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Abstract— A multiple antenna broadcast channel (multiple
transmit antennas, one antenna at each receiver) with imperfect
channel state information available to the transmitter is con-
sidered. If perfect channel state information is availableto the
transmitter, then a multiplexing gain equal to the minimum of
the number of transmit antennas and the number of receivers
is achievable. On the other hand, if each receiver has identical
fading statistics and the transmitter has no channel information,
the maximum achievable multiplexing gain is only one. The focus
of this paper is on determination of necessary and sufficient
conditions on the rate at which CSIT quality must improve with
SNR in order for full multiplexing gain to be achievable. The
main result of the paper shows that scaling CSIT quality such
that the CSIT error is dominated by the inverse of the SNR is
both necessary and sufficient to achieve the full multiplexing gain
as well as a bounded rate offset (i.e., the sum rate has no negative
sub-logarithmic terms) in the compound channel setting.

I. I NTRODUCTION

We consider a multi-input multi-output (MIMO) Gaussian
broadcast channel modeling the downlink of a system where
the base station (transmitter) hasM antennas andM user
terminals (receivers) have one antenna each. A channel use of
such channel is described by

yk = h
H

kx + zk, k = 1, . . . , K (1)

whereyk is the channel output at receiverk, zk ∼ CN(0, N0)
is the corresponding AWGN,hk ∈ C

M is the vector of
channel coefficients from thek-th receiver to the transmitter
antenna array andx is the channel input vector. The channel
input is subject to the average power constraintE[|x|2] ≤ P .

If the transmitter has perfect CSIT, dirty paper coding
achieves the capacity region of this channel and a multiplexing
gain of M is achievable, although each receiver has only one
antenna [1–5]. On the other extreme, if each receiver has
perfect CSI but the transmitter has no CSIT and each user
has identical identical fading statistics (e.g., spatially white
Rayleigh fading) then TDMA is optimal and the maximum
multiplexing gain is one [1][6]. CSIT is clearly critical for the
MIMO broadcast channel. Note that the MIMO broadcast is
very different from a point-to-point MIMO channel, in which
case the level of CSI available at the transmitter does not affect

the multiplexing gain, which is equal to the minimum of the
number of transmit and receive antennas, assuming perfect
CSI at the receiver and a full rank channel matrix.

Motivated by the extreme cases of perfect and no CSIT,
in this paper we consider the following simple question: how
accurate must the CSIT be in order for the full multiplexing
gain to be achievable? We do not limit ourselves to any par-
ticular transmission scheme (e.g., zero-forcing beamforming)
but instead ask this from a fundamental information theoretic
perspective.

There are two earlier results that more precisely set the
context of this work. In [7] it is shown that if the transmitter
has imperfect CSIT and the quality of the CSIT is fixed relative
to the SNR, then the multiplexing gain achievable by any
transmission strategy is upper bounded by4

3 , which is strictly
smaller than the factor of2 achievable with perfect CSIT.
This result implies that that CSIT quality must improve with
SNR in order for full multiplexing to be achievable, although
the rate of improvement is not specified. On the other hand,
in [8][9] it is shown that a naive zero-forcing beamforming
strategy performed on the basis of imperfect CSIT can achieve
the full multiplexing gain if the error in the CSIT scales as
O(SNR−1). Therefore,O(SNR−1) scaling of CSIT error is
a sufficient condition for achieving full multiplexing.

The contribution of this work is an information theoretic
analysis of the required scaling of CSIT error in the context
of a multiple-antennacompoundbroadcast channel. In the
ergodic setting, the channels are drawn repeatedly (i.e., per
channel use or frame) according to a specified distribution
and the long-term average rate (with respect to the channel
distribution) is considered; this is the setting of all of the
previously cited works. In the compound setting, on the
other hand, the channels are randomly drawn once from a
specified set but then fixed forever, and the relevant metric is
the maximum rate that can be achieved regardless of which
particular channel realization was chosen. Thus the ergodic
setting considers the average rate achievable over the different
channel realizations, while the compound setting is concerned
with the worst-case rate over the possible channel realizations.

The multiplexing gain of a compound MIMO broadcast



channel in which the possible channel realizations are fixed
(i.e., are independent of SNR) is analyzed in [10]. In our
setting, the quality of the CSIT is determined by the (angular)
spread of the possible channel realizations, and thus we
consider the case where the potential channel realizationsvary
with SNR (i.e., where the spread decreases with SNR).

Our first result (Theorem 1) shows that a necessary and
sufficient condition for full multiplexing gain is that the ratio
of the logarithm of the CSIT error to the logarithm of the SNR
be no larger than−1. This condition is slightly weaker than
anO(SNR−1) condition, and this weakness is a consequence
of the coarseness of the multiplexing gain metric. In order
to remedy this situation, we further insist on a bounded rate
offset (i.e., the achievable sum rate cannot have negative sub-
logarithmic terms) in addition to the full multiplexing gain (in
the sense of the affine approximation to high-SNR capacity
proposed in [11]). We then show (Theorem 2) that CSIT error
that scales asO(SNR−1) is both necessary and sufficient to
achieve the full multiplexing gain and a bounded rate offset,
as desired.

II. M AIN RESULTS

We consider a memoryless compound multiple-antenna
broadcast channel in which the transmitter hasM > 1
antennas and there areM receivers with a single antenna each.
For simplicity we state our results for the two transmit antenna
(M = 2), two user channel. In the compound setting, the
channel vector of user 1 hasJ1 possible instancesh1

1, . . . ,h
J1

1 ,
while the channel vector of user 2 hasJ2 possible instances
h

1
2, . . . ,h

J2

2 . The transmitter has perfect knowledge of theJi

possible channel vectors of each user, but is not aware of the
actual realization. On the other hand, each receiver is assumed
to know the particular realization. The received signal at user
k if the channel takes on realizationj is:

y
j
k = (hj

k)Hx + z
j
k, (2)

where the Gaussian noisezj
k is independent across users and

different channel realizations.
The above setting is strongly motivated by a multiple

antenna broadcast channel in which the transmitter receives
quantized (digital) channel feedback from each receiver
[8][9][12]. In this limited-feedback setting, each receiver
learns its own channel vector (presumably through downlink
training) and then quantizes this vector according to some
quantization codebook and feeds back the index of the quan-
tization. Assuming error-free feedback, the transmitter knows
the Voronoi region in which the channel vector lies, but not
the actual realization. Although a Voronoi region will typically
contain an uncountable number of vectors, it will soon become
apparent that it is sufficient to consider the case where the set
of possible channel realizations is finite.

Although the capacity region of this generally non-degraded
compound broadcast channel is not known, we are able to
derive strong results regarding the multiplexing gain of such

a system, which is defined as the maximum of

lim
P→∞

R1(P ) + R2(P )

log2 P

where(R1(P ), R2(P )) denote achievable rate pairs for power
constraintP and the maximum is taken over all achievable rate
pairs. In order to derive our results, we make the following
assumptions:

• Each of the channel vectors has unit norm, i.e.,||hj
k|| = 1.

• For anyi, j , vectors(hi
1,h

j
2) are linearly independent.

Intuitively speaking, accurate CSIT corresponds to a small
angular spread between theJk possible channel realizations.
In terms of the quantized channel feedback scenario described
earlier, this corresponds to a small Voronoi region and thus
to fine/high-rate quantization of the channel vector. Thus,the
essence of this paper is determining the rate at which the
angular spread of the channel realizations must decrease with
SNR in order for full multiplexing to be achievable.

Due to the worst-case nature of the compound channel set-
ting, removing potential channel realizations (i.e., decreasing
eitherJ1 or J2) cannot decrease capacity, and in fact we can
concentrate on the simple case whereJ1 = 1 (i.e., the channel
to receiver one is fixed and known perfectly) andJ2 = 2. For
notational simplicity, we refer to the two possible realizations
of user 2’s channel ash2a andh2b. Although it is possible to
consider the general scenario where the vectorsh1, h2a, and
h2b vary with SNRP , the essence of the problem is captured
by assuming that vectorsh1 andh2a are fixed (for all SNR)
and onlyh2b varies with SNR.

Given these assumptions, we are able to find a necessary and
sufficient condition for achievability of the full multiplexing
gain.

Theorem 1:The following is a necessary and sufficient
condition for achieving the full multiplexing gain of two inthe
two-user, two transmit antenna compound broadcast channel
under the assumptions||h1|| = ||h2a|| = ||h2b|| = 1 with
channel vectorsh1 andh2a fixed for all SNR’s:

lim
P→∞

log
(

1 − |hH

2ah2b|2
)

log P
≤ −1. (3)

Proof: (Sufficiency) We first prove sufficiency by show-
ing that full multiplexing can be achieved with simple zero-
forcing beamforming. The input is chosen asx = v1u1+v2u2

where u1, u2 are i.i.d. zero-mean complex Gaussian’s, each
with variance P

2 , and v1 and v2 are unit norm vectors
chosen orthogonal toh2a and h1, respectively. The rates
R1 = I(U1; Y1) and R2 = min(I(U2; Y2a), I(U2; Y2b)) are
achievable, where the mutual information expressions are



given by:

I(U1; Y1) = log2

(

1 +
P

2
|hH

1 v1|2
)

I(U2; Y2a) = log2

(

1 +
P

2
|hH

2av2|2
)

I(U2; Y2b) = log2

(

1 +
P
2 |hH

2bv2|2
N0 + P

2 |hH

2bv1|2

)

= log2

(

1 +
P
2 |hH

2bv2|2
N0 + P

2

(

1 − |hH

2bh2a|2
)

)

Because|hH
1 v1|2 and |hH

2av2|2 are positive constants, the
quantitiesI(U1; Y1) andI(U2; Y2a) each have a multiplexing
gain of one. The termI(U2; Y2b) can be lower bounded as:

I(U2; Y2b) ≥ log2

(

1 + P |hH

2bv2|2
)

− log2

(

N0 +
P

2

(

1 − |hH

2bh2a|2
)

)

.

The condition in (3) implies|hH

2bv2|2 converges to the constant
|hH

2av2|2 and thus the first term in the above upper bound has
a multiplexing gain of one. Furthermore, it is straightforward
to confirm that the multiplexing gain of the second term is
zero if (3) is satisfied.

Proof: (Necessity) In order to prove the necessity of the
condition in (3), we upper bound the capacity region by giving
outputs (Y2a, Y2b) to receiver 1 which creates a degraded
channel. We then utilize the upper bound on the degraded
compound broadcast channel given in [13], which states:

R2 ≤ min{I(U ; Y2a), I(U ; Y2b)} (4)

R1 + R2 ≤ I(X; Y1, Y2a, Y2b|U)

+ min{I(U ; Y2a), I(U ; Y2b)} (5)

for some marginal-preserving joint distribution with the struc-
ture U → X → (Y1, Y2a, Y2b).

We now show that (3) is a necessary condition for the
degraded channel. Because the broadcast channel capacity
region depends only on the marginal probabilities, we can
assume arbitrary correlation between the additive noise atusers
1, 2a, and2b; for our upper bound, we find it best to assume
these noises are independent.

Applying the chain rule on the first term in (5) gives

I(X; Y1, Y2a, Y2b|U) = I(X; Y2a, Y2b|U)

+I(X; Y1|U, Y2a, Y2b). (6)

Using Markovity, the first term in this expansion is upper
bounded as:

I(X; Y2a, Y2b|U) = I(X; Y2a|U) + I(X; Y2b|U, Y2a)

≤ I(X; Y2a|U) + I(X; Y2b|U). (7)

The second term in (6) can be upper bounded as:

I(X; Y1|U, Y2a, Y2b) = h(Y1|U, Y2a, Y2b) − h(Y1|X)

≤ h(Y1|Y2a, Y2b) − h(Y1|X)

= I(X; Y1|Y2a, Y2b), (8)

where the first and third lines follow from Markovity (i.e,
h(Y1|X, U, Y2a, Y2b) = h(Y1|X) = h(Y1|X, Y2a, Y2b) =
h(Z1)) and the second line because conditioning reduces
entropy. Furthermore, we trivially have:

min{I(U ; Y2a), I(U ; Y2b)} ≤ 1

2
(I(U ; Y2a) + I(U ; Y2b)) . (9)

Using (6), (7), (8), and (9) in theR1 + R2 upper bound in
(5) therefore gives the following sum rate upper bound:

R1 + R2 ≤ I(X; Y2a|U) + I(X; Y2b|U) + (10)

I(X; Y1|Y2a, Y2b) +
1

2
(I(U ; Y2a) + I(U ; Y2b)) .

In order to achieve the full multiplexing gain,R2 must
achieve a multiplexing gain of one, which by (4) implies
I(U ; Y2a) and I(U ; Y2b) each have multiplexing gain one.
This, however, implies that the first two terms in (10) have
zero multiplexing gain. To see this note

I(X; Y2a|U) + I(U ; Y2a) = I(X, U ; Y2a) = I(X; Y2a)

I(X; Y2b|U) + I(U ; Y2b) = I(X, U ; Y2b) = I(X; Y2b).

SinceY2a and Y2b are single antenna outputs, the quantities
I(X; Y2a) and I(X; Y2b) each have at most a multiplexing
gain of 1. Thus, ifI(U ; Y2a) and I(U ; Y2b) each have mul-
tiplexing gain 1 then the multiplexing gains ofI(X; Y2a|U)
andI(X; Y2b|U) are each upper bounded by 0.

As a result, the right hand side of (10) can have multi-
plexing gain of two only if the termI(X; Y1|Y2a, Y2b) has a
multiplexing gain of at least one. In other words, the following
is necessary condition for full multiplexing:

lim
P→∞

I(X; Y1|Y2a, Y2b)

log P
≥ 1. (11)

We upper boundI(X; Y1|Y2a, Y2b) as follows:

I(X; Y1|Y2a, Y2b) = h(Y1|Y2a, Y2b) − h(Y1|X)

= h(Y1 − f(Y2a, Y2b)|Y2a, Y2b) − log 2πe

≤ h(Y1 − f(Y2a, Y2b)) − log 2πe

≤ log E[|Y1 − f(Y2a, Y2b)|2] (12)

where f(·, ·) is any mappingC2 → C, that may of course
depend onh1,h2a,h2b.

In order to obtain the tightest bound, we can choosef(·, ·)
to be the MMSE estimator (or linear MMSE estimator) ofY1

from (Y2a, Y2b). However, since we are interested in the high
SNR regime, it is sufficient to letf(·, ·) be the least-squares
approximation ofY1, given by

f(Y2a, Y2b) = h
H

1 (H2H
H

2 )−1
H2

[

Y2a

Y2b

]

where we define the matrixH2 = [h2a,h2b] ∈ C
2×2. It

follows that

Y1 − f(Y2a, Y2b) = −h
H

1 (H2H
H

2 )−1
H2

[

Z2a

Z2b

]

and, eventually,

E[|Y1 − f(Y2a, Y2b)|2] = h
H

1 (H2H
H

2 )−1
h1 (13)



From the definition of eigenvalues in terms of Rayleigh
quotients and using the fact that||h1|| = 1 we have

h
H

1 (H2H
H

2 )−1
h1 ≤ λmax((H2H

H

2 )−1) =
1

λmin(H2H
H

2 )
.

(14)
The matrixH2H

H

2 has the same eigenvalues asH
H

2 H2, which
is given by:

H
H

2 H2 =

[

1 ρ

ρH 1

]

(15)

where ρ = h
H
2ah2b. This matrix has eigenvalues1 + |ρ|

and 1 − |ρ|. Because our sufficient condition is specified
in terms of |ρ|2, it is convenient to write this expression
in terms of |ρ|2 rather than|ρ|. A Taylor expansion of the
minimum eigenvalue in terms of|ρ|2 about the point|ρ|2 = 1
givesλmin(H2H

H
2 ) = 1

2

(

1 − |ρ|2
)

+O(|ρ|4). Therefore, (11)
translates to the following necessary condition:

lim
P→∞

log
(

1
1−|ρ|2

)

log P
≥ 1, (16)

which implies (3).
If the quantity

(

1 − |hH

2ah2b|2
)

, which can be thought of as
the error in the CSIT, scales asO

(

P−1
)

then the condition
of Theorem 1 clearly is satisfied. However, the condition of
Theorem 1 is in fact looser thanO

(

P−1
)

because scaling
(

1 − |hH

2ah2b|2
)

as log P

P
also satisfies (3). As the following

simple example shows, this looseness is in fact non-trivial.
Consider the following simple set of channels:

h1 =

[

1
0

]

h2a =

[

0
1

]

h2b =

[

ǫ√
1 − ǫ2

]

.

The condition in (3) translates to:

lim
P→∞

log ǫ2

log P
≤ −1. (17)

The sum rate achievable (using the zero-forcing technique used
to show the sufficiency of the condition in Theorem 1) for
two valid scalings,ǫ2 = 1

P
and ǫ2 =

log
2

P

P
, (along with

the sum rate achieved forǫ2 = 0, is shown in Figure 1 ).
Both ǫ2 scalings achieve a multiplexing gain of two, but the
difference between the reference perfect CSIT curve (ǫ2 =
0) and the rate achieved withǫ2 = log

2
P

P
increases double-

logarithmically with SNR and thus is unbounded; on the other
hand, the difference between the rate achieved withǫ2 = 0 and
ǫ2 = 1

P
is bounded for all SNR’s. Furthermore, from the figure

we see that the double-logarithmic rate loss is non-trivialeven
at moderate SNR values.

This behavior is due to the coarseness of the multiplexing
gain metric, which is only a zero-th order approximation of
capacity at high SNR and is unable to capture the effect of
sub-polynomial (but non-trivial) terms. In order to remedythis
situation, it is necessary to consider theaffineapproximation
to high-SNR capacity proposed in [11]:

C(P ) = S∞ (log2 P − L∞) + o(1), (18)
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Fig. 1. Achievable Sum Rate for Different CSIT Scaling

where constantsS∞ andL∞ are the multiplexing gain and rate
offset, respectively. This affine approximation has been very
useful in differentiating between systems with the same mul-
tiplexing gain but different rate offsets, e.g., CDMA systems
with different receivers [11], point-to-point MIMO systems
with spatially correlated fading [14], and MIMO broadcast
employing sub-optimal linear-precoding techniques on the
basis of perfect CSIT [15].

If we require both full multiplexing gain (S∞ = 2) and a
bounded rate offset (i.e. finiteL∞), then we can modify the
proof of Theorem 1 to show that the conditionO

(

P−1
)

is
both necessary and sufficient.

Theorem 2:The sum rate capacity of the two-user, two
transmit antenna compound broadcast channel (assuming
||h1|| = ||h2a|| = ||h2b|| = 1 with channel vectorsh1 and
h2a fixed for all SNR’s) admits an affine expansion in the
form of (18) with S∞ = 2) and finite L∞ if and only if
(

1 − |hH

2ah2b|2
)

= O
(

P−1
)

.

Proof: Sufficiency follows trivially using the same ap-
proach as Theorem 1. To prove necessity, we begin at the sum
rate capacity bound in (10):

R1 + R2 ≤ I(X; Y2a|U) + I(X; Y2b|U) + (19)

I(X; Y1|Y2a, Y2b) +
1

2
(I(U ; Y2a) + I(U ; Y2b)) .

If we assume the sum rate capacity achieves the full multi-
plexing gain and a bounded rate offset,R1(P ) and R2(P )
must each have a multiplexing gain of one and a bounded rate
offset. As a result,I(U ; Y2a) and I(U ; Y2b) must each have
multiplexing gain one and a bounded rate offset. Because the
quantitiesI(X; Y2a) and I(X; Y2b) have a maximum multi-
plexing gain of one but cannot havepositivesub-logarithmic
terms (for any choice of inputX), the termsI(X; Y2a|U)
andI(X; Y2b|U) must beO(1). From the bound in (10) this
implies thatI(X; Y1|Y2a, Y2b) has a multiplexing gain of one,
exactly as in the previous proof, and that the following quantity

log P − log I(X; Y1|Y2a, Y2b) (20)



does not go to positive infinity. SinceI(X; Y1|Y2a, Y2b) ≤
log E[|Y1 − f(Y2a, Y2b)|2] ≤ log 1

λmin(H2H
H

2
)
, this implies that

log P − log

(

1

λmin(H2H
H

2 )

)

= log
(

Pλmin(H2H
H

2 )
)

(21)

also does not go to infinity. Due to the monotonicity of the
log(·) function and becauseλmin(H2H

H

2 ) = 1−|ρ|2+O(|ρ|4),
this further implies thatP (1 − |ρ|2) does not go to infinity,
i.e., (1 − |ρ|2) = O

(

P−1
)

.
Theorems 1 and 2 easily extend to theM -transmit antenna,

M -receiver broadcast channel. Full multiplexing is achieved
if and only if each user achieves a multiplexing gain of one,
and thus each pair of users must achieve full multiplexing.
Thus, the proofs of Theorems 1 and 2 are applied to aM -
antenna, 2 user channel withJ1 = 1 and J2 = M and the
same dependence on the behavior of the minimum eigenvalue
of matrix H2 can be shown.

The main result can also be nicely interpreted in terms
of limited channel feedback systems. As mentioned earlier,
in such systems each receiver quantizes the direction of its
channel vector toB bits according to some vector quantization
codebook and feeds these bits back to the transmitter. In an
ideal (but not necessarily achievable)B-bit vector quantization
codebook, each of the2B Voronoi regions would be a spherical
cap of area2−B. Some simple geometry confirms that thesin2

of the angle between the center of such a cap and a vector on
its boundary (note thatsin2(w,v) = 1 − |wH

v|2 for unit
norm vectorsw,v) is equal to2−

B

M−1 . Furthermore, it is
straightforward to use the results of [16] to show existence
of actual vector quantization codebooks such that thesin2

of the center and boundary of the largest Voronoi region is
within a constant factor of2−

B

M−1 . In order to ensure that the
quantity2−

B

M−1 decreases at least as fast as theP−1 condition
of Theorem 2, it is necessary forB to be proportional to
(M − 1) log2 P , which agrees with the sufficiency results in
[8].

III. C ONCLUSION

In this work we have derived necessary and sufficient
conditions on the rate at which CSIT quality must increase
with SNR for achievability of the full multiplexing gain anda
bounded rate offset for the multiple antenna broadcast channel
in the compound setting. This result indicates the fundamental
necessity of scaling CSIT quality with SNR in multi-user
MIMO downlink systems and exactly matches with prior work
showing that full multiplexing is achievable using simple zero-
forcing beamforming strategies if CSIT is appropriately scaled.

Although the compound setting, which essentially considers
the worst-case rate achievable over the set of all possible
channel realizations, appears to capture the essence of the
problem at hand, it remains to rigorously show that the same
necessary condition also applies to the less stringent ergodic
setting.
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