!

≈ NR̃ loge 2.

Plugging into (5) we have

λ(ε,N) ≈
( ε

πd2

)
N(NR̃ loge 2)−

2
α

=
( ε

πd2

)
R̃ loge 2

− 2
α N(1− 2

α ).

For any path-loss exponent α > 2, the maximum intensity of
transmissions monotonically increases with the number of sub-
bands N as N(1− 2

α ), i.e., using more sub-bands with higher
spectral efficiency leads to an increased transmission capacity,
as long as the linear approximation to β(N) remains valid.
The key reason for this behavior is the fact that transmission
capacity scales with the SINR threshold as β−

2
α , which

translates to N− 2
α in the low spectral efficiency regime.

As NR̃ increases, the linear approximation to β(N) be-
comes increasingly inaccurate because β(N) begins to grow
exponentially rather than linearly with N . In this regime, the
SINR cost of increasing spectral efficiency is extremely large.
For example, doubling spectral efficiency requires doubling
the SINR in dB units rather than in linear units. Clearly,
the benefit of further increasing the number of sub-bands is
strongly outweighed by the SINR cost.

Thus, when N is such that the spectral efficiency NR̃ is
relatively small (i.e., less than one), N should be increased
because the benefit of reduced interference outweighs the cost
of the increasing SINR threshold. However, as NR̃ increases,
the cost of the (exponentially) increasing the SINR threshold
eventually outweighs the benefit of reduced interference. Since
transmission capacity depends on the SINR threshold raised
to the power − 2

α , a larger path loss exponent corresponds to
weaker dependence on the SINR threshold and thus a larger
optimum spectral efficiency b∗.

V. NUMERICAL RESULTS AND DISCUSSION

In Figure 2, the maximum density of transmissions is plotted
as a function of N for two different spectrum utilizations
R̃ for a network with α = 4, d = 10 m, and an outage
constraint of ε = 0.1. The bottom set of curves correspond
to a relatively high utilization of R̃ = 0.5 bps/Hz, while
the top set corresponds to R̃ = 0.25 bps/Hz. Each set
of three curves correspond to the approximation from (2):
λ(ε,N) ≈ N

(
ε

πd2

)
β(N)−

2
α , numerically computed values

of λ(ε,N) for SNR = ∞, and numerically computed values
for SNR = 20 dB. For both sets of curves, notice that
the approximation, based on which the optimal value of N
was derived, matches almost exactly with the numerically
computed values. Furthermore, introducing noise into the
network has a minimal effect on the density of transmissions.

For a path loss exponent of 4, evaluation of (7) yields an
optimal spectral efficiency of 2.3 bps/Hz. When R̃ = 0.25,
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this corresponds to N∗ = 2.3
0.25 = 9.2 and N = 9 is seen to

be the maximizing integer value. When R̃ = 0.5, we have
N∗ = 4.6 and N = 5 is the optimal integer choice. Note that
there is a significant penalty to naively choosing N = 1: for
R̃ = 0.25 this leads to a factor of 2 decrease in density, while
for R̃ = 0.5 this leads to loss of a factor of 1.5.

A. Direct Sequence Spread-Spectrum

Another method of utilizing the bandwidth is to use direct-
sequence spread spectrum with a spreading gain of N and
an information bandwidth of 1

N (i.e., a symbol rate of 1
N ).

However, the results of [1] show that direct-sequence is (rather
significantly) inferior to splitting the frequency band (FDMA)
because it is preferable to avoid interference (FDMA) rather
than to suppress it (DS). More concretely, if DS-CDMA
is used with completely separate despreading (assuming a
spreading gain of 1

N ) and decoding, the maximum density
of transmissions is approximately equal to:

λ(ε,N)DS ≈
( ε

πd2

)
N

2
α β(N)−

2
α (9)

Comparing this with the analogous expression in (5), we
see that the key difference is that DS results in a leading
term of N

2
α rather than N . As a result, the density remains

constant as N is increased in the regime where β(N) is
approximately linear, and decreases with N once β(N) begins
to behave exponentially. As a result, using DS can lead to
a considerable performance loss relative to spreading via
frequency orthogonalization.

Another way to understand the inferiority of direct-sequence
is the following: using direct-sequence with a spreading gain
of 1

N reduces interference power by a factor of N and
thereby increases the SINR roughly by a factor of N . In
the wideband regime, the SINR threshold β(N) increases
approximately linearly with N and thus completely offsets the
value of spreading; as a result the maximum density does not
depend on N in this regime. Beyond the wideband regime, the
SINR threshold β(N) increases exponentially with N , which
clearly outweighs the linearly increasing SINR provided by
the spreading gain; the maximum density decreases with N in
this regime.



B. Below-Capacity Transmission

In practical systems, it is not generally possible to signal
precisely at capacity. One very useful approximation is the
capacity gap metric, where R = log2(1 + Γ · SINR) and
Γ ≤ 1 is the (power) gap between the signaling rate and
Shannon capacity. It is straightforward to see that the gap
only increases the SINR threshold by a multiplicative constant:
β(N) = 1

Γ

(
2NR̃ − 1

)
. As a result, the earlier analysis

remains unchanged and the optimum spectral efficiency as well
as the optimum number of sub-bands are independent of the
gap Γ. Indeed, the effect of the coding gap is simply to reduce
the density of transmissions by a factor Γ−

2
α .

C. Fixed vs. Random Networks

Our analysis holds for networks in which nodes are ran-
domly located according to a homogeneous 2-D Poisson
process. It would be interesting to know how this compares
with the transmission capacity for any arbitrary, deterministic,
placement of nodes (with zero outage). By comparing the
two, we can determine the penalty that is paid for by having
randomly rather than regularly placed nodes.

To allow for a fair comparison, we develop bounds on a
network in which R̃ = b∗ and thus N = 1 is optimal. A simple
upper bound on the transmission density can be developed by
considering only the interference contribution of the nearest
interferer. The received SIR, again ignoring thermal noise, is
upper bounded by considering the contribution of only the
nearest interferer, assumed to be a distance s away. The SIR
upper bound is thus given by ρd−α

ρs−α =
(

s
d

)α. The upper bound
must be above the threshold β if the actual SINR is above β,
and thus the following is a necessary condition:

( s

d

)α

≥ β → s ≥ dβ
1
α .

Therefore, a necessary but not sufficient condition for meeting
the SINR threshold is that there is no interferer within dβ

1
α

meters of a receiver. As a result, it is necessary that an area of
πd2β

2
α meters2 around each receiver be clear of interferers,

which translates into a density upper bound of 1
πd2 β−

2
α . Since

β = 2b∗ − 1, this gives

λdet ≤ 1
πd2

(2b∗ − 1)−
2
α . (10)

A lower bound to the optimal density is derived by actually
designing a (infinite) placement of transmitters and receivers.
Indeed, by placing transmitters according to a standard square
lattice and placing receivers on a horizontally shifted version
of this lattice, one can achieve a density within about a factor
of two of the upper bound.

The optimal density bounds should be compared to the
density of a random network with R̃ = b∗ found from (5):

λran ≈ ε

πd2
(2b∗ − 1)−

2
α . (11)

Note that the random density is a factor ε smaller than the
upper bound to the deterministic density. Thus, when ε is
small, e.g., ε = 0.1, there is a rather large penalty associated

with random placement of nodes. This indicates that there
potentially is a very significant benefit to performing localized
transmission scheduling in random networks, assuming that
the associated overhead is not too costly.

VI. INFORMATION DENSITY

An interesting information density interpretation can be
arrived at by plugging in the appropriate expressions for the
maximum density of transmissions when the number of sub-
bands is optimized. By plugging in the optimal value of N
(and ignoring the integer constraint on N , which is reasonable
when R̃ is considerably smaller than one) we have:

λ∗(ε) = max
N

λ(ε,N) (12)

≈
( ε

πd2

) 1
R̃

b∗(2b∗ − 1)−
2
α (13)

where b∗ is defined in (7) and the quantity b∗(2b∗ − 1)−
2
α

is denoted as the density constant in Fig. 1. The quantity
λ∗(ε) is the maximum allowable spatial density of attempted
transmissions per m2 assuming each transmission occurs over
a distance of d meters at spectral utilization R̃ (i.e., with rate
equal to WR̃) and that an outage constraint of ε must be
maintained.

From this expression we can make a number of observations
regarding the tradeoffs between the various parameters of
interest. First note that density is directly proportional to
outage ε and to the inverse of the square of the range d−2.
Thus, doubling the outage constraint leads to a doubling of
density, or inversely tightening the outage constraint by a
factor of two leads to a factor of two reduction in density. The
quadratic nature of the range dependence implies that doubling
transmission distance leads to a factor of four reduction in
density; this is not surprising given that the area of the circle
centered at the receiver with radius d is πd2. Perhaps one
of the most interesting tradeoffs is between density and rate:
since the two quantities are inversely proportional, doubling
the rate leads to halving the density, and vice versa. Note that
this relationship is directly attributable to the fact that N∗ is
inversely proportional to R̃: doubling rate leads to reducing
N∗ by a factor of two, which reduces total density (across all
sub-bands) by a factor of two.

If we consider the product of density and spectral utilization,
we get a quantity that has units bps/Hz/m2:

λ∗(ε)R̃ ≈
( ε

πd2

)
b∗(2b∗ − 1)−

2
α (14)

This quantity is very similar to the area spectral efficiency
(ASE) defined in [8]. In our random network setting, the ASE
is inversely proportional to the square of the transmission
distance, which is somewhat analogous to cell radius in a
cellular network, and is directly proportional to the outage
constraint. Since the quantity b∗(2b∗ − 1)−

2
α does not vary

too significantly with the path-loss exponent (see Fig. 1) for
α between 2 and 5, we see that ASE and path-loss exponent
are not very strongly dependent. Perhaps most interesting is
the fact that the ASE does not depend on the desired rate



(assuming N is optimized for rate). A random network can
support a low density of high rate transmissions or a high
density of low rate transmissions, or any intermediate point
between these extremes.

VII. CONCLUSION

In this work we studied bandwidth-SINR tradeoffs in ad-hoc
networks and derived the optimal operating spectral efficiency,
assuming that multi-user interference is treated as noise and
that no transmission scheduling is performed. A network can
operate at this optimal point by dividing the total available
bandwidth into sub-bands sized such that each transmission
occurs on one of the sub-bands at precisely the optimal spectral
efficiency. As a result, the optimal number of sub-bands is
simply the optimal spectral efficiency (which is a deterministic
function of the path loss exponent) divided by the normalized
(by total bandwidth) rate.

The key takeaway of this work is that an interference-
limited ad-hoc network should operate in neither the wideband
(power-limited) nor high-SNR (bandwidth-limited) regimes,
but rather at a point between the two extremes because this
is where the optimal balance between multi-user interference
and bandwidth is achieved. Although we considered a rather
simple network model, we believe that many of the insights
developed here will also apply to more complicated scenarios,
e.g., wideband fading channels and networks in which some
degree of local transmission scheduling is performed.
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