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Abstract— We consider a MIMO fading broadcast channel and
compare the achievable ergodic rates when the channel state
information at the transmitter is provided by “analog” nois y
feedback or by quantized (digital) feedback. The superiority
of digital feedback is shown whenever the number of feedback
channel uses per channel coefficient is larger than 1. Also, we
show that by proper design of the digital feedback link, errors
in the feedback have a minor effect even by using very simple
uncoded modulation. Finally, we show that analog feedback
achieves a fraction1− 2F of the optimal multiplexing gain even
in the presence of a feedback delay, when the fading belongs
to the class of “Doppler processes” with normalized maximum
Doppler frequency shift 0 ≤ F < 1/2.

I. M ODEL SETUP AND BACKGROUND

We consider a multi-input multi-output (MIMO) Gaussian
broadcast channel modeling the downlink of a system where
the base station (transmitter) hasM antennas andK user
terminals (receivers) have one antenna each. A channel use
of such channel is described by

yk = h
H

kx + zk, k = 1, . . . , K (1)

whereyk is the channel output at receiverk, zk ∼ CN(0, N0)
is the corresponding AWGN,hk ∈ C

M is the vector of
channel coefficients from thek-th receiver to the transmitter
antenna array andx is the channel input vector. The channel
input is subject to the average power constraintE[|x|2] ≤ P .

We assume that the channelstate, given by the collection
of all channel vectorsH = [h1, . . . ,hK ] ∈ C

M×K , varies in
time according to a block fading model whereH is constant
over each frame of lengthT channel uses, and evolves from
frame to frame according to an ergodic stationary jointly
Gaussian process. As a special case, we have the i.i.d. block-
fading channel whereH is an independent random matrix on
each frame. The entries ofH are mutually independent and
identically distributed, and the first-order distributionof H is
Gaussian i.i.d. with elements∼ CN(0, 1).

A. Capacity results

If H is perfectly and instantaneously known to all terminals
(perfect CSIT and CSIR), the capacity region of the channel
(1) is obtained by MMSE-DFE beamforming and Gaussian
dirty-paper coding (see details in [1–5]). Because of simplicity
and robustness to non-perfect CSIT, simplerlinear precoding
schemes with standard Gaussian coding have been extensively
considered. A particularly simple scheme consists of zero-
forcing (ZF) beamforming, where the transmit signal is formed

as x = Vu, such thatV ∈ C
M×K is a zero-forcing

beamforming matrix andu ∈ C
K contains the symbols from

K independently generated Gaussian codewords. ForK ≤ M ,
the k-th column vk of V is chosen to be a unit vector
orthogonal to the subspaceSk = span{hj : j 6= k} generated
by all other users’ channels. In this case, the achievable sum
rate is given by

RZF = maxP
k

E[Pk(H)]≤P

K∑

k=1

E

[
log

(
1 +

|hH

kvk|2Pk(H)

N0

)]

(2)
where the optimal power allocation is obtained straightfor-
wardly by waterfilling over the set of channel gains{|hkvk|2 :
k = 1, . . . , K}. If K > M , ZF precoding can be applied
jointly with some user schedulingalgorithm that selects at
every channel use an active user subset of size not larger
than M . Schemes for user scheduling have been extensively
discussed. In this paper, however, we are not concerned with
the user scheduling problem and we shall consider the situation
K = M . We are mainly interested in the high-spectral effi-
ciency regime, where we can characterize the achievable sum
rate asκ log P/N0 + O(1), andκ is the “system multiplexing
gain” or “pre-log factor” of the ergodic sum rate. Hence, it
is well-known that restricting to the simple constant power
allocationPk = P/M for all k = 1, . . . , M incurs in a loss
only in theO(1) term. We shall restrict to this choice in the
rest of this paper.

It is well-known that, under perfect CSIT and CSIR, both
the optimal “Dirty-Paper” sum-rateC and the zero-forcing
sum-rateRZF are equal toM log P/N0 + O(1). On the
contrary, under non-perfect CSI the rate sum may behave in
a radically different way. For example, ifH has distribution
invariant under left multiplication by unitary matrices, it
is known [1, 6] that under no CSIT and perfect CSIR the
multiplexing gain reduces to 1, i.e., the sum rate is equal to
log P/N0 + O(1).

B. Channel state feedback models

We consider some specific CSIT and CSIR models and
derive lower-bounds to the corresponding achievable ergodic
rates by analyzing anaivebeamforming scheme that computes
a mismatched ZF beamforming matrix̂V from the CSIT. In
particular, we consider an “analog” CSIT feedback scheme
where the transmitter observation at frame timet is given by

{G(τ) =
√

βPH(τ) + W(τ) : τ = −∞, . . . , t − d} (3)



where{W(τ)} is a spatially and spectrally white Gaussian
process with elements∼ CN(0, N0) and d is the feedback
delay. This models the case where the channel coefficients are
explicitly transmitted on the reverse link (uplink) using un-
quantized quadrature-amplitude modulation [7–9]. The power
scaling β corresponds to the number of channel uses per
channel coefficient, assuming that transmission in the feedback
channel has fixed peak powerP and that the channel state
vector is modulated by aβM × M unitary spreading matrix
[7]. A simplifying assumption of this work is that we consider
no fading and orthogonal access in the CSIT feedback link.
In addition, we assume that the SNR on the feedback channel
is equivalent to the un-faded downlink SNR (P/N0).

A different CSIT feedback approach is based on quantizing
the channel vector at each receiver and transmitting back tothe
base station a packet ofB bits, representing the corresponding
quantization index. In the case of no feedback delay and no
feedback errors, in [10, Theorem 1] it is shown that the gap
between ZF with ideal CSI and the naive ZF scheme is given
by

∆Rquant. ≤ log

(
1 +

P

N0
2−

B
M−1

)
(4)

While this result is obtained for a particular random ensemble
of channel quantization schemes referred to asRandom Vector
Quantizer(see [10] and references therein), a bound on the
best possible channel vector quantizer shows that (4) is tight
for largeP/N0 [10].

II. RATE GAP BOUND FOR ANALOGCSIT FEEDBACK

In the case of i.i.d. block fading and no feedback delay,
the analog CSIT feedback yields the observation ofG =√

βPH + W at the beginning of every frame. The trans-
mitter computes the MMSE estimate of the channel matrix,
Ĥ

√
βP

N0+βP G. The k-th column v̂k of V̂ is a unit vector

orthogonal to the subspaceSk = span{ĥj : j 6= k}. Notice
that we can writeH = Ĥ + E, whereĤ andE are mutually
independent and have Gaussian i.i.d. components with mean
zero and varianceβP

N0σ2
e

and σ2
e = (1 + βP/N0)

−1, respec-

tively. Furthermore,H, Ĥ and E are identically distributed
apart from different per-component variances (scaling).

The signal at thek-th receiver is given by

yk = (hH

k v̂k)uk +
∑

j 6=k

(eH

k v̂j)uj + zk (5)

We assume that the frame duration is long enough such
that some training scheme can be used in the downlink
channel. Training allows each receiver to estimate: 1) the
useful signal coefficient,ak = (hH

k v̂k) and 2) the variance
of the interference plus noiseζk =

∑
j 6=k(eH

k v̂j)uj + zk,

given by Σk = E

[
|ζk|2|ek, Ĥ

]
= N0 +

∑
j 6=k |eH

k v̂j |2P/M .
This conditioning is due to the fact thatΣk is estimated on
each frame, and the coefficients(eH

k v̂j) are constant over
each frame and change from frame to frame, following the
block i.i.d. fading model. The maximum achievable rate of
userk subject to the above assumptions is lowerbounded by
assuming a Gaussian inputuk = uG

k ∼ CN(0, P/M), and by
considering the worst-case noise plus interference distribution

in every frame. Using stationarity and ergodicity, we have1

Rk ≥ E

[
inf

ζk:E[|ζk|2]≤Σk

I(uG
k ; yk|ak, Σk)

]

(a)
= E

[
log

(
1 +

|ak|2P
ΣkM

)]
(6)

where (a) follows from [11], noticing thatakuG
k and ζk are

uncorrelated (even after conditioning onak, Σk).
Next, we shall bound the rate gap incurred by the naive

ZF beamforming and analog feedback with respect to the ZF
beamforming with ideal CSIT. Denoting byRZF

k the rate of
user k with uniform (across users) and constant (in time)
power allocationPk(H) = P/M in (2), we have

∆Ranalog
△
= RZF

k − Rk

≤ E

"
log

 
1 +

|hH

k
vk|

2P

N0M

!#
− E

�
log

�
1 +

|ak|
2P

ΣkM

��
= E

"
log

 
1 +

|hH

k
vk|

2P

N0M

!#
−E

24log

0�1 +

�P
j 6=k |eH

k
bvj |

2 + |ak|
2
�

P

N0M

1A35
+E

24log

0�1 +
X
j 6=k

|eH

k
bvj |

2P

N0M

1A35
(a)

≤ E

24log

0�1 +
X
j 6=k

|eH

k
bvj |

2P

N0M

1A35
(b)

≤ log

0�1 +
P

N0M

X
j 6=k

E[|eH

kbvj |
2]

1A
(c)
= log

�
1 +

σ2
eP

N0

M − 1

M

�
, (7)

where (a) follows from the fact that
∑

j 6=k |eH

k v̂j |2 + |ak|2
stochastically dominates|hH

kvk|2 since|ak|2 and|hH

kvk|2 are
identically distributed, (b) follows from Jensen’s inequality
and the final expression (c) follows by noticing that theV̂ is a
deterministic function of̂H and therefore it is independent of
E. Therefore, we can writeE[|eH

k v̂j |2] = E[v̂H

j E[eke
H

k ]v̂j ] =
σ2

eE[|v̂j |2] = σ2
e , sincev̂j has unit norm by construction.

We briefly discuss the impact of imperfect CSIR.2 Assume
that the user terminals have an estimateâk of the useful signal
coefficientak (e.g., obtained from downlink training symbols)
such thatak = âk + fk, whereE[|fk|2] = σ2

f andE[â∗
kfk] =

0.3 We still assume that the interference plus noise variance
Σk is accurately known on each frame. By repeating the same
lower bounding argument of (6) we arrive at

Rk ≥ E

[
log

(
1 +

|âk|2P
σ2

fP + ΣkM

)]
(8)

1With some abuse of notation, the term in the second line of (6)have the
following meaning:

E
h
infζk :E[|ζk|2]≤Σk

I(uG
k

; yk|ak, Σk)
i

≡R
infζk:E[|ζk|2]≤σ I(uG

k
; yk|ak, Σk = σ)dF (σ)

whereF (σ) denotes the cdf ofΣk.
2Notice that in this case model (3) still applies but the noiseW accounts

for the observation noise at the receivers plus the CSIT feedback noise.
3This condition holds whenbak is the MMSE estimate ofak given the

observation.



By comparing (6) and (8) we notice that the effect of non-
perfect CSIR is a) replacingak with âk and b) increasing the
interference power by the termσ2

fP . We shall see in the next
section that the multiplexing gain of the analog CSIT feedback
scheme depends critically on the behavior of the termσ2

eP
for P → ∞. Typically, we have thatσ2

fP = O(σ2
eP ). Hence,

the multiplexing gain for imperfect CSIT/perfect CSIR and
for imperfect CSIT/imperfect CSIR are identical. This is in
sharp contrast to point to point channels, in which perfect vs.
imperfect CSIR may lead to very different high-SNR behaviors
[11–13].

III. C OMPARISON WITH QUANTIZED CSIT FEEDBACK

For the sake of simplicity we restrict to the case of perfect
CSIR. Replacing the estimation error varianceσ2

e = (1 +
βP/N0)

−1 in (7), we obtain

∆Ranalog ≤ log

(
1 +

P/N0

1 + βP/N0

)

≤ log

(
1 +

1

β

)
(9)

where we have upperbounded(M − 1)/M by 1 and where
the last line is approached for large SNR.

Let us now consider digital feedback over the same channel.
The rate gap obtained in [10, Theorem 1] and reported in (4) is
further upperbounded bylog(1+(P/N0)·2−

B
M ). Let us assume

(very unrealistically) that the digital feedback link can operate
error-free and at capacity, i.e., it can reliably transmitlog(1+
P/N0) bits per symbol. For the same number of feedback
channel periods,βM , the number of feedback bits per mobile
is B = βM log2(1 + P/N0). Replacing this into the rate gap
bound, we obtain:

∆Rquant. ≤ log

(
1 +

P/N0

(1 + P/N0)β

)
. (10)

If β = 1 the quantized and analog feedback achieve essentially
the same rate gap of at most 1 b/s/Hz. However, ifβ > 1,
unlike the analog feedback case, the rate gap of the quantized
feedback vanishes forP/N0 → ∞.

We conclude that forβ > 1 the quantized feedback is
far superior to the analog scheme. This conclusion finds an
appealing interpretation in the context of sending an analog
source via a noisy channel with minimal end-to-end distortion.
In our case, the source is the Gaussian channel vectorhk

and the noisy channel is the feedback AWGN channel with
SNR P/N0 that we have postulated in our model. It is well-
known (see [14] and references therein) that when the source
block length (M in our case) is constrained to be equal to
the channel code block length (β = 1 in our case), then an
optimal strategy to send a Gaussian source over a Gaussian
channel with minimal end-to-end quadratic distortion consists
of scaling the source symbols and sending them uncoded and
unquantized through the channel. Hence, the fact that analog
feedback cannot be essentially outperformed forβ = 1 is
expected. However, it is also well-known that if we are allowed
to use a channel coding block length larger than the source
block length (β > 1 in our case), the analog strategy is strictly
suboptimal because the distortion with analog transmission
scales as1/β whereas it decreases exponentially withβ (i.e.,
along the vector quantizer R-D curve) for digital transmission.

IV. EFFECTS OFCSIT FEEDBACK ERRORS

We wish to investigate the impact on the above conclusions
of the optimistic assumption that the quantized feedback chan-
nel can operate error-free and arbitrarily close to capacity. This
assumption is particularly unrealistic because the feedback
block coding length is very small (βM ). In addition, the
sensitivity to feedback delay (see Section V) is likely to require
relatively simple codes to be used.

We shall consider a very simple CSIT feedback scheme that
certainly represents a lower bound on the best quantized feed-
back strategy. The user terminals perform quantization using
Random Vector Quantizers[10], and transmit the feedback
bits using simple uncoded QAM. Furthermore, no intelligent
mapping of the quantization bits onto the QAM symbols is
used, Therefore, if even a single feedback bit from userk is
erroneously received, the correspondingk-th CSIT vector is
completely independent of the actualk-th channel vector or
its quantization (this is because all of the quantization vectors
in the codebook are random and are randomly assigned to
the QAM symbols). Furthermore, since only uncoded QAM
symbols are sent, error detection is not possible: the base
station computes the beamforming matrix̂V based on the
decoded feedback messages, even if they are incorrect.

We again useβM symbol periods to transmit the feedback
bits. There is a non-trivial tradeoff between quantizationand
channel errors. In order to maintain a bounded gap, we must
scale feedback at least as(M − 1) log2(1+P/N0), which we
approximate asM log2 P/N0 for simplicity. Therefore, let us
consider usingB = αM log2 P/N0 for α ≥ 1. We send these
B bits inβM symbol periods, and thus we sendα

β log2(P/N0)
bits per QAM feedback symbol.

From [15], using the fact that the QAM constellation size is
equal toL = (P/N0)

α
β , we have the following upper bound

to the symbol error probability for QAM modulation:

Ps ≤ 2 exp

(
−3

2

(
P

N0

)1−α/β
)

(11)

For α = β (which means trying to signal at capacity with
uncoded modulation!)Ps does not decreases with SNR and
the system performance is very poor. However, forα/β < 1,
which corresponds to transmitting at a constant fraction of
capacity, thenPs → 0 as P/N0 → ∞. The upper bound on
the error probability of the whole quantized vector (transmitted
in βM symbols) is given byPe,fb = 1−(1−Ps)

βM . A lower
bound on the achievable ergodic rate is obtained by assuming
that when a feedback error occurs for userk its SINR is zero
(because userk receives a large amount of interference due
to the useless quantization vector available to the transmitter),
while if the feedback error does not occur its rate is given
RZF

k −∆Rquant., that is, the rate of ideal ZF decreased by the
(upper bound to) the rate gap. It follows that the ergodic rate
of userk in the presence of quantized feedback with errors is
upperbounded by

Rk ≥ (1 − Ps)
βM
(
RZF

k − log
(
1 + (P/N0)

1−α
))

(12)

Choosing1 < α < β we achieve both vanishingPs and van-
ishing ∆Rquant. as P/N0 → ∞. Thus, even under this very
simple CSIT feedback scheme the optimal ZF performance
can be eventually approached for sufficiently high SNR.
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Fig. 1 shows the ergodic rate achieved by ZF beamforming
with quantized CSIT and QAM feedback trasmission forM =
K = 4, independent Rayleigh fading,β = 4 and different
values ofα. It is noticed that by proper design of the feedback
parameters the performance can be made very close to the
ideal CSIT case.

Fig. 2 shows the rate achieved by ideal CSIT, by analog
feedback and quantized digital feedback with QAM modu-
lation at different SNRs as a function of the feedback rate
β channel uses per channel coefficient. The result for digital
feedback is optimized with respect toα. We notice that forβ
sufficiently large the digital feedback eventually outperforms
the analog feedback. The cross-over point decreases as SNR
increases.

V. EFFECTS OFCSIT FEEDBACK DELAY

We consider now the case of analog feedback when each
entry of H evolves independently (in the block-fading way
described above) according to the same complex circularly
symmetric Gaussian stationary ergodic random process, de-
noted by {h(t)}, with mean zero, variance 1 and power
spectral density (Doppler spectrum) denoted bySh(ξ), ξ ∈
[−1/2, 1/2].

Because of stationarity, without loss of generality we can
focus on t = 0. We are interested in the linear MMSE
estimation ofh(t) from the observation{g(τ) : τ = −∞, t−

d} where, following the analog feedback model (3), we let
g(τ) = h(τ)+w(τ), with w(τ) i.i.d. ∼ CN(0, δ) andδ = N0

βP .
In particular, we consider the case of 1-step prediction (d = 1)
and the case of filtering (d = 0). From classical Wiener filering
theory [16], we have that the prediction error is given by

ǫ1(δ) = exp

(∫ 1/2

−1/2

log(δ + Sh(ξ))dξ

)
− δ (13)

and that the filtering MMSE is given by

ǫ0(δ) =
δǫ1(δ)

δ + ǫ1(δ)
(14)

that is, the filtering error is the harmonic mean between the
observation noise varianceδ and the prediction errorǫ1(δ).
Notice that if ǫ1(δ) = 1 (e.g., the channel process is i.i.d.
so that the observation of the past is useless), thenǫ0(δ) =
δ/(1 + δ), which is the same expression that we have used in
the Section II for the case of i.i.d. block-fading and delay-free
feedback.

We shall discuss the rate gap bound (7) lettingσ2
e =

ǫd(N0/(βP )) for d = 0, 1, under different assumptions on
the fading process{h(t)}. We distinguish two cases: Doppler
process and regular process. We say that{h(t)} is a Doppler
process ifSh(ξ) is strictly band-limited in[−F, F ], where
F < 1/2 is the maximum Doppler frequency shift, given by
F = vfc

c Tf , wherev is the mobile terminal speed (m/s),fc is
the carrier frequency (Hz),c is light speed (m/s) andTf is the
frame duration (s). Furthermore, a Doppler process must sat-
isfy

∫ F

−F
log Sh(ξ)dξ > −∞. This condition holds for most (if

not all) channel models usually adopted in the wireless mobile
communication literature, where typically within the support
[−F, F ] the Doppler spectrum has no spectral nulls (see [17]
and references therein). Following [13], we say that{h(t)} is a
regular process ifǫ1(0) > 0. In particular, a process satisfying
the Paley-Wiener condition [16]

∫ 1/2

−1/2
log Sh(ξ)dξ > −∞ is

regular.
A Doppler process satisfying our assumptions has prediction

error

ǫ1(δ) = δ1−2F exp

(∫ F

−F

log(δ + Sh(ξ))dξ

)
− δ (15)

No feedback delay (d = 0). In this case

Pσ2
e =

N0

β

ǫ1

(
N0

βP

)

N0

βP + ǫ1

(
N0

βP

) (16)

Hence, limP→∞ Pσ2
e = N0

β for both Doppler and regular
processes. For the latter, this is clear from the fact that
ǫ1(0) > 0. For the former, this follows from (15). Applying
Jensen’s inequality and the fact that

∫
Sh(ξ)dξ = 1, we arrive

at the upper bound

ǫ1

�
N0

βP

�
≤

�
N0

βP

�1−2F
"�

1

2F
+

�
N0

βP

��2F

−

�
N0

βP

�2F
#

(17)

Using the fact thatlog is increasing, we arrive at the lower
bound

ǫ1

�
N0

βP

�
≥

�
N0

βP

�1−2F
"
exp

�Z F

−F

log Sh(ξ)dξ

�
−

�
N0

βP

�2F
#
(18)



These bounds yield thatǫ1(N0/βP ) = κP−(1−2F )+O(1/P )
for some constantκ. Hence,ǫ1 = O(P−(1−2F )) while δ =
O(1/P ), and the limits holds.

We conclude that in the case of no feedback delay the
estimation error is essentially dominated by the instantaneous
observation and not much improvement can be expected by
taking into account the channel memory. On the other hand,
this means also that the fading time-correlation has little
impact on the performance provided that the feedback is fast
enough.

Feedback delay (d = 1). In this case, the behavior of
Doppler versus regular processes is radically different. For
Doppler processes, using (17) and (18), we have thatPσ2

e =
Pǫ1(N0/βP ) = κP 2F + O(1). It follows that the achievable
rate sum is lowerbounded by

M∑

k=1

Rk ≥ M(1 − 2F ) log P + O(1) (19)

or, equivalently, that the multiplexing gain of the system is
M(1 − 2F ).

For regular processes, on the contrary, we have thatPσ2
e ≥

Pǫ1(0) = O(P ). Hence, the rate gap grows likelog P and the
achieved multiplexing gain is zero.4

In conclusions, the most noteworthy result of this analysis
is that under common fading models (Doppler processes), the
analog feedback scheme achieves a potentially high multi-
plexing gain even with realistic, noisy and delayed feedback.
Notice for example that with mobile speedv = 50 km/h,
fc = 2 GHz, and frame duration1 ms, we haveF = 0.0926.
With M = 4 antennas we achieve a yet respectable pre-log
factor equal to3.26 instead of 4.

Figs. 3 and 4 show the achievable ergodic rates for the
Jakes’ “J0” correlation (strictly band-limited) and the Gauss-
Markov AR-1 correlation (regular process) for different first-
lag correlation values. For the AR-1 process withd = 1
the system becomes interference limited. On the contrary, the
performance under Jakes’ model degrades gracefully as the
user mobility (Doppler bandwidth) increases.
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