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Abstract— This paper summarizes recent results on the mul-
tiple antenna broadcast (downlink) channel in which limited-
rate digital feedback is used to convey channel state information
from each mobile (receiver), each of which is assumed to have
perfect channel information, to the transmitter. The transmitter
employs linear precoding based on this feedback, and the effect
of imperfect channel state information is multi-user interference,
which can significantly degrade throughput if the channel infor-
mation is not sufficiently accurate. Feedback requirementsare
studied for systems with single antenna mobiles in both the small
system regime, i.e., number of mobiles equal to the number of
transmit antennas, as well as in the large system regime, where
user selection is performed on the basis of digital feedback.
In addition, two different methods for utilizing multiple m obile
antennas are described and compared in the small system regime.

I. I NTRODUCTION

In multiple antenna broadcast (downlink) channels, capacity
can be tremendously increased by adding antennas at only
the access point (transmitter) if accurate channel state infor-
mation is available at the transmitter and at receivers [1].
In frequency-division duplexed systems, training can be used
to obtain channel knowledge at each of the mobile devices
(receivers), but obtaining CSI at the access point generally re-
quires feedback from each mobile. In the practically motivated
limited-rate digital feedback model, each mobile feeds back
a finite number of bits regarding its channel instantiation at
the beginning of each block. This model was first considered
for point-to-point MIMO channels in [2][3][4]. Although a
relatively small number of feedback bits is generally sufficient
to achieve performance close to perfect CSIT for point-to-
point MIMO channels, MIMO downlink channels require
considerably higher levels of feedback because imperfect CSIT
leads to multi-user interference, which significantly degrades
performance.

We consider downlink systems in which simple linear
precoding techniques (e.g., zero-forcing beamforming or block
diagonalization) are performed on the basis of error- and
delay-free digital channel feedback from each mobile. We first
consider systems in which each mobile has a single antenna.
In the small system regime, i.e., number of mobiles equal to
number of transmit antennas, per mobile feedback must scale
linearly with the number of transmit antennas and the system
SNR in order to achieve throughput close to that of a perfect
CSIT system [5]. In systems with a large number of users,
user selection algorithms are used to select a subset of users

for transmission. We describe the channel information required
such that these algorithms can perform effectively and exploit
multi-user diversity in the presence of imperfect CSIT [6]. In
contrast to analysis of random beamforming technique for an
asymptotically large number of users [7], this work indicates
that even very large but finite systems (e.g., 4 transmit antennas
and 100-1000 mobiles) are quite sensitive to imperfect CSIT,
and thus require high-rate channel feedback.

We also consider systems in which each mobile device
has multiple antennas, and describe two different methods
for utilization of these antennas. Block diagonalization (BD),
which is an extension of zero-forcing beamforming that allows
multiple data streams to be sent to each mobile [8], [9], can be
performed on the basis of appropriate digital channel feedback,
and is seen to require less feedback than a naive zero-forcing
strategy [10]. A novel antenna combining method, in which
combining is performed to reduce quantization error rather
than increase received signal power, is seen to lead to feedback
requirements that are very similar to those for BD [11].

II. SYSTEM MODEL

We consider aK receiver multiple antenna broadcast chan-
nel in which the transmitter (access point or AP) hasM
antennas and each of the mobiles hasN receive antennas.
The received signal at thei-th mobile is given by:

yi = HH
i x + ni, i = 1, . . . , K (1)

whereH1,H2, . . . ,HK are theM ×N channel matrices, the
vector x ∈ CM×1 is the transmitted signal, andn1, . . . ,nK

are independent complex Gaussian noise vectors with iid unit
variance components. There is a transmit power constraint of
P , i.e., the input must satisfyE[||x||2] ≤ P .

We consider a block fading channel, with independent
Rayleigh fading from block to block (i.e., the components of
the channel vectors are iid unit variance complex Gaussian).
Each of the receivers is assumed to have perfect and instan-
taneous knowledge of its own channel matrixHi. It is not
necessary for mobiles to know the channel of other mobiles.

A. Digital Channel Feedback Model

At the beginning of each block, each receiver quantizes
its channel toB bits and feeds back the bits perfectly and
instantaneously to the access point. When each mobile has
a single antenna (N = 1), vector quantization is performed



using a codebookC that consists of2B M -dimensional unit
norm vectorsC , {w1, . . . ,w2B}. Each receiver quantizes
its channel vector to the quantization vector that forms the
minimum angle to it [3] [4]. Thus, useri quantizes its channel
to ĥi, chosen according to:

ĥi = arg min
w=w1,...,w

2B

sin2 (∠(hi,w)) . (2)

and feeds the quantization index back to the transmitter. It
is important to notice that only the direction of the channel
vector is quantized.

In this work we userandom vector quantization (RVQ), in
which each of the2B quantization vectors is independently
chosen from the isotropic distribution on theM -dimensional
unit sphere [12]. Each receiver is assumed to use a different
and independently generated codebook, and we analyze per-
formance averaged over the distribution of random codebooks.

When N > 1, the quantization codebook consists of
matrices and the distance metric can be appropriately defined.
Furthermore, random quantization corresponds to choosingthe
quantization matrices independently from the set of all unitary
matrices. See Section IV-A for more details.

B. Linear Precoding

After receiving the quantization indices from each of the
mobiles, the AP uses linear precoding to transmit data to
the mobiles. WhenN = 1, we consider the simple strategy
of zero-forcing beamforming (ZFBF). Since the transmitter
does not have perfect CSI, ZFBF is performed based on the
quantizations instead of the channel realizations. When ZFBF
is used, the transmit vector is defined asx =

∑M

i=1
visi,

where eachsi is a scalar (chosen complex Gaussian with
power P/M ) intended for thei-th receiver, andvi ∈ CM is
the beamforming vector for thei-th receiver. The beamforming
vectorsv1, . . . ,vM are chosen as the normalized rows of the
matrix [ĥi · · · ĥM ]−1, and thus they satisfy||vi|| = 1 for all
i and ĥH

i vj = 0 for all j 6= i. The resulting SINR at thei-th
mobile is:

SINRi =
P
M
|hH

i vi|2
1 +

∑

j 6=i
P
M
|hH

i vj |2
. (3)

The achievable long-term average rate is the expectation of
log(1+SINRi) over the distribution of the fading and RVQ.

WhenN > 1, ZFBF can be generalized to block diagonal-
ization, as described in Section IV-A.

III. S INGLE ANTENNA MOBILES

In this section we summarize results on MIMO downlink
channels in which each receiver has a single receive antenna.

A. Small System Analysis: K = M

We first consider a system in which the number of receivers
is equal to the number of transmit antennas. This analysis
applies to systems in which the number of users is relatively
small, as well as to large systems in whichM users are
selected for transmission on the basis of quantities independent
of their channel feedback, e.g., deadline constraints. In order to

characterize the sensitivity of the system to channel feedback,
we compare the long-term average throughput with perfect
CSIT to the throughput of a feedback-based system.

If the transmitter has perfect CSIT, the beamforming vectors
(denotedvZF,i) can be chosen perfectly orthogonal to all
other channels, thereby creating a parallel and non-interfering
channel to each mobile. Thus the average rate (per mobile) is:

RZF (P ) = EH

[

log

(

1 +
P

M
|hH

i vZF,i|2
)]

. (4)

With limited feedback, multi-user interference cannot be com-
pletely eliminated and the resulting average rate is:

RFB(P ) = EH,W

[

log

(

1 +
P
M
|hH

i vi|2
1 +

∑

j 6=i
P
M
|hH

i vj |2

)]

. (5)

Since each beamforming vectorvj is chosen orthogonal to
the quantization vectors{ĥi}i6=j , a smaller angle (i.e., a finer
quantization) between the channelhj and its quantization̂hj

will lead to smaller interference terms|hH
i vj |2, and thus a

higher rate.
In order to quantify the effect of digital feedback, we define

the rate gap∆R(P ) as:

∆R(P ) , RZF (P ) − RFB(P ). (6)

By utilizing the statistics of RVQ and of Rayleigh fading
channels, we get the following upper bound on∆R(P ):

Theorem 1 ([5]): RVQ-based digital feedback withB bits
per mobile incurs a rate gap upper bounded by:

∆R(P ) < log
2

(

1 + P · 2− B

M−1

)

.

The most important feature to notice is that the rate gap is an
increasing function of the SNR as well as ofM . In fact, it can
be shown that ifB is fixed and the SNRP is taken to infinity,
such a system becomes interference-limited [5]. In order to
prevent this and to additionally achieve the full multiplexing
gain (i.e., a rate vs. SNR curve with the same slope as perfect
CSIT), the feedback quality must be appropriately scaled with
the SNR. The following theorem, which is derived by simply
inverting the rate gap upper bound, quantifies the scaling of
feedback needed to keep the rate gap∆(P ) bounded at all
SNR’s. This condition also ensures that the full multiplexing
gain is achieved.

Theorem 2 ([5]): A rate gap∆(P ) no larger than a constant
r > 0 is maintained at all SNR’s by scalingB as:

B = (M − 1) log
2
P − (M − 1) log

2
(2r − 1)

≈ M − 1

3
PdB − (M − 1) log

2
(2r − 1). (7)

Similar to point-to-point MIMO systems, it is necessary to
scale feedback approximately linearly with the number of
transmit antennasM . Unlike point-to-point systems,feedback
must also be scaled linearly with the system SNR (in dB).

In Fig. 1, achievable rates vs. SNR are shown for a 6
antenna, 6 user system, for perfect CSIT zero-forcing, fixed
B = 15 (and thus interference-limited), and withB scaled
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Fig. 1. Downlink Channel withM = K = 6, N = 1

according to (2) withr = 1, i.e., B = M−1

3
PdB. Note

that r = 1 corresponds to a rate gap of 1 bps/Hz, which is
equivalent to a 3 dB power shift.

Note that the analysis in this section has been based on
the assumption of transmission to allM users and equal
power loading. At low and moderate SNR’s (e.g., up to 10
dB), throughput can be increased non-negligibly by selecting
a smaller subset of users for transmission using an algorithm
such as in [13], and also by using power allocation if some
channel magnitude information is available [14]. However,
whenever two or more users are selected for transmission, the
feedback requirements are the same (in the scaling sense) as
the scenario analyzed here.

B. Large System Analysis: K > M

In systems with many users, throughput can be significantly
increased by transmitting to only a selected subset of up to
M users. A considerable amount of research has focused on
the design of such selection algorithms, which attempt to
select users with large channel magnitudes as well as with
nearly orthogonal channels, under the assumption of perfect
CSIT (e.g., [15][13]). If such an algorithm is used,multi-
user diversity can be exploited and throughput grows double-
logarithmically withK, even when the SNR is fixed.

In [6], a system performing user selection on the basis
of limited channel feedback is studied. In order to select a
strong subset of users, the transmitter must be provided with
some channel quality information (CQI) in addition to the
channel directional information (CDI) contained in theB-bit
quantization index. The most straightforward approach is to
define the CQI to be the norm of each channel, i.e.,||hi||2.
If the transmitter is provided with perfect knowledge of this
CQI (in addition toB-bit CDI), then somewhat surprisingly
the system throughput is bounded asK → ∞ with B andP
fixed. If K is very large, the transmitter is able to find a set of
users with very large channel norms and whose quantization
vectors are nearly orthogonal. However the quantization error,
which the transmitter is unaware of, leads to residual multi-
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Fig. 2. M = 4, P = 10, System with User Selection

user interference that cannot be overcome by stronger channel
magnitudes and ultimately leads to a bounded throughput.

Clearly, the transmitter must have some information about
the quantization error in addition to the channel magnitude.
In fact, it is sufficient for the CQI to be the following metric,
which reflects the channel norm and the quantization error:

γi =
P
M
||hi||2 cos2 θi

1 + P
M
||hi||2 sin2 θi

, (8)

whereθi is the angle betweenhi and its quantization [6]. The
quantity γi is the actual received SINR at thei-th mobile
if the transmitter is able to select a set ofM orthogonal
quantizations, includinĝhi; in other cases, it serves as a
very reasonable approximation for the SINR at mobilei. If
the transmitter performs user selection treating

√
γiĥi as the

channel vector of thei-th mobile, the optimalM log log K
throughput growth is achieved. In fact, the feedback-based
system is essentially equal to a perfect CSIT system in which
user channel norms are distributed according to the distribution
of γi, (rather thanP

M
||hi||2).

Although optimal throughput scaling is achieved for any
B ≥ log

2
M , the actual throughput does depend rather

critically on the actual value ofB, even for large values ofK.
In Fig. 2 throughput is plotted againstK for a four antenna
system at 10 dB (M = 4, P = 10) for various values ofB.
All of the curves, including the bottom curve (labeled random
beamforming, which can be shown to be exactly equivalent
to the scheme described above whenB = log

2
M ) have the

correct scaling withK, but throughput varies significantly as
a function ofB for every very large systems. As a result, high
feedback rates are also required in large downlink channelsif
performance approaching perfect CSIT is desired.

C. Practical Quantization Schemes

While the results of the previous sections were derived
assuming random quantization codebooks, which have no
particular structure and thus have complexity that grows as2B,
low complexity quantization schemes for a range of values of
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B are needed for practical implementation. In [10] the low
complexity scalar-quantization strategy proposed by Narula
et. al [2] is investigated: TheM -dimensional channel vector
hi is divided by its first element, to yieldM − 1 complex
elements, and uniform quantization is performed separately
(with uniform bit allocation) on the phase and the inverse
tangent of the magnitude of each of theseM − 1 elements.

Although this scheme is extremely simple, it performs
reasonably well compared to RVQ. WhenM = 2, it can be
shown that this scheme provides a bounded rate gap (albeit a
large rate gap than RVQ) if it is scaled according to Theorem 2.
Although this proof does not yet extend toM > 2, numerical
results indicate that this generalizes to larger values ofM .
In Fig. 3, rates for scalar quantization and RVQ are plotted
for a M = K = 6 system, where bits are scaled according
to B = M−1

3
· PdB. Scalar quantization tracks the RVQ

curve, but incurs a power penalty of about 2.7 dB. Also
plotted on the figure is an upper bound to the throughput of
a system using the same feedback-based ZFBF strategy in
conjunction withany vector quantization codebook, assuming
that each mobile performs a random rotation of its codebook to
ensure isotropic and independent quantizations across mobiles.
More sophisticated vector quantization schemes should be able
to fill in the gap between this upper bound and the scalar
quantization curve.

IV. M ULTIPLE ANTENNA MOBILES

In this section we describe and compare different methods
that utilize a small number of receive antennas at each mobile
device (denoted byN , with 1 < N < M ).

A. Block Diagonalization

When block diagonalization is used on the basis of perfect
CSIT, multiple data streams are sent to each mobile and multi-
user interference is completely eliminated [8], [9]. Assuming
the aggregate number of receive antennas is equal to the
number of transmit antennas (NK = M ), the transmit signal

is given by: x =
∑K

i=1
Visi, where Vi is the M × N

(unitary) precoding matrix andsi is the N-dim vector of data
symbols intended for thei-th mobile. In order to eliminate
multi-user interference, the precoding matrices are chosen to
satisfyHH

j Vi = 0 for all i 6= j. If each of theKN receive
antennas was treated as a separate user and ZFBF was used,
then a separate data stream would be received on each receive
antenna, with no correlation between the different signals
received at different mobiles or between theN signals received
at each mobile. This translates to even stricter restrictions on
the precoding matrices, and thus to a loss in throughput [16].

In [10], block diagonalization on the basis of digital channel
feedback is analyzed for systems withKN = M . In order to
appropriately choose precoding matrices, the transmitteronly
requires knowledge of the subspace spanned by each channel
matrix Hi. Therefore, each mobile quantizes its channel sub-
space rather than separately quantizing theN rows of its chan-
nel matrix. A quantization codebook consists of2B (unitary)
matrices (W1, . . . ,W2B ), and the quantizer is the matrix that

minimizes thechordal distance d(Hi,W) =
√

∑N

i=1
sin2 θi,

where the θi’s are the principal angles between the two
subspaces. The idea of random quantization is extended by
selecting each quantization matrix in an iid fashion from the
set of allN × M unitary matrices.

Using some of the techniques described in Section III-A
as well as subspace quantization bounds from [17], it can
be shown that a bounded rate gap between perfect CSIT BD
and feedback-based BD can be maintained if the number of
feedback bits per mobile is scaled according to [10]:

B ≈ N

(

M − N

3

)

PdB + O(1). (9)

The scaling constant ofN(M −N) is due to the fact that the
set ofN×M unitary matrices has dimensionalityN(M−N).

B. Antenna Combining for Reduced Quantization Error

An alternative to BD, which results inN streams being
sent to each mobile, is to perform antenna combining in
order to reduce quantization error and transmit one stream
to each mobile [11]. Each mobile linearly combines itsN
antenna outputs to create a (effective) single antenna output,
and quantizes the corresponding effective channel vector.As a
result, the system is transformed into a single mobile antenna
channel; clearly this is only reasonable when there areM or
more mobiles. The advantage of this technique comes from
intelligent selection of the linear combiner coefficients,which
are chosen to yield an effective vector channel that can be
quantized with minimal error.

To understand this method, let us first describe a simpler,
albeit considerably less powerful, antenna selection technique.
Each mobile has avector quantization codebook, as described
in Section II-A, and separately quantizes the vectors that
describe the channel to each of itsN antennas (i.e., theN
rows of its channel matrixHH

i ). The mobile then selects the
antenna with minimum quantization error (angle), and only
feeds back the quantization index of the selected antenna



(usingB bits). Only the selected antenna is used for reception,
and standard ZFBF is performed since from the transmitter’s
point of view each mobile has only one antenna. If RVQ
is used, this selection method is equivalent to quantizing a
single vector channel withB+log

2
N bits, thereby effectively

increasing the feedback bylog
2
N bits.

Much more significant gains can be achieved by allowing
the antenna to linearly combine itsN antenna outputs using
any set of combining coefficients; antenna selection can be
thought of as restricting the combining weights to be of the
form [1 0 · · · 0], etc. When combining is optimally performed,
as described in [11], the selected quantizer turns out to be
the quantization vector that minimizes the angle between itself
and theN -dim subspace spanned byHi. Note that the weights
are chosen only on the basis of the vector directions because
quantization error rather than channel magnitude is more
critical for the MIMO downlink. As a result, the technique
is very different from standard combining techniques such as
those used in limited feedback, point-to-point MIMO systems
in which beamforming is performed [3].

Using some of the techniques described in Section III-A as
well as properties of random subspaces, it can be shown that
a bounded rate gap between perfect CSIT ZF (single antenna)
and the throughput achieved with antenna combining can be
maintained if the number of feedback bits per mobile is scaled
according to [11]:

B ≈ M − N

3
PdB + O(1). (10)

C. Comparison of Techniques

In this section we compare BD, antenna combining, and
simple ZFBF in the small-system regime, i.e., assuming no
user selection is performed (N > 1 with KN = M ).
The simplest strategy is to treat each receive antenna as a
separate user, for the purposes of channel feedback as well
as transmission and reception, and send a data stream to each
receive antenna (i.e.,N streams per mobile) using ZFBF as
described in Section III-A. To incur a 3 dB SNR loss relative
to perfect CSIT-ZFBF,M−1

3
PdB bits are requiredper receive

antenna, which corresponds toM
(

M−1

3

)

PdB bits in total.
If BD is used, the per mobile feedback rate is given in (9)
and the total number of feedback bits is (ignoring constants)
M
(

M−N
3

)

PdB. The difference between theM − 1 and
M−N terms is precisely the advantage that BD provides over
ZFBF; this is due to the fact that the space ofN -dimensional
subspaces isN(M −N), while N one-dimensional subspaces
have dimensionN(M − 1). Antenna combining has the same
scaling law as BD (i.e.,M

(

M−N
3

)

PdB total bits). However,
if antenna combining is used each mobile only receives one
data stream and therefore there must beM mobiles withN
antennas each (i.e.K = M rather thanK = M

N
).

In Table I, feedback requirements for the three strategies are
shown for a 6 transmit antenna, 2 receive antenna system. BD
and ZFBF apply to systems with 3 mobiles, while antenna
combining requires 6 mobiles. The numbers are not the
sufficient feedback rates, but instead are numerically computed

SNR Block Diag. Antenna Combining ZFBF
5 dB 4 8 9
10 dB 10 15 17
15 dB 17 21 25
20 dB 24 28 34
25 dB 30 35 42
30 dB 37 41 50

TABLE I

FEEDBACK REQUIREMENTS FORDIFFERENTMULTIPLE MOBILE

ANTENNA STRATEGIES

necessary feedback rates, all relative to a common benchmark
of 3 dB from a perfect CSIT-ZFBF system. BD and antenna
combining are seen to significantly outperform ZFBF due to
the scaling advantage. Furthermore, BD is seen to require
approximately 4 or 5 less bits than antenna combining at each
SNR.
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